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Abstract 

Background:  To report on the discriminative ability of a simulation Computed Tomography (CT)-based radiom-
ics signature for predicting response to treatment in patients undergoing neoadjuvant chemo-radiation for locally 
advanced adenocarcinoma of the rectum.

Methods:  Consecutive patients treated at the Universities of Tübingen (from 1/1/07 to 31/12/10, explorative cohort) 
and Florence (from 1/1/11 to 31/12/17, external validation cohort) were considered in our dual-institution, retrospec-
tive analysis. Long-course neoadjuvant chemo-radiation was performed according to local policy. On simulation CT, 
the rectal Gross Tumor Volume was manually segmented. A feature selection process was performed yielding mine-
able data through an in-house developed software (written in Python 3.6). Model selection and hyper-parametriza-
tion of the model was performed using a fivefold cross validation approach. The main outcome measure of the study 
was the rate of pathologic good response, defined as the sum of Tumor regression grade (TRG) 3 and 4 according to 
Dworak’s classification.

Results:  Two-hundred and one patients were included in our analysis, of whom 126 (62.7%) and 75 (37.3%) cases 
represented the explorative and external validation cohorts, respectively. Patient characteristics were well bal-
anced between the two groups. A similar rate of good response to neoadjuvant treatment was obtained in in both 
cohorts (46% and 54.7%, respectively; p = 0.247). A total of 1150 features were extracted from the planning scans. A 
5-metafeature complex consisting of Principal component analysis (PCA)-clusters (whose main components are LHL 
Grey-Level-Size-Zone: Large Zone Emphasis, Elongation, HHH Intensity Histogram Mean, HLL Run-Length: Run Level 
Variance and HHH Co-occurence: Cluster Tendency) in combination with 5-nearest neighbour model was the most 
robust signature. When applied to the explorative cohort, the prediction of good response corresponded to an aver-
age Area under the curve (AUC) value of 0.65 ± 0.02. When the model was tested on the external validation cohort, it 
ensured a similar accuracy, with a slightly lower predictive ability (AUC of 0.63).

Conclusions:  Radiomics-based, data-mining from simulation CT scans was shown to be feasible and reproducible in 
two independent cohorts, yielding fair accuracy in the prediction of response to neoadjuvant chemo-radiation.
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Background
Preoperative radiation therapy (RT) is the mainstay 
of multidisciplinary treatment [1] in locally advanced 
rectal cancer (LARC). A very high rate (≥ 90%) of sus-
tained loco-regional control is obtained with neoadju-
vant concurrent chemo-radiotherapy (CRT) followed 
by total mesorectal excision (TME) [2]. After surgery, 
a pathologic complete response (pCR) can be found in 
10% to 25% of specimens. A long-term survival benefit 
[3] was reported for patients for whom no viable tumor 
cells were detectable following treatment. Thus, pCR is 
considered a surrogate marker for favorable outcome. 
In view of its positive prognostic impact but also of the 
morbidity [4] commonly associated with standard tri-
modality treatment, a growing interest emerged [5] in 
pursuing organ preservation strategies. Indirectly, no 
significant disease-free survival difference was shown 
between patients with a complete clinical remission on 
a “watch and wait” policy [6] and those with a proven 
pCR after TME. Conventional magnetic resonance 
(MR) imaging plays a pivotal role in staging and prog-
nostication [7] of LARC, however it is characterized by 
very limited sensitivity [8] in assessing minimal resid-
ual disease after CRT. In this perspective, suboptimal 
diagnostic accuracy was also reported for functional 
imaging modalities, such as 18F-fluorodeoxyglucose 
(FDG) Positron Emission Tomography/Computed 
tomography (PET-CT) and diffusion-weighted MR [9]. 
The inability to predict the response to standard pre-
operative treatment is a major limitation in clinical 
practice. The lack of biomarkers allowing for personal-
ized radiation oncology [10] is an unmet need in LARC. 
Radiomics is a complex process [11] that consists of the 
high-throughput extraction of multidimensional fea-
tures from images, their conversion into mineable data 
and ensuing support for clinical decision—making. In 
LARC, radiomics is still in its infancy. Promisingly, the 
additive value of quantitative data analysis combined 
with clinical information in identifying disease remis-
sion was reported in preliminary studies [12–22] cen-
tered on MR imaging. A major advantage of a CT-based 
radiomics approach is the standardized nature of the 
imaging information (Hounsfield unit). However, far 
less information are available in respect to CT-based 
radiomics in rectal cancer [23–28]. We therefore aimed 
to evaluate the potential accuracy of a radiation plan-
ning CT—based radiomics signature in the prediction 
of response to neoadjuvant CRT in patients with LARC.

