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ABSTRACT: The 2,3-dihydrobenzofuran scaffold is widely found in natural products and biologically active compounds. Herein,
dearomatizing 2,3-fluoroaroylation of benzofurans with aroyl fluorides as bifunctional reagents to access 2,3-difunctionalized
dihydrobenzofurans is reported. The reaction that occurs by cooperative NHC/photoredox catalysis provides 3-aroyl-2-fluoro-2,3-
dihydrobenzofurans with moderate to good yield and high diastereoselectivity. Cascades proceed via radical/radical cross-coupling
of a benzofuran radical cation generated in the photoredox catalysis cycle with a neutral ketyl radical formed through the NHC
catalysis cycle. The redox-neutral transformation exhibits broad substrate scope and high functional group compatibility. With
anhydrides as bifunctional reagents, dearomatizing aroyloxyacylation of benzofurans is achieved and the strategy can also be applied
to N-acylated indoles to afford 3-aroyl-2-fluoro-dihydroindoles.

2,3-Dihydrobenzofurans are core motifs that appear in
biologically active compounds (Scheme 1a).1,2 For example,
DNA-PK inhibitors, CB2 receptor agonists, and furaquinocin A
contain a functionalized 2,3-dihydrobenzofuran scaffold.1−6

Therefore, it is important to develop methods to access such
compounds.7 Along these lines, benzofuran dearomatization is
a straightforward route to 2,3-dihydrobenzofurans.8 Known
dearomatization strategies involve cycloaddition,9−14 direct
hydrogenation,15,16 cyclopropanation,17 radical cycliza-
tion,18−20 and radical addition21 among other reactions.22−27

Halofunctionalizations have been used for benzofuran
dearomatization.28−30 However, a multistep operation for
prior installation of substituents bearing nucleophilic moieties
is generally required in these halofunctionalizations.
The incorporation of fluorine atoms into organic com-

pounds generally improves their metabolic stability and
bioavailability.31,32 In this context, the development of
methods for construction of the C−F bond is of significance.
In the past, aroyl fluorides have attracted considerable
attention in chemistry.33−35 They are valuable alternatives for
the other aroyl halides or anhydrides due to their higher
stability.36 Accordingly, aroyl fluorides have been used as
acylation reagents in ionic transformations.37−39 Moreover,
transition-metal catalyzed cross-coupling of aroyl fluorides has
also been developed (Scheme 1b).33−35,40−44 In general, aroyl
fluorides mainly serve as “RCO” or “R” sources but reports on
their use as fluorination reagents remain rare.45−48 Notably,
reactions where the aroyl fluoride acts as a bifunctional
reagent49 with the aroyl moiety and also the fluoride being
incorporated into the product are very rare.48

Photoredox catalysis50−68 has been used for arene
functionalization. Along with reductive processes, established
reactivity is the single electron transfer (SET) oxidation of the
arene to give an arene radical cation that can be deprotonated
at the α-position of an alkyl substituent to give a benzylic
radical (Scheme 1c).69−76 Alternatively, the arene radical

cation can be trapped by a nucleophile to give a cyclo-
hexadienyl radical.77−81 However, the trapping of an arene
radical cation with a C-radical to generate a cyclohexadienyl-
type cation has rarely been reported.82−84 This is challenging
since both the arene radical cation and the C-radical are
reactive intermediates and should be present in low
concentrations. Successful examples use photoinduced82,83 or
electrochemical84 electron transfer to generate a C-radical and
an arene radical cation in close proximity that allows for
efficient coupling.
Herein, we present dearomatizing 2,3-fluoroaroylation of

benzofurans with aroyl fluorides as bifunctional reagents for
both C−C and C−F bond formation via cooperative NHC/
photoredox catalysis (Scheme 1d).85−97 Reaction of an aroyl
fluoride with an NHC catalyst will lead to an aroyl azolium ion
that can be SET reduced by a photocatalyst (PC) to generate a
ketyl radical.91−96 Oxidation of benzofuran by the PC will give
its radical cation that should cross-couple with the ketyl radical
to give an oxocarbenium ion. Trapping by the F-anion and
NHC fragmentation should lead to the fluoroaroylation
product. Since the F-anion is a poor nucleophile and is
present in low concentration only, we assumed that the radical
cation/radical cross-coupling to be faster than trapping by the
F-anion. Moreover, potential deprotonation of the benzofuran
radical cation (for R = primary or secondary alkyl) has to be
suppressed.
Initial experiments were conducted with 3-methylbenzofur-

