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Spatial interplay of lymphocytes and fibroblasts in estrogen
receptor-positive HER2-negative breast cancer
I. Nederlof 1,12, S. Hajizadeh2,12, F. Sobhani 3,4, S. E. A. Raza 5, K. AbdulJabbar 3,4, R. Harkes 6, M. J. van de Vijver7, R. Salgado 8,9,
C. Desmedt 10, M. Kok1,11, Y. Yuan3,4,13 and H. M. Horlings 2,13✉

In estrogen-receptor-positive, HER2-negative (ER+HER2−) breast cancer, higher levels of tumor infiltrating lymphocytes (TILs) are
often associated with a poor prognosis and this phenomenon is still poorly understood. Fibroblasts represent one of the most
frequent cells in breast cancer and harbor immunomodulatory capabilities. Here, we evaluate the molecular and clinical impact of
the spatial patterns of TILs and fibroblast in ER+HER2− breast cancer. We used a deep neural network to locate and identify tumor,
TILs, and fibroblasts on hematoxylin and eosin-stained slides from 179 ER+HER2− breast tumors (ICGC cohort) together with a new
density estimation analysis to measure the spatial patterns. We clustered tumors based on their spatial patterns and gene set
enrichment analysis was performed to study their molecular characteristics. We independently assessed the spatial patterns in a
second cohort of ER+HER2− breast cancer (N= 630, METABRIC) and studied their prognostic value. The spatial integration of
fibroblasts, TILs, and tumor cells leads to a new reproducible spatial classification of ER+HER2− breast cancer and is linked to
inflammation, fibroblast meddling, or immunosuppression. ER+HER2− patients with high TIL did not have a significant improved
overall survival (HR= 0.76, P= 0.212), except when they had received chemotherapy (HR= 0.447). A poorer survival was observed
for patients with high fibroblasts that did not show a high level of TILs (HR= 1.661, P= 0.0303). Especially spatial mixing of
fibroblasts and TILs was associated with a good prognosis (HR= 0.464, P= 0.013). Our findings demonstrate a reproducible pipeline
for the spatial profiling of TILs and fibroblasts in ER+HER2− breast cancer and suggest that this spatial interplay holds a decisive role
in their cancer-immune interactions.
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INTRODUCTION
The endogenous anti-cancer immune response is often expressed
as the percentage of tumor infiltrating lymphocytes (TILs) and is
tightly associated with a good prognosis in triple negative breast
cancer (TNBC) patients1–3. In stark contrast with TNBC, high levels
of TILs in estrogen receptor-positive, HER2 receptor-negative
(ER+HER2−) breast cancer were associated with recurrence of
disease4, clinico-pathological features of dismal outcome5, and
were an adverse prognostic factor in several large clinical
cohorts1,6. Intriguingly, TIL prognostic value seems different in
ER+ patients treated with or without chemotherapy5 and there are
also studies showing that a higher level of CD8 T cells is associated
with a better outcome7. Automated analysis also revealed that
increased spatial clustering of immune and cancer cells correlated
with poor prognosis in ER+ breast cancer8, again in contrast with
TNBC9. A clear explanation for this potentially opposite or diverse
effect of TILs in ER+HER2− breast cancer is still lacking.
Most studies on the spatial organization of breast cancer8–12

have focused only on TILs in the context of the tumor cells, often
forgoing the role and interactions of other cells in the tumor that
can alter the cancer-immune interactions. Accumulating pre-
clinical and clinical evidence show that fibroblasts are key
mediators in tumor structure and immunomodulation13,14. Fibro-
blast presence in breast tumors was linked to prognosis already

two decades ago15–17, and recent breast cancer studies uncovered
several subtypes of fibroblasts13,14,18, differently enriched in
ER+HER2− and TNBC tumors13,19,20. Therefore, fibroblasts poten-
tially hold a decisive role in the potentially contrasting breast
cancer-immune response in ER+HER2− breast tumors. We
hypothesized that if the presence and spatial distribution of
fibroblasts in a tumor has an impact on TILs or vice versa, then
these features can be used to define distinct spatial patterns
which can potentially provide new insight into the cancer-immune
response. Here we evaluate the patterns and clinical impact of the
proximity between tumor, TILs, and fibroblast in ER+HER2− breast
cancer.