Methods
Patients’ and treatment characteristics
We performed a dual-institution, observational, retro-
spective study. Consecutive patients treated for histologi-
cally-confirmed, locally advanced adenocarcinoma of the 
rectum at the Universities of Tübingen (TU) and Florence 
(FL) in two subsequent time frames (1/1/07–31/12/10 
and 1/1/11–31/12/17 in TU and FL, respectively) were 
considered for our analysis. In general, staging included 
Gadolinium-enhanced pelvic MR, iodinated contrast-
enhanced CT of the chest and abdomen, and colonos-
copy. Clinical stage was defined according to UICC/
TNM 7th edition. After multidisciplinary discussion, 
all patients with UICC stage II/III rectal cancer deemed 
amenable to undergo a full course of pre-operative radi-
ation-based treatment followed by curatively-intended 
surgery could be included in our study. No tumor upper 
distance limit from the anal verge was specified. The pri-
mary tumor location was identified based on pelvic MR, 
in accordance with consensus definition [29]. No upper 
age limit was defined. Neoadjuvant chemotherapy, unre-
sectable primary tumor, previous RT to the pelvis or pre-
vious surgical manipulation of the rectum were exclusion 
criteria. In addition, patients with unrecognizable rectal 
Gross Tumor Volume (GTV) on the planning CT or with 
image artifacts induced by hip prosthesis or rectal stent 
could not be included. As per local practice, standard of 
care for neoadjuvant treatment differed between the two 
centers. In TU, 50.4  Gy were delivered in 28 fractions 
of 1.8  Gy each (5 fractions per week). Radio-sensitizing 
chemotherapy consisted of 120-h continuous infusion of 
5-fluorouracil during the first and fifth weeks of radiation 
(daily dose of 1000  mg/m2 on days 1 through 5 and 29 
through 33, respectively). Selected patients also received 
deep regional hyperthermia within a clinical trial, which 
was administered with a Sigma Eye or Sigma-60 applica-
tor up to twice weekly for at least 60 min to a target tem-
perature of 40.5° Celsius, as previously described [30–32]. 
In FL, a total dose of 45 Gy was delivered with standard 
fractionation over 5  weeks (25 fractions of 1.8  Gy per 
day). Chrono-modulated capecitabine was prescribed 
for the whole RT course at a daily dose of 825  mg/m2 
BID. After restaging and due time interval (usually 6 to 
10 weeks from the end of CRT), surgery was performed. 
Abdomino-perineal resection or rectal anterior resec-
tion (RAR) with TME were the procedures of choice. 
Pathologic response evaluation was assessed in accord-
ance with Dworak’s tumor regression grade (TRG) [33] in 
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both institutions. Dworak’s 5-point scale was as follows: 
0, 1, 2, 3 and 4 scores were indicative of no regression, 
predominantly tumor with significant fibrosis and/or vas-
culopathy, predominantly fibrosis with scattered tumor 
cells, only scattered tumor cells in the space of fibrosis 
with/without acellular mucin, and no vital tumor cells 
detectable, respectively. Capecitabine or 5-fluorouracil 
(plus folinic acid)—based, adjuvant chemotherapy was 
offered to selected patients in case of unfavorable patho-
logic findings.

