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Implementing in-situ self-organizing maps with
memristor crossbar arrays for data mining and
optimization
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A self-organizing map (SOM) is a powerful unsupervised learning neural network for ana-
lyzing high-dimensional data in various applications. However, hardware implementation of
SOM is challenging because of the complexity in calculating the similarities and determining
neighborhoods. We experimentally demonstrated a memristor-based SOM based on
Ta/TaO,/Pt 1TIR chips for the first time, which has advantages in computing speed,
throughput, and energy efficiency compared with the CMQOS digital counterpart, by utilizing
the topological structure of the array and physical laws for computing without complicated
circuits. We employed additional rows in the crossbar arrays and identified the best matching
units by directly calculating the similarities between the input vectors and the weight matrix
in the hardware. Using the memristor-based SOM, we demonstrated data clustering, image
processing and solved the traveling salesman problem with much-improved energy efficiency
and computing throughput. The physical implementation of SOM in memristor crossbar
arrays extends the capability of memristor-based neuromorphic computing systems in
machine learning and artificial intelligence.
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euromorphic computing systems built with memristors

could have much-improved power efficiency and com-

puting throughput than traditional hardware!-°. Recent
implementations with memristors are, however, primarily artifi-
cial neural networks for supervised learning algorithms’~13,
Unsupervised learning networks inspired by biological systems
can learn through data sets without labels and hence are more
energy- and cost-efficient!4-16, Compared with the supervised
network, the unsupervised learning are more similar with human
brain and has more extensive application, considering that most
data and information are unlabeled in real world. Besides,
unsupervised approach can cluster or pre-process the unlabeled
complex data to smaller subspaces for subsequent classification
through another supervised network. A self-organizing map
(SOM), also called a ‘Kohonen network’, is a frequently used
unsupervised algorithm inspired by the topological maps in the
sensory-processing areas of the brain, where neurons responding
to similar inputs are spatially located very close!”>18. As a result,
SOMs can identify relationships of input data and are well suited
for clustering and optimization problems such as language
recognition and text mining, financial predictions, and medical
diagnosis!®-2%. Furthermore, SOM is a nonlinear dimension-
reduction tool that automatically maps high-dimensional data to
a lower dimension (usually two- or one-dimensional), more
effectively in nonlinear distributions than classical linear algo-
rithms such as multi-dimensional scaling?®> or principal compo-
nents analysisZ®.

However, implementing SOM in conventional CMOS-based
hardware is limited by the complexity in calculating the simila-
rities and determining neighborhoods, which imposes an enor-
mous increase in computing time and power consumption as the
number of neurons and features increase?’. It is therefore
imperative to seek emerging energy-efficient hardware with par-
allel computing capacity for SOM networks. Memristor, a two-
terminal resistance switch with multiple conductance states as
synaptic weights, has been organized into large-scale crossbar
arrays to implement parallel and energy-efficient in-memory
computing using physical laws28-32, On the other hand, experi-
mental demonstrations of SOM using memristors are yet to be
achieved due to two main challenges: finding the shortest Eucli-
dean distance with the unnormalized vectors and implementing
complex topology of SOM output layer without extra hardware
cost33:34,

Herein we report our experimental implementation of SOMs in
a 128 x 64 1-transistor 1-memristor (1T1R) crossbar array and its
applications in data mining and optimization. The similarities
between inputs and weight are directly calculated through
Euclidean distance in the hardware. The neighborhood function
of SOM is directly realized by the topological structure of the
memristor array without extra circuits. Memristor-based 1D-
SOM and 2D-SOM are successfully employed to solve color
clustering and traveling salesman problems. Compared with
traditional hardware, the memristor-based SOM system has
better power efficiency and higher parallelism in computing,
extending the application range of memristor-based neuro-
morphic computing systems in artificial intelligence.