RESULTS
Cell detection and classification using deep learning in breast
cancer FFPE H&E slides
A deep neural network-based pipeline21 was used for detecting and
classifying tumor cells, TILs, and fibroblasts from H&E slides from
the ICGC breast cancer cohort22, which included 235 patients with
an evaluable H&E slide from (T1–T3) primary breast cancer
(Fig. 1a–d). For training of the cell classification model, in total
30,544 cells were annotated in 12 different FFPE H&E slides: 5553
TILs, 16,080 tumor cells, 4778 fibroblasts (including myofibroblasts)
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and 4133 other cells. The model reached an accuracy on average of
91.9% for the classification of cells (accuracy per cell type; Table S1).
Cells detected with the deep neural network are hereafter referred
to as TILs-AI, tumor-AI, and fibro-AI. As expected, in tumors with high
stromal TILs or high intratumoral TILs percentages as assessed by
pathologists, a higher TILs-AI level was detected (Fig. 2c, ICGC
cohort, Fig. S1d R-sq= 0.176). In line with various immune cell
estimates (TIL, cytotoxic T cells, B cells, regulatory T cells, fibroblasts;
Fig. S1a, c) identified by standard pathology IHC23 and a RNA-based

estimation on the ICGC cohort24 (Fig. S1a, c), the deep-learning
model detected significantly lower TIL-AI levels in ER+ tumors
versus ER- tumors (10.5% vs. 17.9% resp., P= 0.019, Fig. S1b) and an
overall higher fibro-AI levels in ER+ tumors compared to ER−

tumors (28.4% vs. 22.4% resp., P= 0.016 by Wilcoxon-rank test, Fig.
S1b). As expected, tumor-AI levels were equal between ER+ and
ER− tumors (58.3% vs. 60.0%, P= 0.99 by Wilcoxon-rank test, Fig.
S1b). The occurrence of a fibrotic scar on the H&E slides did not
interfere with the overall % of TILs-AI or Fibro-AI (Fig. S1d, e).

Fig. 1 The analysis pipeline for automated image analysis and subsequent clustering of H&E slides. a Overview of the cohorts used and
schematic illustration of the deep neural network-based pipeline for the processing of FFPE H&E slides. b Schematic examples of tumors with
high KL-divergences (restricted patterns) and low KL-divergences (mixed patterns). c Example of FFPE H&E image and output of cell detection
and classification. Scalebar indicates 5 mm. d Cell density distribution plots of H&E image under c. e Explanatory illustration of the three
fractional levels of cell types, namely the cell type percentage of TILs, fibroblasts and tumor cells, and three measures to describe the mixing or
restriction of the three different cell type distributions. The resulting six variables were used to cluster patients based on their H&E slides.
f Hierarchical clustering of the patients in the ICGC cohort and METABRIC cohort separately. g Downstream analyses of molecular
characteristics and survival of ER+HER2− patients only.
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In summary, we observe a high accuracy of the model and find cell
levels similar to classic pathology and RNA-based estimations in
ER+ and ER− breast tumors.

Clustering of patients based on spatial architecture of H&E
slides
We expected that if the fibro-AI spatial distribution in a tumor has
an impact on TILs-AI (or vice versa), then these features can be
used to cluster breast tumors according to common spatial
patterns of these cells. Example images from the ICGC cohort with
the detection of cell types and corresponding Kullback–Leibler
(KL) divergences are portrayed in Fig. 2a, b. The KL divergences

and level of cell types were used to define tumor spatial clusters
(Table 1 and Fig. 3a).
We identified three clusters with relatively high infiltration of

TILs and/or fibroblasts and two clusters that were mainly packed
with tumor cells. ER negative, basal-like, grade 3 tumors were
commonly characterized by the TIL-high/Fibro-low cluster (Table
S2). The majority of the tumors in the Fibro-hi/EMT cluster were
Luminal A breast cancers, whilst the TumorDense and Tumor-
Dense/Oxidative clusters consisted mainly of luminal B breast
cancer (Table S2). The Tables S2 and S3 suggest that some clinical
characteristics are in fact unevenly distributed over the spatial
clusters, but when we study the cell levels and spatial measures in
subgroup analysis (Fig. S2), we observe that each subgroup (e.g.,
ER+ and ER− subgroups) within the same spatial cluster follow the

