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Abstract

Background Bone marrow cytology is required to make a hematological diagnosis, influen-

cing critical clinical decision points in hematology. However, bone marrow cytology is tedious,

limited to experienced reference centers and associated with inter-observer variability. This

may lead to a delayed or incorrect diagnosis, leaving an unmet need for innovative supporting

technologies.

Methods We develop an end-to-end deep learning-based system for automated bone

marrow cytology. Starting with a bone marrow aspirate digital whole slide image, our system

rapidly and automatically detects suitable regions for cytology, and subsequently identifies

and classifies all bone marrow cells in each region. This collective cytomorphological infor-

mation is captured in a representation called Histogram of Cell Types (HCT) quantifying bone

marrow cell class probability distribution and acting as a cytological patient fingerprint.

Results Our system achieves high accuracy in region detection (0.97 accuracy and 0.99

ROC AUC), and cell detection and cell classification (0.75 mean average precision, 0.78

average F1-score, Log-average miss rate of 0.31).

Conclusions HCT has potential to eventually support more efficient and accurate diagnosis

in hematology, supporting AI-enabled computational pathology.
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Plain language summary
Identifying and counting cells in bone

marrow samples, known as cytology,

is critical for the diagnosis of blood

disorders. This is a complex and

labor-intensive process, with some

variation in how hematopathologists

interpret these samples. Here, we

develop an artificial intelligence sys-

tem for automated bone marrow

cytology, which automatically detects

and identifies all types of cells found

in the bone marrow. This information

is summarized in a chart that we call

the Histogram of Cell Types (HCT), a

new way to represent complex

information generated in bone mar-

row cytology. Our system achieves

high accuracy and precision in clas-

sifying the different types of bone

marrow cells as a HCT. This tool

may eventually help clinicians to

make more efficient and accurate

diagnoses.
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A bone marrow study is the foundation of making a
hematological diagnosis, with an estimated 700 000 bone
marrow studies performed annually in the US1. It is

performed to investigate a clinically suspected hematological
disorder, as part of lymphoma staging protocols and to assess
bone marrow response to chemotherapy in acute leukemias2.
Information is extracted by a hematopathologist from the mul-
tiple components that comprise a bone marrow study and then
integrated with clinical information to make a final diagnostic
interpretation2. Much of this interpretation relies on visual fea-
tures of bone marrow cells and tissue viewed through a light
microscope2 or more recently, via high-resolution scanned digital
whole slide images (WSIs) of pathology specimens, known as
digital pathology3,4. One component of a bone marrow study,
called the aspirate, consists of particles of bone marrow tissue that
are smeared onto a glass slide to allow individual bone marrow
cells to be analyzed for subtle and complex cellular features that
represent the morphological semantics of the tissue, known as
cytology2,5. As per international standards, aspirate cytology
includes a nucleated differential cell count (NDC), where 300-500
individual bone marrow cells are manually identified, counted,
and classified into one of many discrete categories by a highly
experienced operator such as a hematopathologist2. Bone marrow
cytology and the NDC are required for many critical clinical
decision points in hematology. For example, the identification of
leukemic blasts may lead to immediate initiation of flow cyto-
metry, karyotype, and induction chemotherapy in acute myeloid
leukemia (AML)6,7. Similarly, the identification of subtle cytolo-
gical changes in bone marrow cells is necessary for the diagnosis
and risk stratification in patients with a myelodysplastic syn-
drome (MDS)8. Failure to recognize and quantify abnormal cell
populations in the aspirate in a timely and accurate manner may
lead to delayed or incorrect diagnosis. In the context of a busy
reference hematopathology lab, performing cytological review on
every bone marrow aspirate specimen is tedious and subject to
inter-observer variability9–11. At the same time, smaller com-
munity centers often lack sufficient technical expertise to cor-
rectly interpret bone marrow aspirate cytology12. One study
estimated that up to 12% of MDS cases are misdiagnosed due to
the inability to recognize morphological dysplasia in aspirate
specimens in less experienced centers11. This leaves an unmet
clinical need for innovative computational pathology tools that
will support the aspirate review process.

Artificial Intelligence (AI) describes the aspiration to build
machines, or computer software, with human-like intelligence13,14.
One particular type of AI algorithm, called deep learning, has
shown considerable success in digital image analysis and image
classification tasks in many domains15,16. In the pathology
domain, deep learning represents a computational pathology tool
that has been successfully implemented in many non-
hematopoietic pathology sub-specialties using WSIs of solid tis-
sue pathology specimens, known as histopathology17. Numerous
studies have demonstrated the ability of deep networks to perform
tasks such as binary morphological classification, distinguishing
tumor from normal tissue18–23, as well as histomorphological
tissue grading24. While these approaches generally deliver excellent
classification results, they do not capture the nuances or com-
plexity inherent in bone marrow aspirate cytology. Specifically, the
vast majority of morphological analysis in the hematopoietic sys-
tem is performed at the level of cellular resolution and represents
non-binary classification based on subtle morphological features
such as dysplasia in MDS. The application of deep learning to
diagnostic hematopathology will therefore require unique solutions
that are tailored to these distinct cytomorphological challenges.