an (1a) and benzoyl fluoride (2a). Optimization revealed that
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this reaction is best conducted in a 10:1 mixture of CH3CN/
DMF, with K2HPO4 as base in the presence of Ir−F as the
photocatalyst and the NHC catalyst A upon irradiation with a
5 W blue LED (λmax = 450 nm) at room temperature for 24 h
to provide the racemic dihydrobenzofuran 3a in 70% isolated
yield with high (15:1) trans-diastereoselectivity (Table 1, entry
1).98 The relative configuration of the major isomer of 3a was
assigned in analogy to compound 6 where an X-ray structure
was obtained (see below). With Ru(bpy)3(PF6)2 or 9-mesityl-
10-methylacridinium in place of Ir−F, 3a was not formed
(entries 2 and 3). In CH3CN or in a mixture of CH3CN/
acetone, the yield of 3a decreased (entries 4 and 5) and
Cs2CO3 in place of K2HPO4 led to a reduced yield (entry 6).
NHC catalyst screening showed the best result with the
triazolium salt A, and no conversion or only a trace amount of
3a was observed with precatalysts B−D (entries 7−9). Control
experiments demonstrated the necessity of visible light
irradiation, the photocatalyst, and also the NHC catalyst
(entries 10−12).
With the optimized conditions identified, the generality of

the protocol by first varying the benzofuran was explored
(Scheme 2). We found that various R1-substituents on the

aromatic ring were tolerated and the dihydrobenzofurans 3b−
3j were obtained with high trans-selectivity (8:1 to 30:1).
Electronic effects at the C6-position are not pronounced and
benzofurans bearing electron-donating (1b, 1c) as well as halo
substituents (1d) worked well, affording 3b−d in 59−74%
yields. However, lower yields were noted for C5-substituted
systems. The methyl- and amide-substituted benzofurans 1e
and 1f underwent dearomatizing fluoroaroylation in moderate
yields with high diastereoselectivity (31−42%, 8:1−15:1 d.r.).
For 1e, a complex mixture resulted and 3e was obtained in
31% yield. In contrast, benzofuran 1f reacted cleanly, but
conversion was low and starting material was recovered. A low
efficiency was also found for the 5-bromo derivative 1g (30%),
where unreacted starting material was recovered. The
disubstituted 1h and 1i engaged in the dearomatization to
provide 3h and 3i in 60% and 32% yield. For 1i, the reaction
was clean and the low yield is a result of a low conversion with
recovery of 1i. Prolonging reaction time did not increase the
conversion. The reason for the low conversion of 1f, 1g, and 1i
is not understood. Back-electron transfer after benzofuran
oxidation might play a role.99

1-Methylnaphtho[2,1-b]furan 1j was converted to 3j with a
high yield and high diastereoselectivity (74%, 20:1 d.r.). The
influence of the R2-substituent was investigated, and the ethyl
1k, phenethyl 1l, acetoxyethyl 1m, isobutyl 1n, pentyl 1o, and
cyclohexyl 1p derivatives all worked rather well to deliver 3k−
3p with moderate to good yields and high diastereoselectivity
(47−69%, 13:1−20:1 d.r.).

Scheme 1. Functionalized 2,3-Dihydrobenzofurans:
Occurrence and Novel Synthetic Approach Using Aroyl
Fluorides As Reagents via Redox Processes