Fig. 2 Cell detection and classification results of ICGC cohort. a Examples of the cell detection and classification results of 2 H&E images.
b Examples images of H&E images with mixing or restriction of cell types. c The TILs-AI in ICGC breast tumors (N= 235) grouped by increasing
levels of intra-tumoral or stromal TIL fraction (0–1) scored by pathologists (Kruskal–Wallis test). Scalebar for each image is 1 cm.

Table 1. Summary Table of Spatial Clusters.

Spatial cluster Tumor Fibro TILs Tumor-TILs Fibro-TILS Tumor-Fibro GSEA

TIL-hi/Fibro-low Moderate Low High Mixing Mixing Mixing None significant

Fibro-hi/EMT Low Highest Moderate +/− Mixing Mixing EMT/TGF-β/Angiogenesis
TIL-hi/Fibro-hi/
Inflamm

Lowest High Highest Mixing Mixing++ +/− Inflammation/IFN-γ/Allograft/IL2-STAT5/IL6-JAK-
STAT3

TumorDense High Lowest Low Restricted Restricted Restricted None significant

TumorDense/
Oxidative

Highest Moderate Lowest Restricted Restricted Restricted Oxidative phosphorylation, Peroxisome

GSEA analysis was performed with hallmarks of cancer gene sets (N= 50) for ER+HER2− tumors only (N= 173).
ER estrogen receptor, IFN-γ interferon gamma, TGF-β tumor growth factor beta, IL6 interleukin 6, EMT epithelial to mesenchymal transition, +/− not specifically
mixed or restricted.
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same patterns. This indicates that e.g., an ER+ and ER− tumor in
the same spatial cluster indeed shows similar cell infiltration, but
the cluster itself may be enriched for ER+ breast tumors.

Gene set enrichment of spatial clusters for ER+HER2- patients
To understand if TILs in ER+HER2− breast tumors were spatially
linked to fibroblasts, we analyzed the spatial clusters for
enrichment of the 50 hallmarks of cancer gene sets (Table 1 and
Fig. 1g). We identified two TIL-high clusters, that differ greatly in
fibroblast infiltration and spatial overlap. Patients with the highest
TILs-AI levels were in the TIL-hi/Fibro-hi/Inflam cluster (median
23% vs 10.5% all ER+ samples) and significant enrichment of gene
signatures like inflammatory response and allograft rejection were
characteristic for these tumors (Fig. 3c). In contrast, the TIL-hi/
Fibro-low cluster did not show a significant enrichment for
inflammatory signatures compared to the rest. This suggests that
the combination of fibro-AI and TILs-AI may lead to a synergistic
inflammatory environment in ER+HER2− breast cancer. The mean
tumor cell content in the ICGC cohort was 58.9%, whilst in the TIL-
hi/Fibro-hi/Inflam cluster this was 44.8% and, in the TIL-hi/Fibro-
low cluster 59.3%, potentially leading to a relative dilution of
inflammatory gene expression by immune cells in the latter. The
Fibro-hi/EMT cluster was characterized by high Fibro-AI levels,
with an upregulation of gene signatures like EMT, hypoxia, and
TGF-ß signaling suggestive of fibroblast meddling (Fig. 3c). The
two last clusters showed a relatively high tumor-AI percentage
(Fig. 3b), of which one cluster (TumorDense/Oxidative) was
enriched for oxidative phosphorylation and peroxisome gene
sets, suggesting an altered oxidation in these tumors (Fig. 3c).

