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Background: Better biomarkers of eventual outcome are needed for neonatal encephalopathy. 

To identify the most potent neonatal imaging marker associated with 2-year outcomes, we 

retrospectively performed diffusion-weighted imaging connectome (DWIC) and fixel-based 

analysis (FBA) on MRI obtained in the first four weeks of life in term neonatal encephalopathy 

newborns.

Methods: Diffusion tractography was available in 15 out of 24 babies with MRI, 5 each with 

normal, abnormal motor outcome, or death. All fifteen except one underwent hypothermia as 

initial treatment. In abnormal motor and death groups, DWIC found 19 white matter pathways 

with severely disrupted fiber orientation distributions.

Results: Using random forest classification, these disruptions predicted the follow-up outcomes 

with 89%−99% accuracy. These pathways showed reduced integrity in abnormal motor and death 

vs. normal tone groups (p < 10−6). Using ranked supervised multi-view canonical correlation and 

depicting just 3 of the 5 dimensions of the analysis, the abnormal motor and death were clearly 

differentiated from each other and the normal tone group.

Conclusion: This study suggests that a machine-learning model for prediction using early DWIC 

and FBA could be a possible way of developing biomarkers in large MRI datasets having clinical 

outcomes.

Introduction

In term newborn infants with hypoxic-ischemic encephalopathy (HIE) who underwent 

cooling, neurodevelopmental performance was predicted by MRI determination of fractional 

anisotropy (FA) decrease in the white matter on early diffusion tensor imaging (DTI) (1). 

Basal ganglia and thalamic lesions associated with the severity of motor impairment and 

abnormal posterior limb of internal capsule signal intensity predicted the inability to walk 

independently by two years (2). Recent technical improvements in high-field MRI have 

made abnormalities more detectable. In current clinical practice, MRI interpretations are 

made by radiologists who may differ in their opinion of what constitutes critical brain injury. 

Furthermore, the state of art on prognostication based on MRI findings is still in its early 

stages. We may need a paradigm shift in achieving prognostication which is not based on the 

subjective opinion of a radiologist.

The present study is part of an evaluation of postnatal MRI dependent upon ‘intelligent 

data mining’. We have recently formed a Big Data group to analyze clinical MRIs in 

the neonatal period to discover new biomarkers for eventual neurobehavioral outcomes. 

Indeed, it is of clinical importance to ascertain which aspects of early brain development are 

predominantly related to the long-term consequences in order to improve early therapeutic 

interventions for newborn infants with HIE. Our immediate hypothesis was to determine 

whether the network analysis of the whole-brain connectome provides an accurate prediction 

for two-year outcomes such as normal tone, abnormal tone, and death.

In this study, we propose the use of clinical diffusion-weighted imaging (DWI) to investigate 

novel imaging markers at two anatomical levels, 1) axonal pathways using DWI connectome 

(DWIC) (3, 4) and 2) subcortical clusters using fixel-based analysis (FBA) (5). The 

advantage of such powerful imaging tools is to gauge atypical changes in fiber orientation 
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distribution of DWI tractography data reflecting the severity of white matter injury due to 

severe perinatal hypoxia-ischemia. DWIC and FBA have been used to estimate macroscopic 

changes in white matter morphology by measuring the count of the streamline tract that 

connects every pair of cortical regions and the intra-axonal volume measured at individual 

fiber bundles within every voxel (called ‘fixel’). This is a feasibility study to use these 

methods on existing MRI data to identify efficient markers of perinatal white matter injury 

for accurate prediction of long-term motor outcome.

The objective of the present study is to mine the most effective DWIC-FBA marker 

of postnatal DWI that accurately predicts three long-term outcomes: death, normal, and 

abnormal motor (hypertonia) at two years follow-up of individual newborn. Our working 

hypothesis is that interrogation of the cerebral white matter tracts can serve as a biomarker 

for abnormal neurodevelopment. The streamline tract count can be a questionable marker of 

neurological connectivity due to the limited spatial resolution of DWI (e.g., ~2 mm) and low 

sensitivity of current tractography method to estimate fiber orientation distribution (FOD) 

function from clinically acquired DWI tractography data (6–8). The innovation of this 

study is that we utilize these limitations to derive a feasible and physiologically meaningful 

measure in the streamline tract count that quantifies the degree of atypically developed white 

mature structure in the HIE-affected brain. We then explore in a blinded fashion whether 

white matter pathways show atypical patterns of the streamline count in subpopulations with 

different outcomes (in abnormal and death groups compared to normal outcomes), how the 

atypical patterns in streamline counts are associated with other diffusivity measures, and 

which subcortical clusters show atypical changes in FBA metrics using a state-of-the-art 

machine learning technique.

Methods

Subjects

We performed a retrospective study of 24 term newborns of HIE whose neurobehavioral 

outcome was known on a follow-up visit to the Developmental Assessment Clinic of 

Children’s Hospital of Michigan. Clinical examination by a neonatologist data was available 

from electronic medical records. Out of the 24 with MRI, we found that DWI tractography 

scan was included in 15 newborns (gestation age = 39.2 ± 0.9 weeks and postconceptional 

age at MRI = 40.7 ± 1.3 weeks, Table 1). These 15 newborns were divided into three groups:

1. any death postnatal

2. normal neurological examination at 2 years, especially normal tone, based on 

neontologist examination at the developmental follow-up clinic, and

3. any abnormal tone findings with hypertonia on the neurological exam at 2 years.