Table 1. Reaction Optimizationa

entry variation from the standard condition yield of 3a (%)b

1 none 73 (70)c

2 Ru(bpy)3(PF6)2 instead of Ir−F ND
3 9-Mesityl-10-methylacridinium instead of Ir−F ND
4 CH3CN instead of CH3CN/DMF 50
5 CH3CN/Acetone instead of CH3CN/DMF 61
6 Cs2CO3 instead of K2HPO4 40
7 NHC B instead of NHC A 2
8 NHC C instead of NHC A 35
9 NHC D instead of NHC A ND
10 no light irradiation ND
11 no NHC catalyst ND
12 no photocatalyst ND

aReaction conditions: 1a (0.1 mmol), 2a (0.4 mmol), NHC A (20
mol %), Ir−F (2 mol %), K2HPO4 (2.0 equiv), and CH3CN/DMF (1
mL/0.1 mL) under irradiation with 5 W blue LEDs for 24 h, 15:1 d.r.
bYields were determined by 1H NMR using 1,3,5-trimethoxybenzene
as internal standard. cIsolated yield in brackets. ND = not detected.
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Next, we studied the scope with respect to the aroyl fluoride
by using 1j as the reaction partner (Scheme 3). Fluorides
bearing electron-donating (e.g., Me, MeO) or electron-
withdrawing (e.g., F, Cl, I, OCF3, CN) substituents at the
para-position of the phenyl ring are tolerated, and 3q−3w were
isolated in 30−77% yields with high diastereoselectivity.
Moreover, aroyl fluorides with methyl, methoxy, fluoro, chloro,
and bromo substituents at the meta-position of the phenyl ring
engaged in the reaction to provide 3x−3ab in 37−82% yields
(13:1−25:1 d.r.). Hence, no clear trend regarding electronic
effects could be deduced. The reaction of the 3,4-dimethylated
benzoyl fluoride proceeded efficiently to give 3ac (85%), and
2-naphthoyl fluoride was also compatible providing 3ad in 62%
yield and excellent diastereoselectivity (>20:1). Pleasingly,
heteroaroyl fluorides such as the 2-furyl and 2-thienyl
derivatives worked well to afford 3ae and 3af (50% and
68%, >20:1 d.r.).
In order to explore the potential of the methodology,

dearomatizing indole 2,3-difunctionalization was tested
(Scheme 4a). Pleasingly, N-acetyl and N-benzoyl substituted
indoles 4a and 4b reacted under slightly modified conditions
using 4CzlPN as the PC (5 mol %) with 2a to give the
fluorodihydroindoles 5a and 5b in moderate yield and
excellent diastereoselectivity. 5-Methyl and 5-methoxy N-
acetyl-indole also reacted well, but the corresponding
fluorinated indoles were unstable and could not be isolated.
The 5-bromo and 6-fluoro N-acetyl-indole reacted with very
low efficiency to the corresponding unstable products that
were not isolable. Moreover, a larger scale reaction of 1j with

2a was conducted without compromising the yield (Scheme
4b). Next, various follow-up transformations were carried out
to document the value of the products. Treatment of 3j with
hydroxylamine hydrochloride afforded the oxime 6 in 57%
yield along with 10% of the cyclized 2-isoxazoline 7 (Scheme
4c). The relative configuration in 6 was assigned by X-ray
structure analysis. We found that 6 fully cyclizes to 7 in the
presence of p-TsOH (4 equiv) (Scheme 4c). Reduction of 3j
with NaBH4 provided quantitatively the alcohol 8 as a 1:1
diastereoisomeric mixture (Scheme 4d).
To elucidate the mechanism, control experiments were

performed (Scheme 5). When adding a stoichiometric amount
of TEMPO, complete suppression of the dearomatization was
noted and benzofuran was recovered (Scheme 5a). Reaction of
the acylazolium ion 9 and benzofuran 1j in the presence of
NEt3·3HF (1 equiv) without the NHC and K2HPO4 afforded
3j (Scheme 5b). This result demonstrated that acyl azoliums of
type 2a-I are competent intermediates. In addition, Stern−
Volmer quenching experiments revealed that benzofuran 1j
could efficiently quench the excited photocatalyst while
acylazolium ion 9 did not quench the excited state of the PC
(see Supporting Information). Importantly, running the

Scheme 2. Substrate Scope: Variation of the Benzofurana

aReactions conducted on a 0.1 mmol scale for 24 h. bUsing 2 × 45 W
blue LEDs. cReactions conducted for 72 h.