While there are several commercial computational pathology
workflow support tools developed for analysis of peripheral blood

cytology25, there are currently no clinical-grade solutions avail-
able for bone marrow cytology. In comparison to blood film
cytology, bone marrow aspirates are complex cytological speci-
mens. Aspirates contain only a small number of regions suitable
for cytology, significant non-cellular debris and many different
cell types that are often aggregated or overlapping2,5. This has
rendered bone cytology as a relatively challenging computational
pathology problem. Aspirate cytology can be roughly modeled
into three distinct computational steps to reflect real-world
hematopathology practice. The first problem is region of interest
(ROI) detection, where a small number of regions or tiles suitable
for cytology must be selected from large WSI prior to cell
detection and classification. ROI selection has previously been
accomplished in bone marrow aspirates by a human operator
manually selecting and cropping the appropriate tiles in aspirate
WSIs26,27. Second, there is the problem of object detection, where
individual bone marrow cells or non-cellular objects must be
identified in aspirate WSI as both distinct and separate from
background. Prior approaches have employed deep learning for
object detection such as regional CNN (R-CNN), fast and Faster
R-CNN28,29. These approaches utilize region proposals for object
detection followed by a separate method such as object classifi-
cation, which renders them complex to train and hence compu-
tationally inefficient26,30,31. Third and finally there is the problem
of object classification, where individual bone marrow cells or
non-cellular objects must be assigned to one of numerous discrete
classes based on nuanced and complex cytological features. This
complexity increases in MDS, where morphological dysplasia
creates subtle cytological changes.

One study attempted to address the second and third problems
using fine-tuning of Faster R-CNN and the VGG16 convolutional
network26. However, this approach proved operationally slow
and is not likely scalable to a clinical diagnostic workflow.
Therefore, novel, efficient and scalable computational pathology
approaches are needed to support bone marrow aspirate cytology;
specifically approaches that add full end-to-end automation, i.e.,
from unprocessed WSI to bone marrow cell counts and
classification.

Recently, a deep learning model called You Only Look Once
(YOLO) was developed for real-time object detection to specifically
address the detection and classification problems in complex image
analysis domains31. YOLO uniquely allows for object detection
and classification to occur in a single step, where all objects in an
image are simultaneously identified and localized by a “bounding
box” and then assigned a class probability by the same deep
network31. The YOLO model outputs a set of real numbers that
captures both object localization in an image and an object class
probability, therefore solving both object detection and classifica-
tion problems simultaneously in a regression approach31. In
addition, the most recent version of YOLO, YOLOV4, has been
optimized for small object detection and uses complete
intersection-over-union loss (CIoU), which results in faster con-
vergence and better accuracy for bounding box prediction32. These
factors collectively lead to increased computational efficiency and
speed compared to previous methods28–32. YOLO can perform
object detection and classification on multiple image objects which
are complex and overlapping in virtual real-time (milliseconds)31,
and consequently has been applied in several real-world problems
including autonomous driving31,33–35. Recently, YOLO has been
applied in some medical domain problem such as pathology. For
example in ref. 36, YOLO has been applied to assess the cell types
in bone marrow smears. However, only 7 cell types have been
considered in that study. Moreover, the tiles need to be selected
manually by the user.

In this work, we demonstrate the first automated end-to-end
AI architecture for bone marrow aspirate cytology. We first
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employ and implement a fine-tuned DenseNet model to rapidly
and automatically select appropriate ROI tiles from a WSI for
bone marrow aspirate cytology. Subsequently, we implement a
YOLO model trained from scratch to detect and assign class
probabilities to all cellular and non-cellular objects in bone
marrow aspirate digital WSI. Collective cytological information
for each patient is then summarized as a Histogram of Cell
Types (HCT), which is a novel information summary quanti-
fying the class probability distribution of bone marrow cell
types, acting as a cytological fingerprint. A histogram is gen-
erally a representation of a distribution, a very old graphical
technique to count discrete values37. Our approach shows
cross-validation accuracy of 0.97 and precision of 0.90 in ROI
detection (selecting appropriate tiles), and mAP (mean Average
Precision) of 0.75 and average F1-score of 0.78 for detecting
and classifying 16 key cellular and non-cellular objects in
aspirate WSIs. Our approach has potential to fundamentally
change the process of bone marrow aspirate cytology, leading
to more efficient, more consistent and automated diagnostic
workflows, and providing a foundation for computational
pathology driven augmented diagnostics and precision medi-
cine in hematology.

Methods
This work proposes a new end-to-end AI architecture for bone
marrow aspirate NDC based on machine learning and deep
learning algorithms (Fig. 1).

Dataset. This study was approved by the Hamilton Integrated
Research Ethics Board (HiREB), study protocol 7766-C. As this
study protocol was retrospective, it was approved with waiver of
patient consent. Digital whole slide images (WSI) were acquired
retrospectively and de-identified and annotated with only a
diagnosis, spanning a period of 1-year and 1247 patients. This
starting dataset represented the complete breadth of diagnoses
over this period in a major hematology reference center. WSI
were then sampled from this dataset for model development and
validation as described in Table 1 and Supplementary Table S3.
These images were scanned with either an Aperio Scanscope AT
Turbo or a Huron TissueScope at 40X and acquired as SVS and
tif file format.