Results

SOM topography and algorithm. An SOM is composed of an
input layer and an output layer (Fig. 1a). The input layer has multiple
dimensionless nodes that act as input neurons, while the output layer
is a one-dimensional (1D) line or two-dimensional (2D) grid of
neurons for 1D and 2D SOM, respectively (Fig. S1). Each input node
is connected to every output neuron through a weighted connection
(synapses). Unlike an ordinary fully-connected unsupervised neural

network, the output neurons in SOM can communicate to their
topological neighborhoods. For example, for a given pattern, the best
matching unit (BMU) is determined by finding the neuron with the
synaptic weight vector that is most similar to the input vector. During
weight updating, both the synapse connected to the BMU and those
connected to the BMU’s topological neighborhoods are modified to
increase the strength of the match. The weights of neighborhoods are
determined by the distance between the BMU and neighborhood
neurons through the neighborhood function. Typically, the neigh-
borhood function is a unimodal function that is symmetric around
the winner’s location. The connection strength decreases mono-
tonically with the distance from the winner. Response of neurons to
similar inputs is spatially located very close, among which typical
ones are shown in Supplementary Fig. S1. Due to the unique
neighborhood function of the SOMs, this mapping retains the rela-
tionship between input data as faithfully as possible, thus describing a
topology-preserving representation of input similarities in terms of
distances in the output space’”.

Euclidean distance, which refers to the distance between the
input vector (feature vectors) and weight matrix (dictionary
vectors) in a Euclid space, represents similarities between two
vectors. A smaller Euclidean distance between two elements
means they are more similar, and the smallest Euclidean distance
corresponds to the BMU3%37, For a certain n-dimension input X
and an nxm weight matrix W, the Euclidean distance is calculated

by
D=|X-W|?=X*-2WX+ W? 1)

After finding the BMU, the weights of the winner and its
neighborhoods are updated based on the following equations.

AW =T, (X~ W) @)

Where # is the learning rate of matrix W and T; is the
neighborhood function of the ith neuron determined by

2
T, = exp (— =) ) 3

In this equation, r; and r, represent the location of neuron i and

winner ¢, (r,— ri)z denotes the topological distance between
neuron i and the winner neuron, and & is a time-carrying
parameter that guides the reduction of the neighborhood function
during training.

Implementing SOM in a memristive crossbar array. We
experimentally implemented the SOMs in a 128 x64 1T1R
memristor array composed of Pd/TaO,/Ta memristors (Fig. 1b,
¢). The programming and computing were implemented by oft-
chip peripheral circuits on custom-built print circuit boards
(PCBs) and MATLAB scripts, as have been successfully used in
our early demonstrations®$-40, The 1T1R memristor array acted
as a weight matrix (W), consisting of two types of weights (Wqata
in data rows and Wiquarea in square rows). In our SOM systems,
all the weights are linearly mapped into the conductance of the
memristors, as shown in Fig. 1d. In the computing, normalized
input vectors (0-1) to the data rows were coded with amplitudes
of voltage pulses of fixed pulse width.

The BMU is detected by finding the shortest Euclidean distance
between the Wy,, and input vectors. Only if the input vectors and
Wigata are both normalized, the shortest Euclidean distance is
equivalent to the smallest dot product between the input vectors
and W, Unfortunately, numerically normalizing the weight
vectors after every updating step is difficult and resource-
demanding. In our SOM, we use the square row method to
calculate the Euclidean distance without normalizing the weight
matrix in every step. For a certain input vector X, X? was a constant;
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Fig. 1 The SOM concept and its implementation with memristor crossbar arrays. a Schematic of a 2D SOM that is composed of a unidimensional input
layer and a bidimensional output layer. Each node in the input layer is connected to all nodes in the output layer through the synapses. The output nodes
can communicate with their neighborhoods to form a 2D-planer topological map. b Typical |-V characteristic of a memristive device used as synapses in
the SOM. The device size is 2 um by 2 um, and the material stack is shown in the inset. ¢ Image of a 128 x 64 1T1R memristor array (Scale bar, 500 um).
Inset shows a close-up image for part of the chip marked by a red box, and the blue dashed box shows one 1T1R cell (scale bar, 10 um). d The
implementation of the 2D SOM with the 1T1R memristor array. The synaptic weights are stored as the memristor conductance in data rows. The squared
values are stored in the square rows. The top electrode (TE), bottom electrode (BE), and gate line are connected to the off-chip peripheral circuits for
precise weight updating. The Euclidean distance between the input vector and weight vector is calculated in one reading process. The output currents in
different columns represent the signal applied to different output nodes. The intrinsic topology of the nodes in the memristor array is a 1D line. And 2D
topology of the SOM is artificial defined. For example, the output nodes of 1st to the 5th columns in the memristor array act as the nodes in the first row of
2D 5 x 5 output layer, and the last five columns in the memristor array act as the last row of the 2D 5 x5 SOM. The node with the largest current is the

winner, whereas the nodes close to the winner (in 2D space) are the neighborhood. e Flow chart of the training and testing processes. Steps in blue boxes
are implemented in hardware in this work, while those in orange boxes are achieved in a CPU.