The ‘n’ was 5 per group. The present study was approved by the Wayne State University’s 

Institutional Review Board, and a waiver of written informed consent was obtained to 

perform the analysis of existing data in our clinical archive.
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MRI acquisition

All neonatal MRI scans were performed on a 3T GE-Signa scanner (General Electric 

Healthcare Technologies, Milwaukee, WI) equipped with an 8-channel head coil and 

ASSET. MRI protocol followed guidelines for routine clinical imaging of DWI, DWI 

tractography, T1-weighted image, and T2-weighted image. DWI scan was acquired via 

echo-planer imaging (EPI) sequence in the axial plane, with respiratory gating at TR/TE = 

4286/84 msec, FOV = 24 cm, 128×128 acquisition matrix (nominal resolution = 1.89 mm), 

contiguous 3 mm thickness to cover entire axial slices of the whole brain. Two b-values (0, 

700 sec/mm2) were applied with number of excitations (NEX) = 2. DWI tractography scan 

was acquired using a double refocusing pulse sequence to reduce eddy current artifacts at 

TR = 12,500 ms, TE = 88.7 ms, FOV = 24 cm, 128×128 acquisition matrix, contiguous 

3 mm thickness to cover entire axial slices of whole brain using 33 isotropic gradient 

directions with b = 800 s/mm2, 1 b = 0 acquisition, and NEX = 1. For morphological 

analysis, a three-dimensional fast spoiled gradient echo sequence (FSPGR) was acquired for 

the T1-weighted sagittal image of each participant at TR/TE/TI of 9.12/3.66/400 ms, slice 

thickness of 1.2 mm, and planar resolution of 0.78×0.78 mm2. Axial T2-weighted image 

was acquired with a fast spin-echo (FSE) sequence, with respiratory gating, at TR/TE of 

9231/104 msec (effective) with 5 mm slice thickness, 0 mm gap, FOV = 20 cm, matrix size 

= 512×512, and NEX = 2.

A multidisciplinary team (nurse, neonatal nurse practitioner, MRI technicians) worked 

to minimize motion artifacts by a bundle-and-feed protocol, improve the quality of the 

image acquisition, and allow longer scan time for multiple trials. To minimize the potential 

confound from motion artifact, the present study excluded patients with unsuccessful MRI 

showing head motion ≥ 2 mm in DWI encoding data (i.e., voxel size of DWI image), 

which was evaluated by NIH TORTOISE DWI motion artifact correction package (https://

tortoise.nibib.nih.gov/).

Advantages of extraction and evaluation of DWI connectome marker

Before performing the tractography analysis, we utilized the NIH TORTOISE DIFF_PREP 

package (9) to correct motion, noise, physiological artifacts, susceptibility-induced 

distortion, and eddy current-induced distortion. Fiber orientation distribution (FOD) function 

(10, 11) was estimated at every voxel of DWI b0 image by using constrained spherical 

deconvolution (CSD) method (12) that seeks the optimal combinations of multiple fiber 

compartments in directions and magnitudes of multiple crossing lobe pairs. In contrast 

to DTI, CSD can model multiple crossing fiber compartments at every single voxel. One 

hundred dynamically randomized seeding points and angular deviation ≤ 70° were applied 

at every voxel of the whole brain to reconstruct continuous fiber tract streamlines using 

the MRtrix3 package (http://www.mrtrix.org/) where the second-order integration over fiber 

orientation distributions (iFOD2) tractography (13) was applied to reconstruct the fiber tract 

streamlines continuously connecting the most probable neighborhood peak of FOD lobes at 

every voxel (14). The advantages of using FOD lobes (Fig. 1A) were principally three-fold. 

Immediately, one could obtain an idea of the directionality and magnitude of crossing fibers 

involved in a particular fiber tract (Fig. 1A). Secondly, we made an a priori assumption that 

brain injury will cause the FOD lobes to deviate from the values in normal regions found 
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in the framework of the conventional tractography method, and result in more spurious 

streamlines. These deviations can then be used as a potential biomarker (Fig. 1 B). Thirdly, 

when the injury occurs to the fiber tract, the magnitude of the insult can be gauged by 

estimating abnormal FOD functions and reconstructing the directionality and magnitude of 

crossing fibers at the HIE-affected region (Fig. 1C).

Whole-brain tracts of individual newborns were characterized by using automated 

anatomical labeling (AAL) parcellation of UNC neonate atlas (15) that consists of a 

set of 90 nodes, Ωi=j=1–90, (Fig. 2 and supplementary table 1), resulting in whole-brain 

connectome, G = (Ω, S) where the elements of edges S(i,j) quantify the pair-wise 

connectivity strengths between Ωi and Ωj (i.e., the number of fiber streamlines scaled by the 

total volume of two nodes to stabilize inter-subject variability by correcting for intracranial 

volume). Three separate Wilcoxon rank-sum tests: 1) normal vs. abnormal motor, 2) normal 

motor vs. death and 3) abnormal motor vs. death at p < 0.05 after Šidák correction for 

multiple comparisons (16) were then combined to select pair-wise connection edges, S(i,j) 

of which log-strengths are significantly altered in three different groups, yielding a marker 

of log(S(i,j)) that can quantify significant changes in multiple edge strengths in the whole 

brain.