Independent assessment of the spatial clusters in METABRIC
If the spatial clustering of ER+HER2− breast cancer leads to
biologically distinct clusters, then these spatial clusters should be
reproducible in another independent cohort. For this purpose, we
studied the METABRIC cohort, where 997 H&E slides of primary
breast cancer patients are available combined with overall survival

data to study prognosis. The majority of samples were from
ER+HER2− patients (N= 630, mean age 61.4 years) of whom most
received hormonal therapy (N= 528) and a smaller subgroup
chemotherapy (N= 108). We used the cell type classification of
samples in the METABRIC cohort (N= 997)25 and independently
clustered them using the same analysis pipeline (Fig. 1). This
resulted naturally in six clusters (Fig. 4a), one (small) extra cluster
compared to ICGC. We observe the following similarities between
the spatial clusters of ICGC and METABRIC; 1) similar cell
distributions are observed per cluster (Fig. S2) 2) clusters localize
together in the UMAP-based dimensionality reduction to the
spatial measurements (Fig. 4b) and 3) the spatial clusters correlate
for similar significantly enriched gene sets (Fig. 4c). We conclude
that the analysis pipeline and clustering process (Fig. 1) is
consistent and coherent when independently repeated over an
independent cohort.
When performing GSEA for all ER+HER2− (n= 630) samples

based on the six spatial clusters of METABRIC, we found similar
gene sets upregulated in specific clusters as in the ICGC cohort
(Fig. 4d). The Fibro-hi/EMT cluster is again significantly enriched
for EMT, hypoxia, and TGF-β. Interestingly, cluster TIL-hi/Fibro-lo
and TIL-hi/Fibro-hi/Inflam both showed abundant TILs-AI infiltra-
tion (Fig. S2), however in line with the ICGC cohort only the cluster
TIL-hi/Fibro-hi/Inflam showed significant enrichment for inflam-
matory gene sets (Fig. 4d). Last, we again find a TumorDense/
Oxidative cluster, with significant enrichment for oxidative
phosphorylation, and in addition estrogen and MYC targets,
DNA repair and glycolysis.

Prognostic value of the spatial clusters for ER+HER2− patients
Last, we hypothesized that if combining the spatial measures and
the cell ratios lead to reproducible spatial clusters, these will be
associated with outcome. Only the METABRIC cohort includes
clinical outcome, and therefore we first performed the univariate
analyses of the spatial and clinical characteristics for ER+HER2−

tumors (N= 603, Fig. 5a). In Fig. S5, we show how the prognostic
value of the TILs-AI changes with each 10th percentile step
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Fig. 3 Hierarchical spatial clustering of ICGC breast tumors results in biological distinct groups. a Dendrogram of the hierarchical
clustering of the ICGC cohort (N= 235) with annotated clinical parameters. b Boxplots of the six spatial H&E measurements that were used for
the clustering. Box plots show median, lower, and upper hinges correspond to the 25th and 75th percentile. Y-axis shows KLd (three upper
graphs) and percentages (three lower graphs). Kruskal–Wallis test and Wilcoxon-rank test for comparing the highest infiltrated or most mixed
cluster to the rest. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; NS not significant by Wilcoxon-rank test. c The normalized enrichment
score (NES) for the hallmarks of cancer gene sets for each of the five spatial clusters (ER+HER2− samples only, N = 179).
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increase for ER+ and ER+HER2− samples. In short, a TILs-AI cut-off
value of p40–p60 shows a significant link to prognosis for ER+

patients, but not ER+HER2− patients (Fig. S5). ER+HER2− patients
with a TILs-AI > p10 have a significantly lower HR than the rest
(<p10) (HR= 0.443, P= 0.0323, log likelihood ratio (LLR) test). For
all subsequent survival analysis we chose the cut-off value p50 to
dichotomize the entire group equally into TIL-low or TIL-high.
We observe that a high TIL (>p50) is not significantly correlated