WiataX term was calculated using the standard vector-matrix
multiplication approach through Ohm’s Law and Kirchhoff’s
Current Law in a crossbar array During the training process, in
each training epoch, for all nodes the X? term are only depended on
the input value and equal with each other, as a result the X* term
will not affect the comparison when determining the winner.
However, the W will be updated in each epoch, for different node
the weight is different. As a result, the W? term affects the selection
of the winning neuron and cannot be neglected. To calculate the
W2, term, the inputs to the square rows were kept at —1/2
(represented by —0.1V as the read voltage was 0.2V), and the
weights of the square rows in a certain column (for example,

"
th . 2 Waata
m™ column in the array) were all the same (W, syare = =

where [ is the number of square rows and # is the number of data

—im
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rows). As a result, the output current at the mth column is
Im = Wdutu X1 M = %(2 : Wdutu X — Wzdatu)’ OPPOSite
to the Euclidean distance between the input vector and the weight.
As a result, the column with the largest measured current has the
smallest Euclidean distance with the input, and the corresponding
neuron will be the winner or the BMU. We used multiple additional
rows in the crossbar (square rows in Fig. 1d), ensuring that the
memristors in the data rows and square rows have the same
conductance dynamic range. In the most extreme situation (all the
weights in a column are the maximum value “1”), the largest number
of the additional square rows / should be equal to the number of data
rows 1; so the largest weight in Wg,areq Will not go beyond the
largest weight in W, while in most cases, [ is smaller than n. In
previous one-row method, which use width (0~T) to code the input
(0~1)4, to fit the conductance dynamic range of data row and
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additional row, the conductance of the device in the one additional
row is WTZ As aresult, the pulse width of the additional row should be
I'x T, which expands [ times time cost than our multiple rows
method. Besides, we use multiple devices to represent the W2, which
can significantly reduce the impact of the writing errors of one
device. Compare with one-row method, our multiple square row
method needs a larger area but has less time cost and less
disturbance from writing errors.

After finding the BMU, the weight updating depends on the
topological distance of the neurons in the output map and the
neighborhood function. The intrinsic topology of the memristor-
array-based neurons is 1D-line because devices in the same
column act as the synapse connecting to one neuron in the array.
Figure 1d presents the schematic of utilizing this 1D-topology to
form a 2D rectangular SOM output map. For a 5x5 SOM, the
first five columns of the array act as the first row of the output
map; the 6th to 10th columns of the array act as the second row
of output map; and the last five columns act as the last row of the
output map. The weights in the data rows (W 4,) Will be updated
according to Eq. (2), with a gaussian neighborhood function
without the depression part has been used in our SOM, and those
(Wquarea) in the square rows will be updated by

AW — Wfiatu - W

squared — i

(4)

squared

Because of the limitation of our hardware-measure system that
can only read and write in one direction (Write on rows and read
on columns), the square rows are calculated in software part in
offline mode. The squared term can be directly calculated in on-
line mode based on the memristor array*!. The squared values
can be obtained in the memristor crossbar by sequential
backward and forward read operations through the W matrix.
First in backward reading process, a reading pulse proportional to
1 are applied to the n column. The scaled weight elements of data
rows can be obtained while the square rows were floated. Then
forward reading process, these values are then used as inputs that
are fed into the data rows whereas floating the square rows. The
output collected at column n then corresponds to the squared
value. The network will be trained to achieve a self-organizing
map by repeating the iterative training process with the search
steps and the update steps. In the testing process, inputs from
testing sets are applied in the arrays one by one, and the best
matching unit with the biggest output current will be found.
Different post-processing methods are adopted for various
applications, such as transferring the weight to RGB pixel for
image processing or sequence the neurons for solving TSP. The
flow chart of training and testing processes is illustrated in Fig. le.
It is worth pointing out that calculating the AW g0, AW grea
and neighborhood function T; are computationally expensive. As
a result, they are achieved in software and will be accomplished
with circuits integrated onto the chip in the future.