In addition to the marker of log (S(i,j)), four different markers were created by averaging 

four diffusivity measures (17): apparent diffusion coefficient (ADC, the degree of isotropic 

water diffusion), fractional anisotropy (FA, the degree of white matter integrity), axial 

diffusivity (AD) and radial diffusivity (RD) at individual streamline tracts included in each 

edge of log(S(i,j)) (i.e., streamline tracts connecting Ωi and Ωj). Combinations of axonal loss 

and myelin changes may affect combinations of AD and RD although these may not be 

precise reflections (18). We define a dimension as the total range of values obtained in each 

DWIC edge that has been deemed significant by a priori statistical criteria mentioned above.

Extraction and evaluation of FBA marker

FBA has been used to obtain more comprehensive markers reflecting the total number of 

white matter axons within a voxel (19–21). Most white matter voxels contain contributions 

from multiple fiber populations (often referred to as crossing fibers). Therefore, voxel 

averaged quantitative markers (e.g., FA, AD, RD, ADC, etc.) are not fiber-specific and 

have poor interpretability. Due to this limitation, fiber density (FD) (5) was estimated as a 

measure of intra-axonal volume at individual bundles of crossing fibers within every voxel 

(called “fixels”) by constructing the representative fiber bundle elements at the group level.

The detailed architecture of FBA has been presented elsewhere (5, 22). This study 

utilized a pipeline of FBA implemented in the MRtrix3 package (http://www.mrtrix.org/). 

Briefly, a group average response function was estimated after performing global intensity 

normalization across patients and used to reconstruct the FOD functions from 33-direction 

diffusion data of individual subjects. All FOD images were registered towards a study-

specific group-average FOD template (n = 15 patients). Each FOD in the template was 

segmented into individual fixels by applying a fixel mask at the peak threshold of 0.1, thus 

defining the position and orientation of all fixels of interest across patients. Warps estimated 

from registration were applied to deform FOD images to the template space. Warping was 
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done to ensure orientation information remained anatomically consistent across voxels (22). 

Each FOD in the warped images was segmented to determine a measure of FD (i.e., FOD 

lobe integral) per fixel. The estimated FD was compared between groups using fixel-based 

statistics called threshold-free cluster enhancement (TFCE) (23).

To identify the fixels of which FD values are the most effective in differentiating normal 

from abnormal motor and death groups, we performed two different TCFE analyses, 1) 

normal vs. abnormal motor and 2) normal vs. death. The fixel clusters of which FD values 

differ in two comparisons were obtained at the corrected p of TFCE < 0.05. FD values of 

each cluster were averaged, providing a marker that can quantify overall intra-axonal volume 

changes at the cluster level of the whole brain. We extracted other two FBA measures: 

fiber-bundle cross-section (FC), as an estimate of the difference in fiber bundle cross-section 

due to the non-linear warping that transforms FOD functions (or fixels) from subject to 

template space, and a combined measure of fiber density and cross-section (FDC), as the 

multiplication of fiber density (FD) by FC from the same clusters. These are used as 

additional markers quantifying overall changes in fiber-bundle cross-sectional area and fiber 

density-weighted by the difference in the cross-sectional extent of the tract, respectively.

Classification of DWIC and FBA markers for prediction of long-term outcome

It should be noted that this study was originally aimed to investigate whether novel imaging 

markers underlying the atypically developed brain abnormalities at two anatomical levels, 

1) axonal pathways using DWIC and 2) subcortical clusters using FBA, can provide an 

accurate prediction for two-year outcomes. Thus, a set of multiple pathways (or clusters) 

consists of a multi-dimensional marker in the feature space. For each marker of DWIC and 

FBA, an in-house built random forest classification with 100 bagged ensemble of regression 

trees was used to evaluate individual marker performance in the framework of supervised 

multi-view canonical correlation (SMVCCA) (24, 25). The SMVCCA is an iterative process 

to reduce data dimensionality by fusing or integrating the high multi-dimensional data into 

a more amenable data representation for disease classification. It iteratively projects the 

original data into a given number of eigen vectors of their covariance matrix. In other 

words, the SMVCCA fuses (or integrates) the multi-dimensional marker values into lower-

dimensional representation to improve separation between clinical outcomes. We defined a 

‘fused dimension’ as the given number of eigen vectors and ‘fused marker’ as the projection 

of the original multi-dimensional marker values on the given number of eigen vectors, 

respectively. The steps of SMVCCA are given below:

Step 1. Iterative data reduction and classification using SMVCCA and Random forest 

algorithm X: data matrix, X∈ RN × M, i∈{1,…,N}, j∈{1,…,M}, N: number of subjects, M: 

number of multi-dimensional features; Y: class label vector, Y∈ RN × 1, Yi=1 for normal 

motor, 2 for abnormal motor, 3 for death class

i. We calculated an optimal weight matrix W = [Wx WY] to maximize feature-

feature correlation and class label-feature correlation
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argmax
W X, W Y

trace W TCW s . t . W TCdW = I

ii. The solution of i) is Cd
−1CW = W  Λ that can be solved by [Λ, D]= eig(Cd, C , 

eig: singular value decomposition.

where Λ and D are the eigen vector matrix and eigen value matrix of Cd and C , 

respectively.