with a better prognosis (HR= 0.760, P= 0.212, LLR test) for
patients with ER+HER2− breast cancer, also not when indepen-
dently assessed in Luminal A (N= 273) and Luminal B (N= 193)
breast cancer patients (Fig. S3). However, when we studied the
prognostic role of the spatial analysis for the ER+HER2− patients
that received any form of chemotherapy, high TILs-AI level
(>median) was linked to a significant better outcome (HR= 0.447,
Fig. S4). In the univariate cox regression, Luminal B patients in the
TIL-hi/Fibro-low clusters showed a significantly lower hazard ratio
(0.226, P= 0.0405, LLR test). H&E image measurements that were
correlated to a different overall survival for ER+HER2− patients
(N= 603) were the spatial mixing of fibro-AI and TILs-AI
distributions (DKLðPFibroblastjjPTILsÞ) (HR= 0.488, P= 0.0175, LLR
test), spatial mixing of Tumor-AI and Fibro-AI (DKLðPTumorjjPFibroÞ
(HR= 1.629, P= 0.0542, LLR test) and the Fibro-hi/EMT spatial
cluster (HR= 1.61, P= 0.0303, LLR test). Finally, we combined all
univariate significant variables into a multivariate model (Fig. 5b).
In the multivariate model only tumor grade, tumor size and mixing
of fibro-AI and TILs-AI (DKL PFibroblastjjPTILsð Þ) remained significant
contributors, indicating that the spatial interplay between

fibroblasts and TILs may be important for clinical outcome in
ER+HER2− breast cancer patients (Fig. 5c).

DISCUSSION
Both TILs and fibroblasts are critical cells in shaping the tumor
micro-environment and the clinical course of breast cancer
patients1,2,13,14,16–18. Our understanding of how fibroblasts and
TILs spatially form patterns that could alter the cancer immune-
response is still lacking. Here, we use an innovative analysis to
study the spatial patterns of fibroblasts, TILs, and tumor cells on
H&E slides from primary breast tumors. Integrating cell abundance
and patterns leads to a new classification of ER+HER2− breast
cancer that is associated with distinct molecular characteristics
and our results indicate that the spatial organization of TILs and
fibroblasts is consistent between independent cohorts and
reproducible in both FFPE and FF samples.
In this study, ER+HER2− breast cancer patients with high TIL did

not show an improved or decreased survival (HR= 0.76, P= 0.21),
in contrast with the negative effect on clinical outcome observed
in other studies1,6. In line with a recent clinical study5, we showed
that a higher level of TILs-AI was linked to a lower hazard ratio for
ER+HER2− patients that received chemotherapy. Intriguingly, we
detected a cluster of ER+HER2− tumors with high TILs-AI and
fibro-AI levels with good spatial mixing, and inflammatory
molecular characteristics, contradicting the previously observed
negative reciprocity and immune exclusion of fibroblast and
TILs13. However, patients with high TIL, high fibroblasts and high
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inflammatory gene signatures did not have an improved overall
survival (HR= 0.821, P= 0.576, LLR test). This was unexpected, as
tumors with inflammatory gene signaling are often considered
immunologically active26, potentially leading to a better clinical
outcome. It is plausible that the immunoregulatory activity of
fibroblasts14,27 inhibit T-cell activation in these patients and
counter-balance the inflammatory potential.
ER+HER2− breast cancer patients in the cluster Fibro-hi/EMT

showed a significantly poorer survival (HR= 1.661, P= 0.0303, LLR
test). The enrichment of TGF-β signaling in this cluster hints
potentially towards an immunosuppression strategy27, although
from this current study we cannot draw the conclusion which cell
type is responsible for the TGF-β secretion. However, in the
multivariate analysis, only the mixing of TILs and Fibroblasts
remained a significant contributor. This indicates that the spatial
clusters identify molecular distinct subgroups with specific gene
signaling, but prognostic value was mainly attributed to the
spatial interplay of TILs and fibroblasts.
Whilst we have demonstrated that the spatial interplay of

fibroblasts and TILs can be used to define molecular distinct
subgroups in ER+HER2− breast cancer, we do recognize limita-
tions in our study.
First of all, working with H&E slides offers the advantage of easy

accessibility and uniformity against the disadvantage of the
difficulty of phenotyping subtypes of cells. TILs can easily be
detected based on morphology, however, which type of TILs are
present cannot currently be deduced from the H&E slide. This is
even more evident for fibroblasts, which can take many sizes and
shapes, leaving the possibility that we systematically miss a certain
subtype of fibroblasts. The variable interplay between TILs and
fibroblasts in the spatial clusters may originate from the specific
phenotypes of TILs and fibroblasts in these tumors14,18,28,29. Future
studies that combine (multiplexed) immunohistochemistry with
matched H&E deep learning could offer new insights, which subtle