Color clustering and image processing. Clustering is the analysis
and organization of a collection of patterns through the
similarities*2. In our SOM, the similarities between input data are
mapped into the output neurons’ topographical or spatial orga-
nization relation, which gives the SOMs adjustable clustering
ability. We used the memristor-based SOM for color clustering,
and clustered 256 colors into an 8 x 8 SOM with a 5 x 64 crossbar
array. The inputs to three data rows were the normalized R (red),
G (green), B (blue) (0-1) color components of a pixel, and inputs
to the two square rows were —1/2. A randomly selected color was
first applied to the data rows during training, and the weights
were updated according to the algorithms as described in
Egs. 2-4. The evolution of the weights is illustrated in Fig. S2, and

the final conductance map after the training process is shown in
Fig. 2a. In the clustering process, a color vector was applied to
each data row, —1/2 was still applied on the square rows. The 1st,
2nd, and 3rd rows are data rows, representing the red, green, and
blue color components of output neurons, respectively. To
implement a 2D-rectangular output map, devices in the 1st to the
8th columns of memristor array act as eight output neurons’
weights in the first row of the 2D 8 x 8 output map, the devices in
the 9th to the 16th columns of the array act as the second row of
the output map, whereas the devices in the 57th to 64th columns
representing the weights of output neurons in the last row of the
output map. Figure 2b shows the self-organized pattern map of
the trained color mapping SOMs. After training, nearby neurons
tend to respond to the same input type colors, e.g., reds are
concentrated to the bottom left corner, yellows are concentrated
to the bottom right corner, and oranges are located in the middle
bottom, just between the reds and yellows. The clustering ability
of the SOMs is further proven on standard cluster databases, as
shown in Figs. S3 and S4. And after the clustering process, the
memristor-based 2D-SOM/1D-SOM system enables 94.6% and
95% high classification accuracy for IRIS data set and wine data
set, respectively. Compared with supervised method (96.08% and
94.7% for IRIS and wine data set, respectively)*>#4, our SOM can
achieve competitive accuracy, which is also better than
memristor-based unsupervised K-mean system (93.3% for IRIS
data set). Besides, in comparison with other unsupervised cluster
algorithm (e.g., K-means) SOM does not need any additional
information at all. K-means needs to determine the number of
classes in prior. Therefore, SOM is less affected by initialization
and has more generality. In training process, SOM updates the
winner and the adjacent nodes. Most approach only updates a
single node. Therefore, SOM is less affected by noise data. SOM
also has good visualization and elegant topology diagram, which
make people easier to understand and analyze®>.

The color mapping capability of our SOM, characterized by the
number of output colors, is affected by the strength of the
neighborhood function. The strength is evaluated by the neighbor-
hood function factor A, which is represented as the initial size of
neighborhood area. Based on the SOMs, a dynamic color mapping
capability ratio (or resolution in color clustering) can be easily
achieved by tuning the neighborhood function factor in the
software part for different applications, as shown in Fig. 2c. More
neighborhood neurons’ weights will be updated with a larger
neighborhood factor. With a large neighborhood function factor
(from 5 to 50), the size of the cluster will be increased, and
obviously, the number of the final clusters will be decreased.
However, a sizeable compression ratio achieved by a smaller
number of clusters may cause serious data loss and affect the
following pattern recognition. It is worth noting that when the
neighborhood function value is tiny (e.g. 0.1), only the weights of
the winner will be updated. The total number of clusters is
decreased since the SOM:s lose the ability to recognize mixed colors
from the neighborhood function.

Compared with other methods*® (Fig. S5), the square row
approach for calculating Euclidean distance in our SOM has a
stronger color mapping ability (a higher resolution in color
clustering). Figures 2d and S6 show the comparison of three
similarity calculation methods, Euclidean distance, dot product,
and normalized dot product, in the task of clustering 256 colors
into 64 neurons with identical parametric configuration for the
highest resolution. The Euclidean distance method shows the
best result as 256 colors are successfully compressed into 48
colors with 48 firing neurons. In contrast, only 6 and 9 colors are
left with dot product and normalized dot product. That is
because the clustering potential is strongly related to the
accuracy of the similarities obtained by the memristor array,
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Fig. 2 Memristor-based SOMs for color mapping. a The conductance map of the 5 x 64 memristor array after the training process. The weights in the 1st
to 3rd row are Wyaea, representing the R, G, B components of the output nodes, while the weights in 4th to 5th are the Wquared. b The self-organized
topology pattern of the trained color mapping SOM. Each pattern is represented as the output neuron response. The chosen eight weight vectors in the
memristor array (in the red box of a) represents the weights of the nodes in the 6th row of 2D SOM. The color of the output nodes in the 6th row of 2D
SOM (red box in b) can be defined by the R, G, B components in the of weight vectors in the memristor array (red box of a). ¢ Effect of the neighborhood
function factor (from 0.1 to 50) on the mapping of 256 colors. The number of mapped colors is increased at first and then decreased with the increasing of
the neighborhood function factor. d Comparison of our SOM, dot product, and normalized dot product methods to calculate similarities for color mapping.
The number of mapped colors based on our SOM is larger than the number of other methods, which means our SOM has a stronger color mapping ability.
e SOM-based image segmentation. Three different clusters are defined with the topology of output neurons. The original image has been segmented into
three different sub-images, while the pixels in one sub-image are the nodes in the same cluster. The original image was segmented into three sub-images