C = C XTY; YTX zeros size YTX, 1 , size XTY, 2 ;

Cd = Cd zeros(size Cd, 1 , size YTY, 2 ; zeros size YTY, 1 , size Cd, 2 YTY ;

Cd = zeros(size(C)); Cd(1: (size(C, 1) + 1):end) = Cd; C = C − Cd;

C = covariance matrix of X

iii. Iterative SMVCCA-based data reduction to fuse high dimensional feature vectors 

into a low dimensional feature vector, f and evaluate its classification accuracy in 

the random forest algorithm:

for j = 1: M

a. We next created a fused vector, f(j) with the dimension of j by using 

a subset of eigen vectors with the largest eigen values in Λ(j) = [Λ1,.., 

Λj], Λj = jth column vector of Λ, W(j) = Λ(j)

f(j) = X*Λ(j)

b. Then performed the supervised random forest algorithm to classify 

the fused feature vector, f(j) into three target classes, normal motor, 

abnormal motor, and death.

c. Evaluated the classification accuracy of the fused feature vector, f(j) 

accuracy(j) = (True positive + True negative)/(True positive + False 

positive +True negative + False negative)

end

Step 2. The optimal dimension of the fused feature vector, j maximizing the classification 

accuracy is determined,

j = max
j

accuracy j
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Step 3. The optimal fused feature vector, f for outcome prediction then becomes,

f = X*Λ j

Using two-fold cross-validation, training data instances (X and Y of train set samples) were 

first used to identify j  via Step 1 – 3. The identified j  was applied to test data instances 

(X and Y of train set samples) in order to assess the performance metrics of SMVCCA 

for outcome prediction (i.e., accuracy, sensitivity, specificity). This study repeated the above 

cross-validation 100 times. Mean and standard deviation of the performance metrics over 

these repetitions were reported in Table 3.

In other words, two-fold cross-validation was applied to split the fused markers of entire 

study cohort into training and test sets. For each split, the bagged ensemble of the regression 

tree (forest) was optimized to yield maximal accuracy of correct classification at the training 

set (the first fold, n = 8). The optimized forest was then applied to predict the class 

memberships of the test set (the second fold, n = 7). One hundred random splits of the 15 

samples into training and test sets were repeated to evaluate the overall accuracy of correct 

classification for the fused marker. As for the explorative comparison, each element value 

of the original multi-dimension marker was ranked according to its magnitude (e.g., 1 – 15 

from the highest to the lowest). The resulting ranked multi-dimensional marker was then 

fused by the SMVCCA process, and finally re-classified with the forest algorithm using the 

two-fold cross-validation.

Results

To demonstrate the feasibility of the iFOD2 method using the second integral of FOD 

function in our dataset, we estimated the FOD functions at two regions of interest, i.e., the 

lateral part of the precentral gyrus and superior temporal gyrus, which are the core regions 

of the primary somatosensory motor system (Fig. 3). In both ROIs, shape and morphological 

features of FOD functions including magnitude (FOD lobe size), orientation (lobe direction), 

and the total number of lobes were atypically altered in abnormal motor and death subjects. 

Lower magnitudes, heterogeneous orientations, more spurious peaks were found in the 

two groups compared with normal subjects, implicating injured myelination and disrupted 

maturation of perinatal white matter in abnormal and death subjects, respectively. In the 

framework of subsequent probabilistic tractography, these atypical alterations inevitably 

increased spurious fiber streamlines (i.e., false-positive tracts that do not anatomically exist), 

leading to paradoxically increased strength of DWIC edge, S(i,j) in both the abnormal motor 

and death groups.

Figure 4 presents the results of the proposed DWIC markers determined by Wilcoxon 

rank-sum tests between three long-term outcome groups. Total 19 pair-wise edges, S(i,j) 

(Fig. 4A and Table 2) showed significant difference of group median in their log-strengths, 

log(S(i,j)) at the corrected p < 0.05, yielding a 19-dimensional DWIC marker of log(S(i,j)). 

Because of the overlap in observation in groups and multiple comparisons, caution has to be 

exercised about the biological importance of the statistical significance. Another way to look 
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at the biological significance is to examine how much the Z score is beyond the value of 

±1.96. Compared with normal group, pair-wise edge strength, log(S(i,j)), was significantly 

reduced in each of 19 pair-wise pathways in both abnormal tone and death groups with 

average Z-statistic value = −2.552/−2.507, p = 0.018/0.012 for abnormal tone and death 

respectively. The overall one-way ANOVAs for log(S(i,j)) were highly significant even after 

Šidák correction (a priori α = 0.0034) for multiple comparisons (p < 10−6 for normal vs. 

abnormal, normal vs. death, and abnormal vs. death), indicating the presence of significant 

differences between groups in the overall dataset. In the comparison of abnormal tone and 

death groups, we found that compared with abnormal group, death group has significantly 

lower strength in each of these 19 edges, with average Z-statistic value = −2.298, p = 0.026, 

which may not be as striking. The group variations of five 19-dimensional DWIC markers, 

log(S(i,j)), FA, AD, RD, and ADC, are shown in Fig. 4B where each 19-dimensional 

marker of individual patient was concatenated per group for two group comparisons in the 

box-and-whisker plots. FA showed significant differences in normal vs. abnormal (p < 10−6), 

normal vs. death (p < 10−6) and abnormal vs. death (p < 10−6). AD showed less striking but 

still significant differences in normal vs. death (p = 0.002). No significant difference was 

found in AD between in normal vs. abnormal (p = 0.016), and abnormal and death groups 

(p = 0.320). RD showed significant differences in normal vs. abnormal (p < 10−6), normal 

vs. death (p < 10−6) but not in abnormal vs. death (p = 0.026). ADC showed significant 

differences in normal vs. abnormal (p < 0.001), normal vs. death (p < 10−6). No significant 

difference was found in ADC between abnormal and death groups (p = 0.152).