Imaging analysis and radiomics protocol
In terms of CT acquisition, treatment planning and deliv-
ery, the following procedures were performed, according 
to local standard of practice. A CT scan (Big Bore, Philips 
Medical Systems, Cleveland, OH, USA) was acquired at 
3 mm slice thickness for planning purpose. The same CT 
model was used in both institutions. Most patients were 
immobilized in the prone position with an ankle-holder. 
In order to displace the small bowel loops from the irra-
diation field, a belly board device was used. RT was deliv-
ered by a linear accelerator (Elekta, Crawley, UK) with 
standard 3-field box technique or intensity modulated 
radiotherapy. In terms of delineation, the same proce-
dures were followed in both institutions. The following 
organs at risk (OAR’s) were contoured: femural heads, 
bladder, small bowel, penile bulb and anal canal (if not 
infiltrated). Typically, the clinical target volume (CTV) 
consisted of the mesorectum and internal iliac, pre-sacral 
and obturatory lymph nodes. In the definition of CTV, 
no volume modulation was used. For the purpose of this 
study all primary tumors were manually segmented by 
either of two experienced radiation oncologists (CG and 
PB) in a blinded fashion. For selected cases, such as those 
with difficult visualization of the GTV, a consensus seg-
mentation between the two physicians was performed. 
Staging MR T2-weighted sequences was used to aid 
target definition. Imaging characteristics such as inten-
sity distributions, texture patterns, shape features and 
wavelets (coiflet 1) kernel based features were extracted 
from planning CTs of both institutions through volume-
averaged and voxelized methods. Features definitions 
were obtained from the Imaging Biomarker Standardi-
sation Initiative (IBSI) [34]. For the texture features, we 
used the grey-level co-occurrence (GLCM), grey-level 
run length (GRLM), neighbourhood grey tone difference 
(NGTDM), grey-level size zone (GLZSM) and grey-level 
distance zone (GLDZM) matrix. They were computed in 
3 dimensions regardless of differences between in-plane 
and in-slice voxel dimensions. One level undecimated 
wavelet features were obtained as follows. Firstly, the 
original images were filtered using high (H) or low-pass 
(L) “Coiflet 1” filter in every image (x, y, z) direction. 

Different filter combinations resulted in 8 filtered images. 
Subsequently, intensity and texture features were com-
puted for each filtered image [35]. All filtering and feature 
computations were implemented in-house in Python 3.6. 
Several of the radiomics features described by the IBSI 
are highly correlated and therefore redundant. Hence, in 
the training phase, we clustered correlated features (more 
than 95% correlation in Pearson correlation coefficient), 
in order to optimise the feature selection process. To do 
so, features were first scaled according to the quartile 
range (interquartile range, IQR), which ranges between 
the first quartile (25% quantile) and the third quartile 
(75% quantile). This was performed to avoid strong influ-
ence of noisy observations (for instance to imaging arte-
facts). Then, they were clustered hierarchically according 
to Pearson correlation coefficient. Finally, every cluster 
was reduced to one single feature using principal compo-
nent analysis (PCA) to conserve the maximum possible 
variance inside the cluster [36]. Moreover, all features 
with variance lower than 0.3 were excluded from the final 
feature set. A feature selection process was performed 
whereby features with low correlation were excluded, 
highly correlated features were reduced to a single meta-
feature and several feature selection algorithms were 
applied, yielding mineable data through Python 3.6. After 
feature selection, model hyperparameters such as the 
number of neighbours for Random Forest (RF) were opti-
mised using grid search (Additional file 1 for full radiom-
ics protocol) and fivefold cross validation. All methods 
and algorithms were implemented in-house in Python 3.6 
using the packages Pandas, Scikit-learn and mlxtend for 
machine learning. A schematic overview of the algorith-
mic workflow used in this study is represented in Fig. 1.