Data annotation and augmentation strategy. ROI tiles and
individual bone marrow cell types included were annotated by
expert hematopathologists as the ground truth or reference
standard in WSI images used for model training and test-
validation as described below. This follows ICSH guidelines,
where expert pathologists are considered the reference standard
for bone marrow aspirate cytology in clinical diagnosis2. Data
augmentation was applied to increase the diversity of the input
image types. Generally, there are two categories for pixel-wise
adjustments augmentation, photometric distortion, which
includes hue, contrast, brightness, saturation adjustment, and
adding noise; and geometric distortion, which includes flipping,
rotating, cropping, and scaling. As we had an imbalanced class
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Fig. 1 End-to-end AI architecture for bone marrow aspirate cytology. In this architecture, initially, our Region of Interest (ROI) detection model is run on
unprocessed bone marrow aspirate WSI. A grid is created on an original Whole-Slide Image (WSI) and ROI tiles are selected using ROI detection model.
Subsequently, a You-Only-Look-Once (YOLO)-based object detection and classification is run to localize and classify cells in the selected tiles and
generate the Integrated Histogram of Cell Types (IHCT).
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distribution within our dataset for the ROI detection model
(70,250 inappropriate and 4,750 appropriate tiles), it was neces-
sary to apply one of the over-sampling or under-sampling
methods to prevent misclassification. To address this, a number
of the above augmentation techniques were applied to the
training data during the learning process to over-sample the
appropriate ROI tiles and train the model correctly. Subsequently,
after applying augmentation, the dataset in this phase contained
98,750 annotated images for training, including 70,250 inap-
propriate ROI tiles and 28,500 appropriate ROI tiles (Supple-
mentary Table S1). For the cell detection and classification model,
after annotating the objects inside ROI tiles by using LabelImg
tool (Supplementary Fig. S1)38, in addition to the above aug-
mentation categories, other techniques were also applied, like
cutmix39 which mixes 2 input images, and mosaic, which mixes 4
different training images. Accordingly, after applying augmenta-
tion, the dataset in this phase contained 1,178,408 annotated cells
for training, including 119,416 neutrophils, 44,748 metamyelo-
cytes, 52,756 myelocytes, 17,996 promyelocytes, 173,800 blasts,
117,392 erythroblasts, 1,012 megakaryocyte nuclei, 57,420 lym-
phocytes, 25,036 monocytes, 7,744 plasma cells, 10,956 eosino-
phils, 308 basophils, 4,664 megakaryocytes, 246,532 debris, 8,404
histiocytes, 1,452 mast cells, 174,724 platelets, 25,740 platelet
clumps, and 88,308 Other cell types (Supplementary Table S2).
To enhance generalization, the augmentation was only applied on
the training set in each fold of the cross-validation.

Region of interest (ROI) detection method. The first phase in
the proposed architecture is ROI detection. The ROI detection
was applied to extract tiles from a WSI and examine if that tile
was suitable for diagnostic cytology. To accomplish this, a deep
neural network was built, fine-tuned and evaluated on aspirate
digital WSI tiles. In the ROI detection method, initially 98,750
tiles (including augmented data) in 512 × 512-pixel size in high
resolution are extracted and acquired from 250 WSI. To choose
the tiles, a grid of 15 rows and 20 columns was created on each
digital WSI and tiles were selected from the center of each grid
cell, ensuring all tiles have been sampled from the WSI evenly.
Appropriate and inappropriate ROI tiles were annotated by an

expert hematopathologist; appropriate ROI tiles needed to be well
spread, thin and free of red cell agglutination, overstaining and
debris; and contain at least one segmentable cell or non-cellular
object as outlined above. Then, a deep neural network based on
DenseNet121 architecture39 was fine-tuned to extract features
from each tile. A binary classifier was added in the last layer of the
model to classify appropriate and inappropriate tiles. This net-
work was trained using a cross entropy loss function and AdamW
optimizer with learning rate 1e-4 and weight decay 5.0e-4. Also, a
pretrained DenseNet121 was applied to initialize all weights in
the network prior to fine-tuning. The entire network was fine-
tuned for 20 epochs with 32 batch size.

We applied patient-level 5-folds cross-validation to train and
test the model. Hence, the dataset (98,750 tiles) was split into two
main partitions in each fold, training and test-validation, 80%
(204 WSIs including 80,250 tiles) and 20% (46 WSIs including
18,500 tiles), respectively. The test-validation was also been split
into two main partitions, 70% validation and 30% test. To ensure
that enough data for each class was chosen in our dataset,
the above split ratios were enforced on appropriate and
inappropriate tiles separately. The dataset was split into training,
validation and test sets at patient level, such that each set has a
patient WSI that does not come in the other sets to prevent data
leakage. In each fold, the best model was picked by running on
the validation partition after the training and then evaluated on
unseen patients in the test dataset. Extracting ROI tiles for further
processing for the cell detection and classification model was the
primary aim of using the ROI detection model. To this end, the
ROI detection model should be able to minimize false positives in
the result. Therefore, the precision has been considered as a key
performance metric to select the best model.

Cell detection and classification. The next phase was cell
detection and classification applied on ROI tiles of 512 × 512
pixels in high resolution. To accomplish this, the YOLOv4 model
was customized, trained and evaluated to predict bounding boxes
of bone marrow cellular objects (white blood cells) and non-
cellular objects inside the input ROI tile and classify them into 19
different classes. In this architecture, CSPDarknet5340 was used as
the backbone of the network to extract features, SPP41 and PAN42

were used as the neck of the network to enhance feature
expressiveness and robustness, and YOLOv343 as the head. As
bag of specials (BOS) for the backbone, Mish activation
function44, cross-stage partial connection (CSP) and multi input
weighted residual connection (MiWRC) were used. For the
detector, Mish activation function, SPP-block, SAM-block, PAN
path-aggregation block, and DIoU-NMS45 were used. As bag of
freebies (BoF) for the backbone, CutMix and Mosaic data aug-
mentations, DropBlock regularization46, and class label smooth-
ing were used. For the detector, complete IoU loss (CIoU-loss)45,
cross mini-Batch Normalization (CmBN), DropBlock regular-
ization, Mosaic data augmentation, self-adversarial training,
eliminate grid sensitivity, using multiple anchors for single
ground truth, Cosine annealing scheduler47, optimal hyperpara-
meters and random training shapes were used. In addition, the
hyperparameters for bone marrow cell detection and classifica-
tion were used as follows: max-batches is 130,000; the training
steps are 104,000 and 117,000; batch size 64 with subdivision 16;
the polynomial decay learning rate scheduling strategy is applied
with an initial learning rate of 0.001; the momentum and weight
decay are set as 0.949 and 0.0005 respectively; warmup step is
1,000; YOLO network size set to 512 in both height and width;
anchor size set to 13, 14, 19, 18, 29, 30, 19, 64, 62, 20, 41, 39, 35,
59, 50, 49, 74, 35, 56, 62, 68, 53, 46, 87, 70, 70, 95, 65, 79, 85, 101,
95, 87,129, 139,121, 216, 223.