TFCE evaluations of FD (Fig. 5A) found three fixel clusters of interest in thalamus, posterior 

limb of internal capsule, and cerebellar peduncle, yielding a 3-dimensional FD marker for 

an individual subject. In all three clusters, FOD functions of abnormal and death groups 

had lower amplitudes leading to lower FD, compared with normal group. Each element of 

the 3-dimensional FD marker (left boxplot of Fig. 5B) suggests a group difference between 

normal and abnormal (p < 0.013). Similarly, each concatenation of the 3-dimensional FDC 

marker samples (right boxplot of Fig. 5B) suggests a group difference between normal 

and abnormal (p < 0.016), with no other differences with α < 0.05 found. These are 

suggestive findings, because if we use a correction for multiple comparisons, the α becomes 

non-significant.

The subsequent random forest classification revealed that compared with other markers 

including clinical and radiological variables such as sex, gender, gestation age, length of 

stay in hospital, intensity change and involvement on MRI, a DWIC marker of log(S(i,j)) 

could achieve the highest accuracy to correctly classify the follow-up motor outcomes, up to 

89% without SMVCCA, 92% with SMVCCA and 99% with ranked SMVCCA (Table 3). Of 

note, other markers had relatively lower accuracy compared with log(S(i,j)), indicating the 

outperformance of DWIC tract counts to differentiate malformed FOD functions affected 

by perinatal white matter injuries and immaturities. The log(S(i,j)) provided the most 

substantial separation between abnormal tone and death groups. The major finding of 

this study shows that we fused the 19-dimensional data and got 5 eigen vectors as the 

final ‘fused dimensions’ using ranked SMVCCA. We could depict just 3 of the 5 ‘fused 

dimensions’ of the analysis (it is impossible to depict 4- or 5-dimensions), and one can 

visually identify high risk populations from an MRI study of the eventual outcome (Fig. 6). 
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As denoted by each colored ellipse representing the upper limit of the 3 fused-dimensional 

features to predict each group at the confidence level of 99% (i.e., Z-score = 2.58 under 

the assumption of normal distribution), no spatial overlap of the upper limit was found 

between every pair of three groups at the confidence level of 99%, indicating complete 

separation of the individual feature to predict three groups in the proposed feature space. 

This suggests that the combined 3 fused-dimensional statistic becomes more powerful 

biomarker showing high significance than individual DWIC outcomes which may not reach 

statistical significance due to multiple comparisons.

Discussion

The major finding of this study is that a method using supervised multi-view canonical 

correlation can provide a predictive MRI of the possible eventual outcome, in our case, the 

ranked SMVCCA. The other findings of the present study are paradoxically increased edge 

strengths (log(S(i,j)), reduced white matter integrity (FA), increased radial diffusivity (RD), 

and reduced axonal density (FD) of the multiple white matter pathways in abnormal tone 

and death groups compared to the control group with normal tone. In the present study, 

DWIC and FBA of the same dataset were compared to extract the most potent marker for 

accurate prediction of long-term motor outcomes: normal tone, abnormal tone, and death. 

We showed perinatal white matter injuries and immaturities in forms of connectivity strength 

and FD that were altered in the thalamocortical network, including thalamus, posterior 

limb of internal capsule, and cerebellar peduncle. This work is the first to look at white 

matter abnormalities at different formulations of DWI features (i.e., pair-wise connection 

and fiber-specific bundle) that can further improve long-term prediction in the framework 

of conventional machine learning classification. The altered connectivity strength underlying 

the presence of FOD functions with noisy fiber tract peaks having low lobe amplitudes 

was confirmed by a significant reduction in white matter integrity (FA), myelination (RD), 

and axonal volume (FD) measured in the same dataset. The FOD functions with low lobe 

amplitudes may also reflect inadequate myelination or a state resulting from inadequate 

crosstalk between axons and oligodendroglia. Our neonatal marker log(S(i,j)) was gradually 

increased in abnormal and death groups, yielding a promising accuracy of the correct 

classification in the framework of conventional machine learning technique (e.g., 89%−99% 

for the test set which was not included to train the bagged ensemble of the regression 

tree). None of the other markers or their combinations, including clinical and radiological 

variables, differentiated between normal and abnormal tone and death. Please note that the 

superior performance of log (S(i,j)) might be explained by the fact that other diffusivity 

markers were evaluated from streamline tracts of S(i,j). A strategy to use other diffusivity 

measures to preselect streamline tracts of interest (in this study we used streamline count) 

may not necessarily be better in differentiating between clinical outcomes. Only when 

combining the various elements of individual marker using ranked SMVCCA, we found 

what could be considered a useful biomarker. Our reasoning is that even with these small 

numbers, we could clearly differentiate between the three subpopulations.