by different colors, while the flowers can be segmented red petal, yellow petal, and green leaf.

and our approach can directly calculate the precise Euclidean
distance.

These results support that our memristor-based SOM shows
good performance in different image processing tasks, including
compression (Fig. S7) and segmentation. As shown in Fig. 2e,
using the self-organizing feature of SOM, color-based image
segmentation can be realized. After training, the neurons in the
output layer are clustered into five categories according to each
neuron’s position and response color in the SOM (Fig S8). Pixels
in the colorful origin image acts as the input and are applied into
the network and classified according to the category of the
corresponding response neuron. Three sub-images were obtained,
while the pixels in one sub-image are the nodes in the same
cluster. As a result, the original image was successfully segmented
into three sub-images by different colors (red, green, and yellow).
As a result, the flowers can be segmented into different parts: red
petal, yellow petal, and green leaf (Fig. 2e). It is worth noting that
two other parts (black stamen and white background) of the
original figure can be also segmented based on the result in
Fig. S8. To show the energy-efficient nature of our memristor-
based SOM in image processing, we performed an energy
estimation, in which the energy consumption of the array is
~3.84 yJ for the image segment tasks, which is much lower than
that in CMOS platforms?’ (see Supplementary Note 1).

Solving traveling salesman problem. Our memristor-based SOM
can be used to address optimization problems, such as the tra-
veling salesman problem (TSP), that intends to find the shortest
yet most efficient route among multiple nodes. In clustering
application, people normally use the SOM with 2D planer output

NATURE COMMUNICATIONS | (2022)13:2289 | https://doi.org/10.1038/s41467-022-29:

layer to maintain more topology information of input data.
However, in solving TSP problems, the SOM with 1D-ring output
layer is more common. In clustering, the SOM is a mapping tool
which maps the high dimension data to low dimension space, the
neighborhood function is used to maintain the topology infor-
mation of input data. In TSP, SOM is considered as an elastic
ring, with the training process, the nodes turn to catch the cities,
and due to the shrink ability from the neighborhood function, the
ring trends to minimize the perimeter. The principle of solving
TSP by memristor-based SOM is illustrated in Fig. 3a. The
topology of SOMs’ output layer is a 1D ring, representing the
calculated route of TSP. In our memristor-based SOM, the last
column of the array is considered as the neighborhood of the first
column, like a set of neurons joins together in a one-dimensional
ring. During the training process, the coordinates of the cities
were applied to the data rows. The winner neuron, representing
the closest to the chosen city, was found by detecting the column
with the largest output current. The weight of the winner and its
neighborhood were updated according to Eqs. 2-4. It seems that
the winner node moves in the city plane and induces its neigh-
borhood on the ring to do so, but with a decreasing intensity
along the ring. This correlation between the motion of neigh-
borhood nodes intuitively leads to a minimization of the distance
between two neighborhoods, hence giving a short tour?”. In the
testing process, all cities are applied to the SOM one by one,
normally different winners were found when applying different
cities. As shown in Fig. 3a, for example, in a four-city TSP, the
coordinate will be applied one by one, while the 2nd node is the
winner when city A is applied, whereas the 1st, the nth, and the
4th nodes are the winners when city B, city C, and city D are
applied, respectively. The intrinsic physical sequence of nodes can
5
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Fig. 3 Memristor-based SOMs for TSP. a Principle of solving TSP using memristor-based SOMs after the training process. The winner with the largest
output current represents the node closest to the city. The weight updating process is similar to pushing the winner towards the city and inducing its