Scheme 3. Substrate Scope: Varying the Aroyl Fluoridea

aReactions conducted on a 0.1 mmol scale for 24 h. bUsing 2 × 45 W
blue LEDs
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reaction of 1j with 2a with a chiral NHC provided 3j in 53%
yield with 30% ee and complete diastereoselectivity (Scheme
5c). This experiment indicated that the radical C−C coupling
as the enantiodetermining step may occur prior to C−F bond
formation. Although another reaction pathway involving C−F
bond formation prior to C−C coupling might be possible and
cannot be totally ruled out, the fact that moderate
enantioselectivity was observed when chiral NHC catalyst
was used in the reaction argues in favor of a preferential
occurrence of radical cross-coupling. On basis of these
experiments and previous reports,91−96,100 a mechanism is
proposed in Scheme 5d. Upon visible light irradiation,
benzofuran 1a (E1/2= 1.28 V vs SCE) is oxidized to its radical
cation 1a-1 by photoexcited Ir(III)*. On the other hand, the
reaction of 2a with the NHC gives the acyl azolium ion 2a-I
(E1/2= −1.29 V vs SCE),91 which is reduced by Ir(II) (E1/2(P/
P•−) = −1.37 V vs SCE) to regenerate Ir(III) with the
formation of the persistent ketyl radical 2a-II.91−96,100

Subsequent cross-coupling of 2a-II with the radical cation
1a-I leads to the oxocarbenium ion 1a-II. Diastereoselective
trapping of this carbenium ion by the F-anion trans to the
bulky alcoholate moiety and NHC fragmentation provide 3a
closing the NHC catalysis cycle. Alternatively, NHC
fragmentation can occur prior the trapping of the oxocarbe-
nium ion by the F-anion.
Finally, symmetrical anhydrides were tested as bifunctional

reagents for the dearomatizing aroyloxyacylation of benzofur-
ans (Scheme 6). Under slightly modified conditions (CH3CN
in place of CH3CN/DMF), the symmetric anhydrides 10a−
10c were converted with moderate to good yield and excellent
diastereoselectivity to 11a−11c (46−64%, > 20:1 d.r.). The
relative configuration of 11c was assigned by X-ray structure
analysis. Repeating the reaction of 1j with 10a using a chiral
NHC afforded 11a in 39% ee indicating that a similar
mechanism as with the aroyl fluorides is operative.
In summary, fluoroaroylation of benzofurans via cooperative

NHC and photoredox catalysis has been achieved. Aroyl
fluorides were shown to react as bifunctional reagents to
incorporate both the aroyl moiety and also the fluoride into the
product. The mild photocatalytic protocol shows a broad
scope and high functional group tolerance. Of note, N-acyl
indoles were found to be eligible substrates for the 2,3-
difunctionalizing dearomatization. The synthetic value was

Scheme 4. Indole Dearomatization and Synthetic
Applications

a5 (0.1 mmol), 2a (0.4 mmol), NHC A (20 mol %), 4-CzlPN (5 mol
%), K2HPO4 (2.0 equiv), and CH3CN/DMF (1 mL/0.1 mL) under
irradiation with 2 × 45 W blue LEDs for 24 h. b1j (1.0 mmol), 2a
(4.0 mmol), NHC A (20 mol %), Ir−F (2 mol %), K2HPO4 (2.0
equiv), and CH3CN/DMF (10.0 mL/1.0 mL) under irradiation with
2 × 45 W blue LEDs for 24 h. cHydroxylamine hydrochloride (5.0
equiv), NaOAc (10.0 equiv), EtOH, 70 °C; p-TsOH (4.0 equiv),
Toluene, 70 °C. dNaBH4 (2.0 equiv), MeOH/THF (1:1), 0 °C.

Scheme 5. Mechanistic Studies
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further demonstrated by follow up transformations. Along with
aroyl fluorides, anhydrides also serve as bifunctional reagents
for benzofuran dearomatization. Mechanistic studies reveal
that these transformations proceed via a rare radical/radical
cation cross-coupling reaction as a key step.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This paper published ASAP on March 22, 2022 with an error
in Scheme 1. The scheme was replaced and the revised
manuscript reposted on March 29, 2022.
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