Table 1 Diagnostic tags and the number of patient WSI used
for training and test-validation in each category for the ROI
detection model.

Diagnostic tags Used in
training

Used in test-
validation

Number of
patients

Normal 80 18 98
Myelodysplastic
syndrome (MDS)

15 3 18

Acute leukemia 23 5 28
Lymphoproliferative
disorder

28 7 35

Plasma cell neoplasm 19 4 23
Hypercellular 5 1 6
Erythroid hyperplasia 3 0 3
Myeloproliferative
neoplasm (MPN)

4 1 5

Inadequate 11 3 14
Hypocellular 6 2 8
MPN/MDS 2 0 2
MPN 3 1 4
Necrosis 2 1 3
Carcinoma 3 0 3
Total 204 46 250
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Similar to the ROI detection method above, patient-level 5-
folds cross-validation was applied to train the model here.
Therefore, each fold is divided into training and test-validation
partitions, 80% and 20% respectively. The test-validation data
portion was split into two main partitions (70% validation and
30% test). Additionally, to ensure that enough data for each class
was chosen in our dataset, the mentioned portions were enforced
on each object class type individually. In each fold, the best model
was picked by running it on the validation partition and then
evaluation on the test (unseen) dataset was performed using the
mean average precision (mAP).

After training and applying the cell detection and classification
model on each tile, the Chi-square distance (Eq. (1)) was applied
to determine when the IHCT converges.

~χ2 ¼ 1
2
∑
n

i¼1

ðxi � yiÞ2
ðxi þ yiÞ

ð1Þ

If IHCT converged, the bone marrow NDC is completed and
represented by the IHCT, otherwise, another tile is extracted, and
the previous process applied again iteratively until it converges.

To calculate Chi-square distance, the number of following
cellular objects, as well as BMME ratio (Eq. (2)), were utilized:
“neutrophil”, “metamyelocyte”, “myelocyte”, “promyelocyte”,
“blast”, “erythroblast”, “lymphocyte”, “monocyte”, “plasma cell”,
“eosinophil”, “basophil”, “megakaryocyte”.

BMME ratio

¼ Blastþ PromyelocyteþMyelocyteþMetamyelocyteþ Neutrophilþ Eosinophil
Erythroblast

ð2Þ
Cell types were chosen to include all bone marrow cell types

traditionally included in the NDC, as well as several additional
cell or object types that have diagnostic relevance in hematology
(“megakaryocytes”, “megakaryocyte nuclei”, “platelets”, “platelet
clumps” and “histiocytes”).

Evaluation. To evaluate the ROI detection model in predicting
appropriate and inappropriate tiles, we calculated common per-
formance measures such as accuracy, precision (PPV-positive
predictive value), recall (sensitivity), specificity, and NPV (nega-
tive predictive value), as shown by the following equations:

Accuracy ¼ Tp þ Tn

Tp þ Tn þ Fp þ Fn
ð3Þ

Precision ¼ Tp

Tp þ Fp
ð4Þ

Recall ¼ Tp

Tp þ Fn
ð5Þ

Specificity ¼ Tn

Tn þ Fp
ð6Þ

NPV ¼ Tn

Tn þ Fn
ð7Þ

For the ROI detection model, Tp, Tn, Fp and Fn in the above
equations are defined as:

Tp (True Positive): The number of appropriate tiles which pre-
dicted correctly

Tn (True Negative): The number of inappropriate tiles which pre-
dicted correctly

Fp (False Positive): The number of inappropriate tiles which
predicted as appropriate tiles

Fn (False Negative): The number of appropriate tiles which
predicted as inappropriate tiles

To assess the performance of the proposed cell detection and
classification method, Average Precision (AP) was used with 11-
point interpolation (Eq. (8)). Also at the end, the mean Average
Precision (mAP) 48 was calculated for all the AP values (Eq. (10)).
The value of recall was divided from 0 to 1.0 points and the
average of maximum precision value was calculated for these 11
values. It is worth mentioning that the value of 0.5 was considered
for Intersection over Union (IoU) in AP for each object detection
and >0.75 has been used for class probability. In addition,
Precision, Recall, F1-score (Eq. (12)), average IoU (Eq. (11)) and
log-average miss rate (Eq. (13)) have been calculated here for each
object type.

AP ¼ 1
11

∑
r2f0:0;¼ ;1:0g

APr ¼
1
11

∑
r2f0:0;¼ ;1:0g

PinterpðrÞ ð8Þ

where

PinterpðrÞ ¼ max
~r ≥ r

pð~rÞ ð9Þ

mAP ¼ 1
N

∑
N

i¼1
APi ð10Þ

IoU ¼ GTBox \ PredBox
GTBox ∪ PredBox

ð11Þ

F1� Score ¼ 2 ´
Precision ´Recall
Precisionþ Recall

ð12Þ

For the cell detection and classification model, Tp, Fp and Fn in
Eq. (4) and Eq. (5) are defined as:

Tp (True Positive): The number of all cellular and non-cellular
objects which predicted correctly.