Outcome measures and statistical analysis
After treatment, all patients were followed-up in accord-
ance with international guidelines [37]. The main out-
come measure of the study was the rate of pathologic 
good response (GR), defined as the sum of TRG 3 and 
4 according to Dworak’s classification. Baseline demo-
graphics, patients’ characteristics and treatment features 
were summarized using descriptive statistics. Continuous 
variables (medians) were analyzed with Mann–Whitney 
test, while Fisher’s exact chi-square test was employed 
for categorical variables. A p value < 0.05 was considered 
statistically significant. In order to assess the predictive 
power of the radiomics signature in estimating the devel-
opment of GR, Receiver Operating Characteristic (ROC) 
curves were generated to calculate sensitivity, specific-
ity and area under the curve (AUC) values. All statistical 
analyses were performed by using the statistical software 
SPSS (SPSS Inc, Chicago, IL, USA) for Windows (version 
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22). ROC-AUC curves were extracted with support of the 
Python 3.6 package scikit-learn and matplotlib.

Results
A total of 222 imaging datasets of patients treated for 
LARC in TU and FL in the considered time frame were 
delineated. Ten patients from TU and eleven from FL 
were excluded due to poor visibility of the primary 
tumor on CT. Two-hundred and one patients with vis-
ible tumors complying with our inclusion criteria were 
included in our analysis. A total of 126 (62.7%) and 75 
(37.3%) of them represented the training and external 
validation cohorts, repectively. Patients’ characteristics 
are shown in Table 1. All patients had UICC/TNM stage 
II or III LARC.

With the exception of a slighlty younger median age 
in the German cohort (63 vs 67  years; p = 0.042) the 
remaining patient and tumor features were not sig-
nificantly different between the two groups. Of note, 78 
out of 126 subjects (61.9%) from TU underwent deep 
regional hyperthermia combined with standard CRT. All 
included patients underwent surgery at a median inter-
val of 7 weeks (IQR, 6–9) from the end of CRT. A longer 
median waiting time to intervention was observed in the 
Italian cohort (9 vs 6 weeks in TU, p < 0.0001). In terms 
of response to treatment, the pCR and GR rates in the 
overall, TU and FL cohorts were 12.4%, 12.6%, 12%, and 

49.2%, 46% and 54.7%, respectively (Table 2). Overall, 201 
image datasets from planning CTs were studied and 1150 
features were extracted. The most robust 5-metafea-
ture signature consisted of PCA-clusters characterized 
by LHL Grey-Level-Size-Zone: Large Zone Emphasis 
(Wavelet-texture family), Elongation (Shape family), 
HHH Intensity Histogram Mean (wavelet-intensity fam-
ily), HLL Run-Length: Run Level Variance (wavelet tex-
ture family) and HHH Co-occurence: Cluster Tendency 
(Wavelet—texture family) in combination with 5-near-
est neighbour model. When applied to the explorative 
cohort, the prediction of GR was corresponding to an 
average AUC value of 0.65 ± 0.02 in 5 cross validation 
approach. When the model was tested on the external 
validation cohort, it ensured a similar accuracy, with a 
slightly lower prediction ability (AUC of 0.63) (Fig. 2).

Discussion
To the best of our knowledge, with just over 200 
patients our study represents the largest planning 
CT-based radiomics investigation involving two inde-
pendent institutions for the prediction of pathologic 
response after neoadjuvant treatment in rectal cancer. 
Taking into account the well-known inability of stand-
ard clinical parameters in anticipating the response of 
LARC to neoadjuvant treatment [5], retaining a simi-
lar predictive accuracy when shifting from internal to 

Fig. 1  Algorithm workflow for radiomics analysis. PCA, Principal Component Analysis; cor., correlated; GTV, Gross Tumor Volume; CT, Computed 
Tomography; KNN, k-nearest neighbours; GNB, gaussian naïve-Bayes; SVM, support vector machines; 5-cv, fivefold cross validation; TUE, Tübingen; 
ROC-AUC score, Receiver Operating Characteristic Curve—Area under the curve
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external validation underlines the potential generaliz-
ability of our hypothesis-generating data in the clinic. 
With radiomics, it is hypothesized that selected quan-
titative features might represent imaging biomark-
ers [38, 39] able to meaningfully provide information 
on the prognosis of the disease or the prediction of 
response to therapies, on top of genomic and meta-
bolic factors. By focusing on simulation CT, we sought 
to address whether an integral imaging component 
of radiation workflow may be informative of patient 
response to treatment and be associated with a favora-
ble phenotype. MR imaging has undisputed relevance 
in the management of rectal cancer, representing 
the gold standard modality [40] in this disease. In a 