cell subtypes could be recognized from the H&E slides and which
cell types are systematically biased.
When introducing a new method to study the immune

environment, it is vital to place this into context of already
available methodologies. Computational classification and analysis
of the H&E slides has the advantage of speed and scalability.
However, it is important to acknowledge that currently we cannot
assume our computational TILs score is the same as the stromal
sTIL score from pathologists. Comparison of the automated TILs
scores with a pathologist’s sTILs score2 in the ICGC showed a weak
correlation overall, in line with previous studies that compared the
computational TILs to pathology TILs8. This is unsurprising when
one considers that the automated scores include regions of the
tumor that are excluded on pathological evaluation, and thus the
information distilled from these methods potentially provides
different biological information. On top of the fact that computa-
tional TILs may give different biological information, there are
currently different ways on how to use the TILs scores as they have
been categorized in various manners for clinical evaluation, either
dichotomized30 or e.g., in three subgroups1. Our current simple
dichotomization of the samples in low versus high can potentially
be too simplistic.
Last, the prognostic value of the spatial measurements has been

tested on one retrospective cohort that was not primarily focused
on the analysis of the H&E images; therefore, these results should
be considered as hypothesis generating and need to be validated
in independent clinical cohorts.
In conclusion, our findings demonstrate a reproducible

pipeline for the spatial profiling of breast tumors from H&E
slides, and showed that the spatial interplay of fibroblasts and
TILs potentially hold a decisive role in the ER+HER2− breast
cancer-immune response. Future research should clarify if
this can truly aid in patient stratification or treatment
optimization.
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METHODS
Patient cohorts and tissue sections
Two hundred and fifty-eight Hematoxyline and Eosine (H&E) slides
containing breast cancer tissue of patients included in the ICGC cohort22

were subjected to fully automated image analysis for single-cell
classification at a resolution of 20x magnification. Out of those, 235 H&E
slides were included for downstream analysis after excluding images with
low quality (e.g., large artifacts or no invasive component), of which 179
were of ER+HER2− tumors22. Two pathologists scored the infiltrate on the
ICGC H&E stained slides for stromal TILs and intratumoral TILs according to
existing guidelines2,23. In addition, we used all 998 available Fresh Frozen
(FF) H&E slides from the METABRIC cohort (N= 630 ER+HER2− tumors) to
study the spatial patterns25,31. HER2 status for METABRIC was previously
scored via IHC for 442/998 samples. Samples with an IHC-HER2 score of 0
and 1 were categorized as HER2-negative. Samples with an IHC-HER2 score
of 3 were categorized as HER2-positive. Samples with an IHC-HER2 score of
2 or unknown were categorized based on the amplification status of the
HER2, samples with a gain were categorized as HER2-positive25,31). Of the
753 ER+ samples, 630 samples were HER2-negative and 123 samples
HER2-positive (Table S6).
Lymphocyte infiltration in the METABRIC cohort was scored during

central pathology review for a subset of the patients (N= 359 with H&E
slide for digital analysis)31, not using the more recent guidelines for TILs2

and thus were categorized into “absent”, “mild”, and “severe” (included in
Table S3). This study was approved by the local ethics committee at the
Netherlands Cancer Institute (CFMPB54) and we complied with all relevant
ethical regulations.

The cell detection model and spatial scatter
We used a deep neural network-based cell detection and classification
model pipeline consisting of three parts: (I) tissue segmentation, (II) cell
segmentation and (III) cell classification. Training and testing of the model
were performed over a 5-fold cross validation. The annotations were
randomly divided into five equal groups. Samples used for training of the
model are listed in Table S7. Class imbalance was taken into account while
creating these five groups. For each cross-validation, four groups were
chosen for training/validation and one group for testing. Out of the four
groups of training/validation data, 20% of the annotations was randomly
picked for validation and the remaining data was used to train the
network.

(I) Tissue segmentation removes background reducing the amount of
noise and artefacts in the data which in turn allows for a more
computationally efficient cell segmentation and classification with
increased accuracy21. Tissue segmentation was performed using a
pre-trained Micro-Net-508 model which was trained earlier on
randomly selected 100 lung slides from TCGA. The accuracy of tissue
segmentation remained above 97% for all the manually annotated
samples in ICGC H&E slides and therefore we did not retrain
the model.