The present study supports that the advanced DWI method using DWIC and FBA has a 

strong potential to improve our ability for early identification of heterogeneous imaging 

abnormalities underlying white matter injuries and disrupted maturation processes across 
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different motor outcomes. Previous works (25–28) have investigated age-related white 

matter development in infants, mainly focusing on the voxel-wise measure of white matter 

maturation reporting the effects of myelination and brain water on increasing FA and 

decreasing mean diffusivity. The efficacy of neonatal DWIC analysis to investigate the 

developmental trajectory of whole-brain using different network topology (more clustered 

pair-wise connection) has been used at 45 weeks post-conceptional age (29). The topological 

locality of structural brain networks has been used to help predict neurobehavioral outcomes 

such as Bayley-III cognitive and motor scores for preterm infants (predictive correlation 

= 0.19 and 0.31 for cognitive and motor score) (30). Preterm infants when imaged at 38.6–

47.1 weeks and utilizing FBA found a relationship between fixel-based measures (FD, FC, 

FDC) with clinical risk factors in preterm, such as positive correlation with gestational 

age and negative correlation with days on requiring ventilation with FD, FC and FDC 

(29). This study also used a similar warping technique as ours. The warping of FOD may 

yield different results by causing a local shear and reduce number of fixels. Despite this 

limitation, when warping is used without bias, it could still be useful in the methodology 

in developing an objective biomarker. In a similar population as ours, using diffusion MRI 

at six months of age, there was only a trend to declining brain network integration and 

segregation with increasing neuromotor deficits following neonatal encephalopathy (31). 

DTI and functional MRI using a passive motor task at 40 to 48 weeks’ postconceptional 

age following perinatal brain injury showed FA and functional connectivity from the right 

supplemental motor area to be predictive of cerebral palsy at two years of age (32). The 

Neonatal Research Network MRI pattern of neonatal brain injury was reported as a robust 

biomarker of neurodevelopmental outcome at 6–7 years of age (33). A recent large cohort 

study (34) also reported that infants with better neurodevelopmental outcomes at the one and 

two-year follow-up showed higher FD, FC, and FDC in the corticospinal tract, midbrain, and 

corpus callosum, that suggests better information transfer capacity facilitated by increased 

number of neurons, increased myelination, thicker bundles, and/or combinations.

Even though our study was retrospective in design, our MRI analysis was done in a 

blinded fashion to the groups. We are fully aware of the limitations of low statistical 

powered studies and the bias to overestimated effect sizes (35, 36) and the need for 

more ‘n’ for machine learning. We were not expecting the clear differentiation between 

the three populations with difference between bounds of 99% confidence intervals in Fig. 

6. More studies and replication in more significant numbers of samples are needed to 

further establish whether these predictive prognostic markers will remain differentiated 

between our patient groups. Using Big Data approaches, we can now feed more data 

into this methodology. Also, another limitation is that despite the exceptional potential of 

clinical DWI data, it remains controversial whether current DWI tractography techniques 

can accurately reconstruct macroscopic structures of FOD functions and effectively remove 

false-positive tracts at the low angular acquisition of water diffusion (37, 38). Also, CSD 

and FBA are problematic with our DWI data with b-value = 800 s/mm2. Ideally, the b-value 

should be high (e.g., around 2500 – 3000 s/mm2) to reconstruct the FOD functions using 

CSD (12) and measure intra-axonal volume related to apparent fiber density (5, 39). When 

considering this practical problem, the proposed log(S(i,j)) marker might be limited in its 

ability to investigate the detailed mechanism about its biological origin. For instance, our 
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preliminary data of abnormal motor and death groups showed a paradoxical increase in edge 

strength that may be related to the current pitfall of DWI tractography and our data quality, 

more likely tracking the wrong direction of the nearest fiber bundle at low spatial resolution. 

Nonetheless, we presumed that this spurious tracking would generate an exploratory marker 

that inevitably increases false-positive tracts in constructing the edge of DWIC when the 

FOD functions of neighboring bundles have more spurious peaks with weak amplitudes as 

the ones from infants in the abnormal motor and death groups.

In conclusion, continued and systematic investigation using machine learning techniques 

with clinical DWIC and FBA markers may improve early prediction of neonatal motor 

outcomes. It may also allow identification of distinct patterns of white matter injuries, 

allowing more rapid and targeted intervention for improving long-term outcomes in term 

infants as a series of DWI-based studies (40–42) was consistently suggested to predict 

behavioral profiles, cognitive abilities, and language functions at 1–2 years old.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Impact:

• Early connectome and fixel-based analysis of clinically acquired diffusion 

weighted imaging provide a new non-invasive imaging tool to predict the 

long-term motor outcomes after birth, based on the severity of white matter 

injury.

• Disrupted white matter connectivity as a novel neonatal marker achieves high 

accuracy of 89–99% to predict 2-year motor outcomes using conventional 

machine learning classification.

• The proposed neonatal marker may allow better prognostication that is 

important to elucidate neural repair mechanisms and evaluate treatment 

modalities in neonatal encephalopathy.