single-center, retrospective experience on 48 patients, 
Nie et  al. [12] were the first to show that an artificial 
neural network approach applied to multi-parametric 
MR images was able to significantly improve their pre-
dictive value of response to CRT, in comparison with 
conventional parameters. In a more recent multi-center 
study on 226 cases, Dinapoli and colleagues [14] dem-
onstrated that a histogram-based radiomics signature 
could be associated with the development of pCR and 

Table 1  patient characteristics

IQR, Interquartile range; RT, Radiotherapy; *: 9 missing values; °: N1 included N1a, N1b, N1c; N2 included N2a and N2b

Characteristic No. of patients (%), n = 201 Tübingen cohort (%), 
n = 126

Florence cohort (%), n = 75 p value

Median age
years (IQR) 65 (56–72) 63 (53.7–71.2) 67 (58–74) 0.041

Sex
Male 133 (66.1%) 81 (64.3%) 52 (69.3%) 0.538

Female 68 (33.9%) 45 (35.7%) 23 (30.7%)

Staging (TNM/AJCC 7th ed.)

cT2N1/N2 11 (5.5%) 7 (5.5%) 4 (5.3%) 0.655

cT3N0 41 (20.4%) 22 (17.5%) 19 (25.3%)

cT3N1/N2 127 (63.2%) 81 (64.3%) 46 (61.4%)

cT4anyN 22 (10.9%) 16 (12.7%) 6 (8%)

Primary location
Low rectum 89 (44.3%) 50 (39.7%) 39 (52%) 0.148

Middle rectum 101 (50.2%) 70 (55.5%) 31 (41.3%)

High rectum 11 (5.5%) 6 (4.8%) 5 (6.7%)

Median time interval (end of RT- sur-
gery) weeks (IQR)

7 (6–9) 6 (5–7) * 9 (8–11)  < 0.0001

Table 2  pattern of response to neoadjuvant therapy

TRG, Tumor Regression Grade; GR, Good Response

Characteristic No. of 
patients (%), 
n = 201

Tübingen 
cohort (%), 
n = 126

Florence 
cohort (%), 
n = 75

p value

TRG​
0 2 (1%) 2 (1.5%) 0 (0%) 0.459

1 31 (15.5%) 18 (14.4%) 13 (17.3%)

2 69 (34.3%) 48 (38.1%) 21 (28%)

3 74 (36.8%) 42 (33.4%) 32 (42.7%)

4 25 (12.4%) 16 (12.6%) 9 (12%)

GR
TRG 3 + 4 99 (49.2%) 58 (46%) 41 (54.7%) 0.247

Fig. 2  ROC AUC curve for prediction of pathologic good response. 
CT-Rad Sig: Computed Tomography-Radiomics signature; TUE, 
Tübingen; FLO, Florence
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that the model was equally informative and reproduc-
ible in 3 independent cohorts, independently from 
the type of MR scanner used. Taking all data on MR-
radiomics together [12–22], albeit promising, the large 
heterogeneity and complexity observed in terms of 
imaging standardization [41] restrain from direct clini-
cal application in LARC.