(II) Secondly, the cell segmentation model was trained using the Micro-
Net-252 algorithm32 on a combined cohort of ConSep33, CPM-15,
CPM-17 and Kumar data set34 to segment the cells in the tissue
regions. The network visualizes the image at multiple resolutions,
captures context information by connecting intermediate deep
layers and adds bypass connections to max-pooling to maintain
weak features. This led to a robust segmentation of tissue regions
and cells in the presence of noise.

(III) Lastly, a cell classification framework utilizes a neighboring
ensemble predictor classifier to classify each cell [SCCNN-
TMI2016]35. This predictor utilizes Inception-V3 network instead of
SCCNN network to classify cells in neighboring locations to the
detected center (centroid) of the segmented cell. In our implemen-
tation, the ensemble classifier required votes from Inception-V3
classification of nine different neighborhood locations near to the
center of the cell compared to five votes in ensemble predictor
implementation of SCCNN. Through experimentation, the patch size
was optimized to 51 × 51 for classification instead of 27 × 27 as
originally proposed. A dedicated breast pathologist (H.M.H) anno-
tated the slides for tumor cells, fibroblasts, lymphocytes and other
cells i.e., nerve cells, endothelial cells, red blood cells, and fat cells.

To analyze the spatial distribution of the different cell subtypes, pixel
coordinates were taken for each of the three main types of cells: tumor
cells, lymphocytes, and fibroblasts, and were used to fit a 2-dimensional

non-parametric Kernel Density Estimator (KDE) with a Gaussian kernel (Fig.
1c, d). The size of the kernel bandwidth parameters was determined based
on our assumption that the effective range of a lymphocyte cell within the
tumor microenvironment is approximately 50 microns (up to five cell layers
away). Over each slide, three KDEs are therefore fitted to the positions of
the detected three cell type distributions. The fitted density distributions
are then evaluated on a grid of points that cover the entire tumor tissue
space while leaving the rest out, to make the measurement insensitive to
the size of the tumor tissue and non-tumor tissue. Figure 1 shows an
example of the detected cell positions (Fig. 1c) as well as the measured
densities of each cell type using the fitted density estimators (Fig. 1d).
To quantify the proximity of the pairs of cell type distributions, we

measure the Kullback–Leibler divergence36 (Eq. 1) between the 3 pairs of
cell type distributions. The lower the Kullback–Leibler divergence is, the
more similar the distribution of that specific cell type is to the distribution
of the target cell type (Fig. 2b).

DKL PXjjQXð Þ ¼
Z 1

�1
dXpðXÞLog PðXÞ

QðXÞ
� �

(1)

In Eq. 1 X represents the 2-dimensional space of the positions of the cells
that are acquired using the cell detection model. We calculate
DKLðPTumorjjPTILsÞ, DKLðPTumorjjPFibroblastÞ, and DKLðPFibroblastjjPTILsÞ using the
per type cell density estimators.
To study relative spatial mixing or restriction of two cell types, e.g., TILs-

AI and tumor-AI, we classified patients <1st quartile of DKLðPTumorjjPTILsÞ, as
mixing and patients >1st quartile of DKLðPTumorjjPTILsÞ, as spatially
restricted.
It is worth mentioning that the asymmetricity of the Kullback–Leibler

divergence, e.g., DKLðAjjBÞ is not equal to DKL BjjAð Þ, is a desirable behavior.
The intention is to quantify similarities of the distribution of one cell type,
for instance, lymphocytes relative to another target cell type such as tumor
cells. Therefore, how the lymphocytes are distributed outside the tumor
area is not meant to be affecting this measure. The lower the
Kullback–Leibler divergence is, the more similar the distribution of that
specific cell type is to the distribution of the target cell type (Fig. 2b).