neighborhoods to do with less intensity. This correlation between the motion of neighborhood nodes intuitively leads to a minimization of the distance,
hence giving a short tour. In the testing process, all cities are applied to the SOM one by one. Normally different winners were found when applying

different cities; the route can be directly found without extra configuration of the network by sorting the winners according to the intrinsic sequence of
neurons in the memristor array. b Conductance of memristor arrays after 270 training epochs for solving TSP. ¢ The city map and weight maps of all

neurons after training. Blue dots represent 10 different cities, and red dots represent the normalized weights of 45 different neurons in city map. d Testing
result of 10 cities TSP by 4 x 45 arrays. Ten different winners are found when applying to cities. And the shortest route (blue dashed lines) is determined by
sorting the winners. The serial numbers of winners in the memristor array are showed by the digit next to the winner. e The accuracy of solving 10 city TSP
by 45 nodes SOM increases with the number of training epochs. Inset shows the probabilities of different accuracies with the number of training epochs.

Here the Pigoy is the success probability that finding the shortest route.

directly correspond to the city sequence. Therefore, the route can
be directly obtained without extra configuration of the network
by sorting the winners according to the intrinsic sequence of
neurons in the memristor array. In this example, by sorting the
winner sequence in the crossbar array (the 1st column —>the 2nd
column —>the 4th column— > the nth column), the obtained
shortest route between chosen cities should be departed from city
B via city A, city D to city C.

We experimentally solved a 10-city TSP with our memristor-
based SOM, in which the coordinates of the cities were randomly
generated as shown in Fig. 3b-d. The conductance map and
normalized weight of the training process are shown in Fig. S9.
With a gradually decreasing neighborhood function in the
training process, the nodes will progressively become indepen-
dent and eventually attach to different cities. After 210 training
epochs, the final conductance map of the crossbar array is shown
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in Fig. 3b. And Fig. 3¢ shows the city map and normalized weight
vectors of all nodes that mapped into the city space; the blue dots
represent the position of 10 cities, and the orange dots are the
normalized weights of 45 different nodes. After training, the city’s
coordinate will be applied to the SOM one by one to find the
winner neuron, just like every city will ‘catch’ one nearest node of
the ring. Based on this method, the testing result of 10 cities is
presented in Fig. 3d. The orange numbers are the serials number
of the winner nodes in the whole array when 10-city coordinates
are acted as inputs. The blue dash line is the shortest route
calculated by our SOM, determined by the node sequence in the
memristor array (5—9—...—38 — 41— 45). In the experi-
mental training process, some neuron outputs deviate from the
original positions, which is caused by the writing error and the
variation of the devices. However, in our SOM, the number of
nodes is three to five times the number of cities. As a result, in
most cases, the extra neurons help overcome this issue.

The performance of the SOM to solve TSP is analyzed with the
accuracy and probability (P) which are defined as Accuracy =

Shortest_Distance Distance oest
Distance; ., ) respec

Accuracy

tively. As shown in Fig. 3e, the accuracy increases with the number
of training epochs and the shortest route can be obtained just after
50 training epochs. The inset of Fig. 3e shows the probabilities of
different accuracies with the number of training epochs. The success
probability that finding the shortest route (Pjgg) is nearly 58%
after 100 training epochs. And Pgse, can beyond 90% after 100
epochs, whereas the Pggy, and Pgse, can achieve nearly 100% just
after 40 epochs.

The performance of the SOM with different conditions is
futured studied in Fig. 4. Figure 4a shows the result of 20-node
SOM with a different number of cities. The system can obtain
perfect results for a six-city TSP. With the increase of the number
of cities, the complexity of the problem increases, the ratio
between the winner nodes and the cites and the accuracy