In colo-rectal cancer, CT-based radiomics modelling 
was thus far explored in regards to preoperative stage dis-
crimination [42], identification of pathologic lymph nodes 
[43], and grading differentiation [44]. To the best of our 
knowledge, only few groups [23–28] focused on the poten-
tial predictive value in respect to pathologic response to 
treatment. In a single-center, retrospective analysis [23] on 
95 patients who received neoadjuvant CRT, homogeneous 
texture features (≤ 6.7 for entropy, ≥ 0.0118 for uniformity, 
and ≤ 28.06 for standard deviation) extracted from diag-
nostic, contrast-enhanced CT scans correlated with better 
disease-free survival. Vandendorpe et al. [24] performed a 
similar explorative analysis on baseline staging CTs of 121 
patients, split between a training and validation cohorts 
(79 and 42 subjects, respectively). Of note, 84.3% of the 
whole sample was selected from a single institution. Tex-
ture analysis was based on a single slice of portal-phase 
images where the ROI was delineated by only one radiolo-
gist. The model showed good discriminative ability to pre-
dict a downstaging response in the training cohort (AUC 
of 0.90, 95% CI 0.83–0.97) which however did not hold in 
the test data set (AUC of 0.70, 95% CI 0.48–0.92). The use 
of simulation CT for radiomics modelling was previously 
described in a single experience. Bibault and colleagues 
[25] performed a high-dimensional quantitative analysis 
by creating a deep neural network (DNN) based on a com-
bination of clinical information (primary tumor stage) and 
28 features. The latter were extrapolated from planning 
CT scans of 95 patients with LARC treated in 3 different 
institutions. Through their innovative approach, the 
authors showed that the tested DNN yielded an 80% accu-
racy in the prediction of pCR, with a mean AUC value of 
0.72 (95% CI 0.65–0.87). Other than powerful calculation 
algorithms, the methodological quality of investigations on 
radiomics must be considered of utmost importance, par-
ticularly when—as in ours and many previously published 
experiences—no “ground truth” correspondence between 
imaging and biology is available. For this purpose, Lambin 
and colleagues [45] proposed a composite metrics, the so 
called “quality radiomics score” (QRS), to evaluate the 
overall quality of a radiomic worflow. Secondly only to a 
prospective study design registered in a clinical trial data-
base, the presence of validation in at least two distinct 
datasets from independent institutions is considered the 
single most important factor, with a score of 4 out of a total 
of 36 points. When taking into account the TRIPOD 