Fp (False Positive) and Fn (False Negative): The number of all
cellular and non-cellular objects which not predicted correctly

The Log-average miss rate49 is calculated by averaging miss
rates at 9 evenly spaced FPPI points between 10−2 and 100 in log-
space.

Logaverage miss rate ¼
Yn

i¼1

ai

 !1
n

¼ exp
1
n
∑
n

i¼1
ln ai

� �
ð13Þ

Where a1, a2,¼;a9 are positive values corresponding the miss
rates at 9 evenly spaced FPPI points in log-space, between 10−2

and 100.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Automatic detection of regions suitable for bone marrow
cytology. Following bone marrow biopsy specimen acquisition
from a hematology patient, particles of bone marrow tissue are
smeared (push preparation) or crushed (crush preparation) onto
a glass slide releasing individual bone marrow cells which are
then fixed, stained and analyzed by a hematopathologist as
described above and in refs. 2,5. This is called a bone marrow
aspirate smear. In digital pathology, glass slides of bone marrow
aspirate smears are scanned using a digital slide scanner to gen-
erate a high-resolution WSI for a hematopathologist to review. To
this end, we sampled digital WSI from our starting dataset of
1247 bone marrow aspirate WSIs acquired over the span of one
year at the hematology reference center, Hamilton Health Sci-
ences. This dataset represented the complete breadth of diagnoses
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Fig. 2 Applying the region of interest (ROI) detection model. a Example of a raw aspirate whole-slide image (WSI), the tile grid to ensure all tiles have
been sampled from the WSI evenly, the Region of Interest (ROI) detection model, and output examples of applying the model to separate appropriate tiles
from inappropriate tiles. b Example of applying the ROI detection model to display the entire ROI and Non-ROI inside an aspirate WSI. c Mean Receiver
Operating Characteristics (ROC) curve of the ROI detection model. All the results are aggregated over all 5-folds.
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and cytological findings seen over this period (see methods,
Table 1 and Supplementary Table S3 for details).

To first address the ROI detection, we developed a deep model
to automatically detect regions in bone marrow aspirate WSIs
that are suitable for cytology. An aspirate WSI may contain only a
small number of regions suitable for cytology; these regions are
thinly spread, free from significant cellular overlap and over-
staining, and clearly show the subtle and complex cytological
features required for cell classification5. To this end, we
implemented a fine-tuned DenseNet 121 architecture (Fig. 2a)
to select and classify individual tiles as ROI tiles (appropriate
tiles) and non-ROI tiles (inappropriate tiles) (Fig. 2b and
Supplementary Fig. S2). All layers of this model were fine-
tuned on over 98,750 tiles of 512 × 512 pixels from bone marrow
aspirate WSIs representing 250 patients that were randomly
selected from our starting dataset and annotated by expert
hematopathologists as ROI or non-ROI (Supplementary Fig. S3
and Table 1). Based on these criteria, the dataset was divided into
28,500 appropriate and 70,250 inappropriate ROI tiles (total of
98,750 tiles including data augmentation) which were then used
to train the ROI detection model. The model was then validated
by partitioning the data at patient level into training and test-
validation sets, in which 46 patients including 18,500 tiles were
considered for testing the results in each fold of 5-folds cross-
validation. In addition, both crush and push preparation aspirate
specimens were included in the training and testing data set to
enhance the robustness of the training model across multiple
preparation modalities. The ROI detection model was evaluated
on imbalanced data (more non-ROI than ROI tiles) in order to
reflect a real-world scenario, where only 10-20% of the WSI may
be useful for cytology. Results are shown in Table 2 and Fig. 2c;
the model achieved accuracy, precision, specificity, recall
(sensitivity) and NPV of 0.97, 0.90, 0.99, 0.78 and 0.99,
respectively. These findings demonstrated our deep learning
ROI detection model was able to automatically select tiles from a
bone marrow WSI appropriate for bone marrow cytology with
high accuracy and precision, providing the foundation for an
automated end-to-end bone marrow cytology model and
abrogating the need for manual ROI identification.

YOLO learning for bone marrow cell detection and classifica-
tion. Following the development of our DenseNet ROI detection
model, we applied a YOLO model on selected appropriate ROI
tiles to automatically detect and classify all bone marrow cellular
and non-cellular objects. Here, all cellular and non-cellular
objects (excluding red blood cells) in each ROI tile in bone
marrow aspirates were detected and assigned a class probability
(Fig. 3a and Supplementary Fig. S4). Using ROI tiles selected by
our fine-tuned DenseNet model as input, we trained a YOLO
model from scratch to detect all bone marrow cell types included

in the NDC (neutrophils, metamyelocytes, myelocytes, promye-
locytes, blasts, erythroblasts, lymphocytes, monocytes, plasma
cells, eosinophils, basophils, mast cells), in addition to histiocytes,
platelets, platelet clumps, megakaryocytes, megakaryocyte nuclei
and debris, which are cells and non-cellular objects that are not
part of the traditional NDC, but may have specific diagnostic
relevance to hematopathology (Fig. 3c).