Jeong et al. Page 15

Pediatr Res. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Fiber orientation distribution (FOD) function as a potential biomarker of white matter 
injury.
a Advantage of using fiber orientation distribution (FOD) function is that the crossing fiber 

compartments simulated in fiber directions can be depicted in the FOD lobe to reflect 

the contribution of the crossing fibers to the orientation distribution function. b A priori 

assumption of the present study using the local FOD lobes as a potential biomarker. c The 

magnitude of the injury can be depicted in the magnitudes of an example comparing a 

normal and injured FOD function lobe.
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Figure 2. Schematic of the DWIC analysis to construct the connectome graph, G = (Ω, S) of an 
individual infant.
. Advanced normalization tools (ANTs, https://github.com/ANTsX/ANTs) was used to 

find a 3-D deformation field, D(x,y,z) that warps T2-w native image into the UNC 

neonatal T2-w template image (https://www.med.unc.edu/bric/ideagroup/free-softwares/unc-

infant-0-1-2-atlases/). The inverse of D(x,y,z), D−1(x,y,z) was then used to place the UNC 

neonatal AAL parcellation atlas of 90 cortical nodes, Ωi=1–90 from T2-w template brain 

space to T2-w native brain space. Finally, the resulting AAL atlas was placed to native b0 

space via non-linear warping of the ANTs, T(x,y,z) between T2-w native image and DWI 

b0 image and used to sort out whole brain tracts, leading to an adjacent matrix S(i,j) of 

which elements consist of connectivity edge strengths (i.e., the number of fiber streamlines 

scaled by the total volume of two nodes to stabilize inter-subject variability by correcting 

for intracranial volume). In an example of 3-D visualization (ID #1), colored patches and 

streamline tubes indicate Ωi and S(i,j) in the given graph, G.

Jeong et al. Page 17

Pediatr Res. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ANTsX/ANTs
https://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases/
https://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases/


Figure 3. To the naked eye, three groups of 2-year outcomes can be differentiated by comparing 
the shapes of FOD functions in the somatosensory motor system.
Representative examples of fiber orientation distribution (FOD) functions estimated from 

two regions of interest (ROI) by referring to the UNC neonatal T2-w template images, left 

lateral portion of the central sulcus and left superior temporal gyrus of three postmenstrual 

MRI age-matched subjects, normal, abnormal motor and death (all at 1.3 weeks). Left 

column: FOD functions located in the lateral portion of left central sulcus consisting of two 

AAL nodes, Ω1: left precentral gyrus (PreCG.L) and Ω57: left postcentral gyrus (PoCG.L). 

Right column: FOD functions located in the lateral portion of left superior temporal gyrus 

consisting of two AAL nodes, Ω17: left Rolandic operculum (ROL.L) and Ω81: left superior 

temporal gyrus (STG.L). Collectively, the total number of lobes, lobe orientation, and 

lobe size of each FOD function appear to be higher, more inconsistent, and smaller in 

abnormal motor and death groups, compared with normal group. A cautionary note is that 

this phenomenon inevitably increases more spurious fiber streamlines in the framework of 

probabilistic tractography. Random seeding per voxel continuously reproduces false-positive 

tracts by tracking false streamlines within a fixed constraint of angular deviation (e.g., ≤ 

70°).
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Figure 4. Trend for differentiating three groups of 2-year outcomes by comparing five DWIC 
markers that were measured from neural pathways of interest.
a Total 19 pair-wise connection edges, S(i,j) satisfying significant group difference in by 

Wilcoxon rank-sum tests for three comparisons: (1) normal vs. abnormal motor, (2) normal 

vs. death, and (3) abnormal motor vs. death (α < 0.05). Colored patch and streamline 

tube indicate AAL node, Ωi and exemplar pathway of S(i,j) connecting two patches, Ωi 

and Ωj. Anatomical labels of 90 AAL nodes and two nodes of 19 edges are available in 

Supplementary Table 1 and Table 2. b Each diffusivity measure was averaged in all tracts 

of 19 pair-wise connection edges to define a 19-dimensional marker. Box and whisker plots, 

showing five DWIC markers: log(S(i,j)), significantly different for all three comparisons 

(Šidák correction α = 0.0034 for multiple comparisons); FA, significantly different in all 

three comparisons; AD, only significant in comparison 2 (normal vs death); RD and ADC, 

in first two comparisons (normal vs abnormal and vs death).
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Figure 5. Using α < 0.05, significant alterations of FOD functions underlying early hypoxic 
injuries were found in subcortical regions of abnormal motor and death groups including 
thalamus, posterior limb of internal capsule, and cerebellar peduncle.
a Two TCFE analyses of FD maps, 1) normal vs. abnormal motor and 2) normal vs. 

death, were performed to identify fixel clusters of interest showing significant deviations 

from normal tone group at corrected p < 0.05. Four clusters were found in two regions 

of right thalamus (blue square box), posterior limb of internal capsule (red square box), 

and cerebellar peduncle (green square box). In each cluster, abnormal and death groups 

showed more FOD changes with lobes being narrower and weaker compared with those 

of normal tone group, leading to smaller FD values in abnormal motor and death groups. 
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b Box-and-whisker plots of FD marker obtained from the voxels of three clusters. Each 

box indicates the sample range of 25th and 75th percentiles of each group. These are 

suggestive findings, because if we use a correction for multiple comparisons, the α becomes 

non-significant.
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Figure 6. Prediction of the eventual outcome made easier by ranked SMVCCA showing a figure 
plotting 3 of the 5 fused dimensions which provided the most significant discrimination for three 
groups (Fig. 4 a)
Each colored sphere indicates the three fused-dimensional feature of individual group 

subject. Each colored ellipse represents the upper limit of the three fused-dimensional 

features to predict each group at the confidence level of 99%.
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Table 2.

19 pair-wise connection edges, S(i,j) used to evaluate DWIC markers.