statement [46] as a tool to assess the value of predictive 
models, our work should be regarded as a type 3 study, 
ranking therefore among the most reliable investigations. 
In the context of quantitative imaging analysis, the use of a 
highly standardized imaging modality such as simulation 
CT is also something worth highlighting. In view of its 
inherent reproducibility, a potential cross-validation 
among radiation oncology centers from different countries 
may not represent a critical issue as in the case of more 
complex diagnostic procedures, such as MR or FDG PET-
CT. In this perspective, planning CT scans could well be 
viewed as truly “theragnostic” [47, 48] images character-
ized by reduced inter-operator variability, widespread 
accessibility, and cost-effectiveness. Pending extensive vali-
dation, the versatility of CT-based radiomics could pave 
the way for longitudinal analysis [49], integration of 3D 
dose distribution [50–52] (or dosiomics) and more com-
plex applications in the frame of hybrid [53, 54] machines. 
In analogy with previous published experiences [23, 25], 
the presence of radiomics features portending lower heter-
ogeneity in addition to an elongated shape in our 
5-metafeature combination may be indicative of better 
response to neoadjuvant treatment. In view of very similar 
results in both TU and FL cohorts, pointing towards its 
reproducibility, the fair predictive accuracy of GR of the 
identified radiomics signature (AUC > 0.6 < 0.7) could 
depend on several reasons. In our retrospective study, the 
presence of unrecognized confounding variables can’t be 
overlooked. In particular, factors such as treatment hetero-
geneity, waiting time to surgery [55], different RT total 
dose and type of systemic agents may have well influenced 
the pattern of response after treatment. However, patient 
features were not significantly different between the two 
cohorts, with the exception of a slightly younger median 
age in the German group (63 vs. 67  years; p = 0.042). A 
longer median waiting time to intervention was observed 
in the Italian cohort (9 vs. 6  weeks in Tuebingen, 
p < 0.0001). The shorter time interval in the Tuebingen 
cohort may be due to the fact that patients were treated in 
an older period compared with those in the Florence one, 
mirroring a different attitude towards what has become 
part of routine practice more recently. However, still today 
the interplay between pathologic response after neoadju-
vant treatment and waiting time to surgery is among the 
most controversial research topics in rectal cancer, with-
out definitive answers [56, 57]. Both median time intervals 
in our study groups fell within the acceptable standard of 
care, and no significant difference was reported in terms of 
pCR and GR between the two cohorts. Deep regional 
hyperthermia is a well known strategy with potential radi-
osensitizing effect, with relatively limited applications in 
the clinic in experienced centers. Albeit promising, rela-
tively limited prospective data are available in rectal cancer 
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[5]. A recently published single-arm, prospective phase 2 
trial [32] showed optimal outcome and compliance by 
adding hyperthermia to concomitant CRT in patients with 
LARC, with an overall pCR rate of 14%, very similar to 
what was found in our work. Although we can’t rule out 
that the use of hyperthermia in 61.9% of patients from the 
Tuebingen cohort may have contributed to a better 
response, a marked unbalance on our results is unlikely, in 
our opinion. Overall, no clinical variables emerged in our 
model as significant, so that no stratification for T and N 
stage was performed. Further limitations have to be 
acknowledged in the interpretation of our results. First, 
the relatively small sample size and the reported pCR rate 
at the lower end of the expected range limit the strength of 
our findings. In view of the small proportion of patients 
with pCR in our study, we decided to cluster patients with 
TRG 3 and 4. However, since TRG 3 is indicative of only 
few scattered tumor cells left in the specimen, the biologi-
cal meaning of it can be very similar to TRG 4. In the first 
ever published experience on radiomics in rectal cancer 
[12] a similar approach was applied to discriminate good 
responders from the rest. Second, the intrinsically low 
contrast resolution of native CTs and the overall image 
quality may have hampered the accuracy of GTV segmen-
tation in some challenging cases, in spite of our attempt to 
solve discrepancies by consensus between the two radia-
tion oncologists involved in target delineation. In this per-
spective, tools for semi-automatic segmentation may 
provide benefit, particularly for the definition of cranio-
caudal extension [58]. Third, tumor volume was not pre-
dictive of GR in our study and thus excluded from the final 
model; however, it cannot be overlooked that our radiom-
ics signature could be just a surrogate of tumor volume 
[59] and as such associated with pathologic response, as 
already shown in other investigations with similar discrim-
inative power. Fourth, when dealing with the “classical” 
rule of thumb introduced by Hosmer and Lemeshow [60] 
on how to score the discriminative ability of a ROC curve, 
a minimum AUC score of 0.7 defines the lower end of 
what can provide an acceptable discrimination. However, 
in a hypothesis-generating study such as ours even an 
AUC value > 0.6 < 0.7 may still be deemed fair and worthy 
of further investigation. For instance, to name one of the 
most studied examples in radiation oncology involving 
quantitative imaging, when applying radiomics analysis to 
NTCP models for the prediction of radiation pneumonitis, 
AUC values between 0.6 and 0.7 have been regarded as 
promising [61, 62]. Albeit the disciminative power by itself 
in our stud was not very high, we believe that our CT-
based radiomics model is strenghtened by the independ-
ent, dual-institution validation approach we performed 
and very similar performance we obtained in both cohorts, 
which may represent a benchmark for future 

investigations on simulation CT in LARC. Ultimately, rec-
ognizing the central roleof MR imaging in rectal cancer 
and the fact that by itself CT imaging may not be ideal in 
terms of GTV definition, we believe that in terms of radi-
omics perspective, the use of simulation CT for radiomics 
purposes may be of extreme interest, given the fact that it 
is essentially imaging acquired in the treatment position, 
in contrast to diagnostic MR. Our study lends support to 
CT-based radiomics in LARC as a hypothesis-generating 
approach, adding value to the very limited available evi-
dence in this topic, pending further external validation in a 
larger cohort of patients.

Conclusions
In our hypothesis-generating study, a process of data-
mining from pre-treatment simulation CT scans was 
shown to be feasible and reproducible in two independ-
ent cohorts. The potential predictive ability of a CT-
based signature in both datasets in identifying patients 
with pathologic GR after surgery warrants further 
investigations.
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