To facilitate object annotation, we applied our ROI detection
model on WSIs from 106 patients randomly selected from our
starting dataset to extract appropriate ROI tiles, representing 10
diagnostic categories, the majority of which were diagnostically
annotated as abnormal. (Table S3). We then annotated the
location of each object with a bounding box, and subsequently
each object was assigned to one of the above object classes by an
expert hematopathologist. Similar to clinical practice, objects that
could not be classified with certainty by a hematopathologist were
labeled as other cells. Therefore the model would be trained not to
assign these to any specific category. While there are clear
weaknesses in such an approach, due to the requirements of
YOLO model training, leaving cells without an annotation was
not possible. The trained model was then validated with
approximately 250,000 objects (inside 26,400 ROI tiles) con-
sidered for evaluation in each fold of a 5-folds cross-validation
(Table 3 and Fig. 3b). The model achieved a high mAP and
average F1 score in object detection and classification: mAP,
average F1-score, precision and recall are 0.75, 0.78, 0.83, and
0.75, respectively, where the highest classification was achieved
for eosinophil and erythroblast with AP 0.97 and 0.92,
respectively, while megakaryocyte nucleus and histiocyte showing
the most classification errors with AP 0.60 and 0.54, respectively,
which may be a result of class imbalances or cytological
heterogeneiety of these relatively rare objects. Cell types such as
blasts and lymphocytes which may show overlapping morpho-
logical features, also showed lower model performance in
accuracy, similar to expert human hematopathologists. Model
performance in the specific individual diagnostic categories of
normal, MDS, acute leukemia, plasma cell neoplasm and
lymphoproliferative disorder can be found in Supplementary
Fig. S5.

Improving YOLO model performance using active learning.
Active learning broadly describes numerous ML approaches
where data that are either underrepresented or address weak-
nesses in model performance are queried and then labeled as
training data50. This allows for generalization of a relatively small
amount of labeled training data to a large unlabeled datasets,
which is of particular relevance to medical domains such as
pathology where well-annotated training data is scarce. To
accordingly augment our data set and improve performance and
training efficiency of our YOLO model, we designed a unique
strategy called active learning. Here, model training started with a
relatively small dataset and was then improved iteratively by
expert evaluation for weaknesses in performance. In this way, the
expected error reduction (EER) approach of active learning was
used; at each iteration, wrongly classified cells were re-labeled and
added to the current training dataset to train the model in the
next iteration. During the first and second training iterations
(before implementing active learning), new ROI tiles were fully
annotated manually by an expert hematopathologist to train our
YOLO model, 719 tiles representing 32 WSI were used for full cell
annotation. From the third iteration onward, our active learning
approach was employed to annotate 2766 new tiles representing
an additional 74 WSIs, which were validated by our team of 4
expert hematopathologists and hematologists with 5–35 years of
pathology experience. (Table S3 and Supplementary Table S2).

Table 2 Evaluation of the ROI detection using 5-fold cross-
validation to calculate accuracy, precision (PPV-Positive
Predictive Value), recall (Sensitivity), specificity, and NPV
(Negative Predictive Value).

Metrics %

Average Cross-validation Accuracy 0.97
Average Cross-validation Precision (PPV) 0.90
Average Cross-validation Specificity 0.99
Average Cross-validation Recall (Sensitivity) 0.78
Average Cross-validation NPV 0.99

All these metrics were computed in each test (unseen) fold separately and then the average was
calculated.
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During active learning, the trained YOLO model was applied on
new tiles, especially those including the rare cellular and non-
cellular objects to address class imbalances. The model’s predic-
tions were then converted to the readable format allowing
hematopathologists and hematologists to evaluate the new output
data and correct those objects missed or not classified correctly by

the model (Fig. 4a). The new confirmed tiles were then merged
with the current dataset to create a new (larger) dataset to train
the model on this new dataset starting in the next iteration. The
active learning cycle was performed until model performance
plateaued. This approach resulted in increased training efficiency
and model performance as measured by per day mAP, suggesting

Fig. 3 Applying the YOLO model to localize objects in selected region of interest (ROI) tiles. a Example of a Region of Interest (ROI) tile, as the output of
the ROI detection model, the You-Only-Look-Once (YOLO) cell detection and classification model architecture, and output examples of applying the YOLO
model to detect and classify objects inside the input ROI tiles. b The cross-validation confusion matrix showing the performance of the YOLO cell detection
and classification model applied on 16 different cytological and non-cytological object types representing 10 diagnostic categories. Each value represents
the percentage of classification per object type across others. Rows indicate the ground-truth object class while columns display the object type predicted
by the model. The diagonal values indicate the true positive portion for each object type and the other values, outside of the diagonal, display the
misclassification rates. c Thumbnail images of 19 samples for cellular objects and non-cellular objects for cell detection and classification model.
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that an active learning approach could both augment training
efficiency and model performance Table 4, Supplementary
Table S4 and Fig. 4b). This process resulted in total of 1,178,408
objects annotated by the expert hematopathologists inside
132,000 ROI tiles (including augmentation).