Edge Ωi Label Anatomy Ωj Label Anatomy

S(1,17) 1 PreCG.L Precentral gyrus left 17 ROL.L Rolandic operculum left

S(2,82) 2 PreCG.R Precentral gyrus right 82 STG.R Superior temporal gyrus right

S(10,42) 10 ORBmid.R Orbitofrontal cortex (middle) right 42 AMYG.R Amygdala right

S(12,40) 12 IFGoperc.R Inferior frontal gyrus (opercular) right 40 PHG.R ParaHippocampal gyrus right

S(14,84) 14 IFGtriang.R Inferior frontal gyrus (triangular) right 84 TPOsup.R Temporal pole (superior) right

S(17,39) 17 ROL.L Rolandic operculum left 39 PHG.L ParaHippocampal gyrus left

S(17,61) 17 ROL.L Rolandic operculum left 61 IPL.L Inferior parietal lobule left

S(24,30) 24 SFGmed.R Superior frontal gyrus (medial) right 30 INS.R Insula right

S(39,57) 39 PHG.L ParaHippocampal gyrus left 57 PoCG.L Postcentral gyrus left

S(39,85) 39 PHG.L ParaHippocampal gyrus left 85 MTG.L Middle temporal gyrus left

S(49,53) 49 SOG.L Superior occipital gyrus left 53 IOG.L Inferior occipital gyrus left

S(49,57) 49 SOG.L Superior occipital gyrus left 57 PoCG.L Postcentral gyrus left

S(57,65) 57 PoCG.L Postcentral gyrus left 65 ANG.L Angular gyrus left

S(57,67) 57 PoCG.L Postcentral gyrus left 67 PCUN.L Precuneus left

S(59,85) 59 SPG.L Superior parietal gyrus left 85 MTG.L Middle temporal gyrus left

S(61,81) 61 IPL.L Inferior parietal lobule left 81 STG.L Superior temporal gyrus left

S(61,85) 61 IPL.L Inferior parietal lobule left 85 MTG.L Middle temporal gyrus left

S(67,71) 67 PCUN.L Precuneus left 71 CAU.L Caudate left

S(86,88) 86 MTG.R Middle temporal gyrus right 88 TPOmid.R Temporal pole (middle) right
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Table 3.

Mean and standard deviation of classification accuracy (Ac), sensitivity (Se), and specificity (Sp) obtained 

from the random forest algorithm of the multi-dimensional marker and patient metavariable. () indicates the 

dimension providing the highest accuracy for each multi-dimensional marker—bold shows that log(S(i,j)) has 

the highest accuracy value in each classification. Clinical and radiological variables of Table 1 were classified 

using the same classification algorithm for the comparison.

Modality Marker Without SMVCCA With SMVCCA With ranked SMVCCA

DWIC

log(S(i,j)) Ac 0.894±0.158 (19) 0.923±0.117 (4) 0.987±0.058 (5)

    Se 1.000±0.000 (19) 1.000±0.000 (4) 0.997±0.033 (5)

    Sp 0.888±0.222 (19) 0.942±0.158 (4) 1.000±0.000 (5)

FA 0.476±0.132 (19) 0.570±0.197 (3) 0.444±0.146 (1)

0.718±0.215 (19) 0.748±0.269 (3) 0.661±0.279 (1)

0.163±0.239 (19) 0.423±0.337 (3) 0.198±0.223 (1)

AD 0.411±0.156 (19) 0.563±0.158 (5) 0.437±0.153 (3)

0.523±0.236 (19) 0.667±0.271 (5) 0.606±0.271 (3)

0.119±0.208 (19) 0.746±0.322 (5) 0.283±0.345 (3)

RD 0.393±0.172 (19) 0.483±0.154 (5) 0.360±0.153 (7)

0.468±0.275 (19) 0.532±0.247 (5) 0.626±0.337 (7)

0.357±0.369 (19) 0.605±0.388 (5) 0.323±0.356 (7)

ADC 0.361±0.147 (19) 0.477±0.145 (6) 0.376±0.166 (6)

0.454±0.271 (19) 0.535±0.241 (6) 0.590±0.364 (6)

0.186±0.259 (19) 0.607±0.377 (6) 0.449±0.441 (6)

FBA

FD 0.641±0.172 (3) 0.628±0.166 (3) 0.650±0.174 (3)

0.881±0.184 (3) 0.844±0.206 (3) 0.871±0.205 (3)

0.442±0.362 (3) 0.436±0.386 (3) 0.443±0.388 (3)

FC 0.327±0.164 (3) 0.351±0.150 (2) 0.300±0.148 (3)

0.447±0.342 (3) 0.474±0.355 (2) 0.263±0.238 (3)

0.599±0.397 (3) 0.272±0.327 (2) 0.510±0.355 (3)

FDC 0.601±0.156 (3) 0.517±0.153 (3) 0.477±0.160 (3)

0.853±0.196 (3) 0.845±0.202 (3) 0.843±0.219 (3)

0.404±0.375 (3) 0.283±0.339 (3) 0.223±0.326 (3)

Clinical variable Sex, GA, LOS

0.179±0.112 (3) 0.183±0.127 (2) 0.333±0.156 (2)

0.059±0.127 (3) 0.040±0.093 (2) 0.378±0.284 (2)

0.208±0.298 (3) 0.130±0.195 (2) 0.354±0.358 (2)

Radiological variable Intensity change and involvement on MRI

0.520±0.143 (13) 0.160±0.263 (3) 0.641±0.153 (2)

0.111±0.274 (13) 0.147±0.307 (3) 0.630±0.315 (2)

0.285±0.284 (13) 0.082±0.180 (3) 0.736±0.280 (2)
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