and Py o0, = P(Distance;g,, <

o
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o
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decrease. It is worth noting that which city should be firstly
arrived is randomly selected when different cities make the same
node win during the testing process. The accuracy and probability
decrease due to the device writing error and the lack of nodes in
the SOM. The writing-error-induced performance degradation is
further confirmed in Fig. 4b. The simulation is based on a 4 x 70
array with different writing errors (from 0% to 5%). High
accuracy and probability (Pose,) are obtained with low writing
error (below 1%). With increasing of the writing errors, the ratio
between the winners and the cities decreases, which implies the
deterioration of the ability to distinguish nearby cities. The
accuracy decreases to 75% and Pyso, decreases to 13% with a 5%
writing error. A significant impact of writing errors on the
accuracy due to the SOM does not rely on minimizing an output
label error or a cost function which can provide a feedback
mechanism to help network stabilization*!. As a result, the
Euclidean distance between the weight vectors and the inputs
should be calculated precisely to solve the TSPs with SOM. To
reduce the write errors, we adopt a write-and-verify method in
our hardware SOM system. To further reduce the writing errors,
multiple-device-as-one-synapse approach is used, which
decreases the total writing error and increase the robustness of
the network*$. As shown in Fig. S10, we simply added more sub-
arrays in the memristor array to implement multiple device
synapses. For example, a three-device-weight in a 4xN weight
map can be easily achieved with a 12xN array by parallelly
connecting three identical sub-3xN arrays, without any extra
circuit. This effective method has been tested and verified with
experiment. For an 8-city TSP, based on our 20 columns(neur-
ons) array, the experiment accuracy and Pyso increased from 78%
to 93% and from 64% to 78%, respectively when using five devices
as one weight, as shown in Fig. 4c.

Increasing the number of output nodes will also improve the
performance of SOM. As presented in Fig. 4d, for a 20 cities TSP,

Neurons |
@ cCities |

>
>

(2) WBIEM PEZIEWION

—
2 Neurons |
@ Cities

3D City map

Fig. 4 Optimization of memristor-based SOM for TSP. a Result of the different number of cities (from 5 cities to 9 cities) TSPs with memristor-based
SOM of 20 neurons. The number of cities increase, the complexity of the problem increases, and the accuracy would decrease. The SOM can perfectly
solve the 5-city TSP. With the increase of the number of tested cities, the number of cities that cannot be distinguished increases. And the accuracy and
the Pgse, decreases to 68% and 36% simultaneously. b The impacts of the writing errors, a 20-city TSP with a 4 x 70 array, are simulated. The acceptable
shortest route can be achieved with 0% writing error. With the increasing of wring error, the ratio between the firing neurons and the cities is decreased.
And the accuracy and Pgso, decrease to 75% and 13%with a 5% writing error. ¢ Experimental result of using multiple (3 and 5) devices to represent one
weight in 20 neurons SOM for 8-city TSP problems. Using more devices can decrease writing errors and increase accuracy and probability. d A 20-city TSP
was solved in simulation to show the effectiveness of increasing the number of output nodes. With the increasing number of nodes, the ratio between firing
nodes and cities is significantly increasing, whereas the accuracy and probability are simultaneously increased. e-g To show the potential of solving the
complex problem of our system, a 15-city 3D-TSP is tested with 5 x 45 array. e The city map in 3D space, and the weight map of all neurons after training in
city map. f Testing result of 15-city 3D-TSP. The blue dots represent the position of the cities. Orange dashed line is the shortest route in 3D space
determined by sorting the winners when applying different cities into the SOM.
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the accuracy and Pgse, are only 74% and 39% when using 40
output nodes. Because if there are not enough nodes, some cities
may be far from all the nodes or more nodes will converge to
the same city, which stems from the shrinking ability of the SOM
that makes nodes tend to cluster together. With the number of
neurons rising from 40 to 80, the accuracy increases from 74% to
91%; whereas Pgsy, increases to 68%. It is worth noting that the
accuracy and probability will not remarkably increase when
continually using more neurons. As a result, to obtain a solution
for N-city TSP, ~3N to 5N neurons are needed in our SOM
hardware for acceptable accuracy.

Besides normal 2D-TSP, 3D TSPs can also be easily implemen-
ted by our SOM just by using three inputs in data rows (Fig. 4e)
The city map in 3D space, and the weight maps of all neurons after
training in of 15-city 3D-TSP solved by 5 x 45 array is presented in
Fig. 4f. And Fig. 4g shows the testing result of 15-city 3D-TSP in
which the blue dots represent the position of the cities. Orange
dashed line is the shortest route in 3D space determined by sorting
the winners. Besides, a larger-scale memristor-based SOM with
ideal device performance will address TSP with a much large
number of cities. Fifty-city TSP is demonstrated with simulation
Fig. S11 to show the potential of solving the complex problem of
our system. For hardware-implementation of large-scale SOM, one
can use a single large array or multiple small arrays, and
architecture-level design (which is out of the scope of this work)
may be necessary for large-scale and complex problems. Our
memristor-based SOM also shows the potential of energy-efficient
in solving optimization problems. In solving 10-city TSP by the
12 x 45 SOM, the total energy consumption in the memristor array
part is only 12.71 nJ. And the detail of energy consumption of the
system has been presented in Supplementary Note 1.