Summarizing bone marrow cytology as a histogram of cell
types. End-to-end model architecture for automated bone mar-
row cytology is shown in Fig. 1. After applying the end-to-end AI
architecture (ROI detection and cell detection and classification
models), a Histogram of Cell Types (HCT) is generated for each
individual bone marrow aspirate ROI tile by counting all detected
cellular and non-cellular objects in that tile. The individual ROI
tile HCTs are then used to update an accumulated HCT, called
Integrated Histogram of Cell Types (IHCT) summarizing the
distribution of all cellular and non-cellular objects in all ROI tiles
for a given patient, including the NDC (Fig. 5a). To assess for
statistical convergence of individual HCTs to a final IHCT, after
processing 80 tiles (≈800 cells), Chi-squared distance was calcu-
lated by adding each new ROI tile with an empirically determined
threshold to assess when the IHCT is converged. Once it’s con-
verged, the bone marrow NDC is completed and is represented by
the generated IHCT. Otherwise, another ROI tile is extracted and
analyzed interactively until convergence. Based on analysis of 500
individual patients WSIs, we found that in most cases, IHCT
convergence is reached after counting cells in 100–200 tiles for
normal-diagnosed patients, 300–400 tiles in patients with a MDS-
diagnosed patients and 400–500 tiles in patients with a AML-
diagnosed patients (≈1000–5000 cells) (Fig. 5b). Looking for only
a small number of tiles in this approach is time and computa-
tionally efficient in comparison to analyzing all regions across a
WSI, similar to real-world clinical practice.

Concordance between hematopathologists and model perfor-
mance. For comprehensive clinical evaluation of our end-to-end
model, performance was evaluated by two additional hemato-
pathologists who were not involved in cell labeling. Both hema-
topathologists showed high concordance with model
performance, with mAP >90% overall cell and object types (Fig. 6
and and Supplementary Fig. S6 for details). Additionally, the
Cohen’s Kappa has been calculated both between the hemato-
pathologists and model, and within the experts as well; 0.97 and

0.98 for expert 1 and expert 2, respectively and 0.99 between both
experts.

Discussion
To date, limited studies have been performed toward automated
bone marrow cytology, and despite the obvious clinical need there
are currently no commercial computational pathology workflow
support tools in this domain. This is likely due to the complex
nature of aspirate specimens from a computer vision perspective
compared to other cytology preparations such as peripheral blood
specimens, where commercial support tools have existed for years 25.
In addition, adoption of digital pathology workflows has been slow.
However, the field is showing increasing acceptance of digital
pathology, which will enable a new generation of computational
pathology workflow support tools51,52. Previous studies applying
computational pathology to bone marrow aspirate cytology have
focused only on cell classification versus automated end-to-end
detection of ROI and cell types in aspirate specimens, which is
essential for a viable workflow support tool. Choi et al.53 proposed a
method for cell classification in the NDC by applying dual-stage
convolutional neural network (CNN). The dataset in their study
comprised 2,174 cells from 10 cytological classes and did not include
other important cellular and non-cellular object types in bone
marrow cytology, such as histiocytes, megakaryocytes, and mega-
karyocyte nuclei which have high diagnostic relevance to hematol-
ogy. Additionally, ROI tiles were detected manually by a human
operator, abrogating utility as a clinical workflow support tool in
hematology. Chandradevan et al.26 developed a framework for bone
marrow aspirate differential cell counts by using two-stage cell
detection and classification deep learning models separately. How-
ever, this approach is operationally slow and only able to detect and
classify 11 cell types, and again, entailed selection of ROI tiles
manually by a human. Clinically relevant diagnostic workflow
support tools for bone marrow aspirate cytology will need to fast
(virtual real-time object detection and classification), accurate, and
fully automated from end-to-end (i.e., from a raw digital WSI to
analysis of bone marrow cell detection and classification).

Here, we present for the first time an end-to-end AI archi-
tecture for automated bone marrow cytology. This model per-
formed well, with high accuracy and precision in both ROI
detection and object classification in multiple clinical validation
settings. Our model forms the basis for prototyping computa-
tional pathology clinical workflow support tools that support full
automation in bone marrow cytology. This technology, when

Table 3 Performance result of the proposed cell detection and classification model.

Object class Precision Recall F1 score Log-average miss rate AP@0.5

Neutrophil 0.84 0.91 0.87 0.21 0.90
Metamyelocyte 0.68 0.79 0.73 0.37 0.77
Myelocyte 0.80 0.82 0.81 0.34 0.80
Promyelocyte 0.60 0.67 0.64 0.53 0.62
Blast 0.87 0.90 0.88 0.34 0.84
Erythroblast 0.86 0.92 0.89 0.17 0.92
Megakaryocyte nucleus 0.80 0.57 0.67 0.18 0.60
Lymphocyte 0.73 0.65 0.69 0.49 0.66
Monocyte 0.84 0.71 0.77 0.36 0.72
Plasma cell 0.75 0.69 0.72 0.33 0.72
Eosinophil 0.93 0.94 0.93 0.06 0.97
Megakaryocyte 1.00 0.79 0.88 0.19 0.82
Debris 0.85 0.80 0.82 0.34 0.79
Histiocyte 0.90 0.53 0.67 0.5 0.54
Platelet 0.84 0.64 0.73 0.33 0.64
Platelet clump 0.93 0.61 0.73 0.41 0.62
Average 0.83 0.75 0.78 0.32 mAP@0.5 =0.75
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developed as commercial-grade workflow support tool may assist
overworked pathologists both in busy reference centers, and
less experienced pathologists in smaller, community centers.
We additionally introduce several key advances into the field of
AI-based computational pathology as applied to bone marrow
cytology.

Firstly, we generate a novel information summary. The His-
togram of Cell Types (HCT) representing the collective cyto-
morphological information in a patient bone marrow aspirate
specimen. The Integrated Histogram of Cell Types (IHCT)
represents a new framework for pathologists to interface with the
complex information present in a cytology specimen, allowing for
a rapid diagnostic assessment that can be integrated with other
information (e.g., histomorphology) for augmented diagnostic

interpretation. Compared to a traditional NDC which consists of
300–500 manually counted cells, the proposed IHCT encom-
passes thousands of cells collected by statistical convergence. This
augmented sensitivity may not only support more accurate and
precise diagnosis in hematology, but also may eventually support
the detection of rare cells that cannot be identified by human
operators, such as “blasts” that constitute measurable residual
disease (MRD) in acute leukemia.