Clustering of spatial measures
In total, we have six measurements per slide; the ratios of tumor cells,
lymphocytes and fibroblasts within the tumor area and the proximity
measures of the following pairs of cell types DKLðPTumorjjPTILsÞ,
DKLðPTumorjjPFibroblastÞ, and DKLðPFibroblastjjPTILsÞ. To create the clustering,
we start by creating the linkage matrix between all 235 samples in the
ICGC breast cancer cohort22. Cosine distance37,38 is used as the measure of
distance. The reason for this choice is to emphasize the relative size of the
six measurements rather than their absolute values. This is especially
preferable because the units are different among KL measures and the
frequency ratios, and therefore the Euclidean-like distances could
introduce measurement interpretation error. Once the linkage matrix is
calculated, hierarchical clustering was used to group the samples together.
We tested different linkage rules and decided to choose the complete
linkage-clusters that binds sub-clusters with their furthest samples being
compared, to acquire a more evenly distributed set of clusters and
observing no single nodes. Using the resulting dendrogram (Fig. 3a), we
picked the threshold that splits samples into five clusters for the ICGC
cohort. By applying the same set of steps to H&E slides from our validation
cohort METABRIC, the dendrogram there naturally splits into six clusters
(Fig. 4a). To relate the clusters between the two cohorts, we calculated the
basic statistics of the six measurements of each of the clusters across the
two cohorts (Fig. S2).

Transcriptomic data
RNA sequencing data was available for 184 out of 235 patients from the
ICGC breast cancer cohort22,39 for whom H&E slides were available and 998
patients from the METABRIC cohort31. For the ICGC cohort, the published
transcriptome was used and transformed to transcripts per million (tpm)
and log2 transformed. We used the molecular subtypes40 as previously
published39. To infer immune cell populations from transcriptomic data,
MCP-counter24 was used. For gene set enrichment analysis between two
categorical groups (e.g., cluster [X] versus all other clusters), the GSEA
software version 4.1.0 of the Broad Institute with the hallmarks of cancer
(N= 50) from MsigDB41 were used. Detailed gene set information is
available on the Broad Institute at [http://www.gsea-msigdb.org/gsea/
msigdb/genesets.jsp?collection=H]. For all gene set analysis, we used the
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ER+HER2− samples only. For METABRIC, Human_Illumina_Hu-
manWG_6_v3_MSigDB.v7.1.chip was used. We set the gene set size filters
(min = 15, max = 500) and used 1000 permutations per comparison. The
statistical output tables for the ICGC and METABRIC GSEA are available in
Tables S4 and S5. The normalized enrichment scores (NES) and FDR q-
values from the GSEA were subsequently used for visualizations in Figs. 3
and 4.

Statistics and survival analysis
Statistical analysis was performed in R version 4.0.2 and Python V3.
Correlation was carried out with the Spearman nonparametric rank
correlation test. Nonparametric Wilcoxon–Mann–Whitney tests were
applied for comparisons between two different groups. Kruskal–Wallis
test by ranks was performed for comparisons of all 3+ groups. P values
were considered significant if less than 0.05, and significance values were
corrected for multiple testing by FDR for the gene set enrichment analysis.
χ2 contingency test was used to test for imbalances in proportions of
clinical parameters between clusters.
The endpoint of interest was overall survival in ER+HER2− breast cancer

patients. Overall survival was defined as the date of death from any cause.
We used the Kaplan–Meier method to establish survival curves and the
log-rank test to compare survival curves across subgroups. To test the
association between the spatial variables, cluster results and prognosis in
ER+HER2− breast cancer, we used univariate ad multivariate Cox
proportional hazards models. For the survival analysis, patients were split
according to whether they were above or below the median of cellular
levels. For the KL divergences, patients were split according to whether
they were below the first quartile (mixed distribution) or above the first
quartile (restricted distribution). For the spatial clusters, each cluster was
compared against the rest, for example (cluster B) vs. (all clusters [A:E] –
cluster B). Following the univariate analysis, we constructed a multivariate
Cox proportional hazards model. The model variables are known clinical
predictors, including lymph node metastasis (positive vs. negative),
menopausal status (pre vs. post), age (increasing steps of 10 years), tumor
size (one step increase of tumor size; e.g., T1:T2 or T2:T3), tumor grade (one
step increase in grade; e.g., grade 1:grade 2 or grade 2:grade 3) and the
significant spatial variables from the univariate analysis.
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