In previous work, memristor-based Hopfield networks have been
proposed to solve the optimization problems*®~?, The principle of
SOM and Hopfield for TSP is totally different. SOM is considered
as an elastic ring. The shortest route is obtained by the shrink ability
from the neighborhood function. And Hopfield minimizes the energy
function. The memristors in SOM are written at each cycle which
may suffer reliability issues with cycling, while in the Hopfield the
meristor conducatnce are static. However, in hardware implementa-
tion solving the TSP based on Hopfield network is extremely
expensive. For an N-city TSP, N? neurons and N* synapses are
needed since the number of fully interconnected nodes is
proportional to the square of the number of cities. And for our
memristor-based SOM, even counting on the additional square rows,
only around 4N neurons and 16N synapses are needed, proving that
our SOM can solve more complex optimization problems with less
energy consumption and hardware cost. Besides compared with our
previous work about solving TSP with memristor based on Hopfield
network®!, which obtained 40% successful probability with 10% pre-
determined iteration cycles for 8-city TSP, our SOM system can
achieve higher successful probability (58%) only with hundreds
training epochs for 10-city TSP.

Discussion

We have experimentally demonstrated in-situ SOM in memristor
crossbar arrays. The Euclidean distance is directly calculated in
the hardware by adopting additional rows of 1T1R cells. The
similarities between input vectors and weight vectors are com-
puted in one readout step without normalized weights. We have
further employed the memristor-based SOM in clustering and
solving the traveling salesman problems. Taking advantage of the
intrinsic physical properties of memristors and the massive par-
allelism of the crossbar architecture, the novel memristor-based
SOM hardware has advantages in computing speed, throughput,
and energy efficiency, compared with current state-of-the-art

SOM implementation, as shown in Supplementary Table 2.
Unlike a digital counterpart, the entire read operation is per-
formed in a single time step, so the latency does not scale with the
size of the array. The energy consumptions of the memristor
device are extremely low in both inference (~40 f]) and update
(~2.42 p]) processes. And even for compute-intensive tasks such
as image segment or optimization problems (e.g., solving TSP),
the memristor-based SOM can achieve a high energy efficiency
system due to the small energy required in a memristor-based
weight array over an all-digital system. Besides, SOM hybrid
systems such as SOM-MLP>2>3, SOM-RNN>4, SOM-LSTM>>6,
show better performance and are more robust in pattern classi-
fication and prediction than simple artificial neural network
systems. Our results encourage advances in the hardware
implementation of unsupervised neural networks using emerging
devices and provide a promising path towards machine learning
or neuromorphic computing based on memristors.

Method

The fabrication process of 1T1R array. The 1T1R arrays are composed of Pd/
TaO,/Ta memristors. The front-end and part of the back-end processes to build
the transistor arrays were completed in a commercial foundry. Three different
metal layers Ag/Ti/Pd (3 nm/7 nm/50 nm) were deposited by sputtering under a
decent vacuum background after the argon plasma treatment to remove the native
oxide layers on the via, followed by an annealing process at 300 °C for 40 min in N,
atmosphere. A 2-nm Ti adhesive layer and 20 nm Pt bottom electrode was
deposited by e-beam evaporator and patterned by lift-off process. A 5-nm Ta,Os
switching layer was deposited by sputtering followed by lift-off process for pat-
terning. Finally, Ta/Pt (20 nm/20 nm) top electrodes was deposited and patterned
by sputtering and lift-off process, respectively.

Measurement system. An in-house measurement system has been built to elec-
trically read and write the 1TIR chip. The programming and computing were
implemented by off-chip peripheral circuits on custom-built print circuit boards
(PCBs) and MATLAB scripts, the details of the systems can be found in our early
demonstrations38-40,

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Materials. The source data underlying Figs. 1b, 3b-e, 4f, S3, and S9
are provided as a Source Data file. Additional data related to this paper can be requested
from the authors. Source data are provided with this paper.

Code availability

The code of the programming and computing that support the findings were
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authors upon request.
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