Secondly, We use active learning to augment model perfor-
mance. Our active learning approach allowed for rapid aug-
mentation of model performance and training efficiency on a
relatively small labeled dataset. The inability to annotate sufficient
training data in specialized domains such as medicine is recog-
nized as an impediment to generalizable and scalable deep

Fig. 4 Model training started with a relatively small dataset and its performance increased by annotating more objects. a A schematic of active learning
process. b After using the active learning approach, per day mean average precision (mAP) has been improved drastically. Here in each iteration, 250 new
tiles of mostly rare cellular and non-cellular objects are selected to be annotated and then merged to the current dataset. Without using active learning, all
objects in the new tiles are annotated by the hematopathologists, but by using that, the model trained from the current dataset is run on the new tiles to
detect and classify the objects and then hematopathologists review the results and confirm or modify them. In each iteration, the new annotated tiles are
merged with the current dataset. The model will be trained on this new dataset and the next iteration will be started.
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learning approaches. Our approach suggests computational
pathology workflow support tools could be designed from a
human-centric AI perspective, where expert pathologists con-
tinuously evaluate and improve model performance in the con-
text of a clinical diagnostic workflow.

Thirdly, we lay the basis for a commercial-grade diagnostic
workflow support tool in hematopathology that may for example,
be integrated with a hardware product such as digital scanner to
acquire and analyze only the ROI relevant for diagnosis. This
would not only speed up diagnostic workflows, where even in
compressed form, aspirate specimen WSI range from 5-10 GB in
size, but also has implications on efficient data storage and
retrieval, which may be impediments to adoption of digital
workflows in cytology54,55.

Potential weaknesses include overfitting of our model to our
local dataset, which is noted problem in AI-based computational
pathology studies. As well, annotated publicly available or even
academic digital pathology datasets are not yet widely available.
Given the rarity of digital hematopathology workflows, particu-
larly in aspirate cytology, external validation was not feasible at
this early stage, however, will be essential in the development of a
clinical-grade prototype. We expect this to improve as digital
pathology workflows are increasingly adopted, supporting colla-
borative and robust validation of computational pathology tools.
Additionally, some cell and object types, such as megakaryocyte
nucleus and histiocyte, performed with moderate to low mAP.
This is likely due to the rarity of these objects, and performance
may improve with access to large training datasets. Specifically,
blasts and lymphocytes showed overlap in classification and lower
accuracy by our model (Fig. S2, which is a similar problem to
human hematopathologists. A proportion of Plasma cells were
also misclassified as erythroblasts in cases diagnosed as plasma
cell neoplasm (Fig. S2). This may reflect biases in model perfor-
mance, or alternatively, may be a function of the overlapping
cytological features in these cell types which are often confused in
clinical practice, specifically in MDS where dysplasia renders
morphology challenging. We acknowledge this as a weakness in
our model, one that is somewhat mitigated in real-world clinical
practice by expert human hematopathologists using integrated,
semantic interpretation of multiple ancillary data modalities, such
as flow cytometry, molecular studies and clinical findings. As an

early prototype, this problem may be addressed in future work by
incorporating additional training data, as well as multi-model
ML-analyzed datasets and active learning approaches. It is critical
to emphasize our ML technology would be intended to support
pathologists and expedite workflows, requiring substantive
human oversight and rigorous clinical validation, especially where
blast counts represent critical diagnostic cutoffs in diagnosing
MDS and acute leukemias.

Morphology in MDS poses a challenge for even the most
experienced pathologists, with high inter-observer variability, as
reflected in our model performance of MDS cases (Fig. S2b). This
is a potential problem in a model that uses discrete class prob-
ability assignments for individual cells, where there still may be
significant intra-class heterogeneity. Future iterations of our
model may use approaches such as deep feature extraction from
YOLO and dimensionality reduction to explore unsupervised
relationships between cells in each class, ex, dysplasia within
neutrophils, which may assist pathologists in interpreting cell
subsets in cases with morphological dysplasia. This type of
approach would yield additional information that goes beyond
simple class probability assignment, allowing pathologists to
understand and visualize cytological relationships learned by a
model. One could envision a multi-modal deep learning approach
to hematopathology workflows, integrating rich, deep informa-
tion from multiple data sources, including histopathology (the
trephine core biopsy), flow cytometry, molecular and clinical data
to provide an overall semantic-level, and attentive diagnostic
prediction and interpretation. Furthermore, the extracted multi-
omics information would have high predictive and prognostic
potential when linked to clinical outcomes and pharmacological
responses.

The following software tools have been utilized at this work:
Tensorflow 2.2.0 framework, OpenCV 4.1 library, C++, Open-
Slide 3.4.1 and Large-Image 1.5. Regarding hardware, a computer
server with Xeon CPUs, 4 GPUs Tesla V100 32 GB, and 128 GB
RAM have been used to train the entire architecture, and for
model deployment and production phase, a notebook with Intel
Core i9 processor, 64 GB RAM and NVIDIA Quadro RTX 4000
8GB has been used. Regarding the execution time in model
deployment and production phase, it took approximately 4min to
generate the appropriate tiles (includes reading a digital WSI

Table 4 Performance result of using active learning.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8

Object class Count AP Count AP Count AP Count AP Count AP Count AP Count AP Count AP

Neutrophil 680 0.75 1256 0.82 1568 0.83 1756 0.85 1895 0.86 2050 0.89 2398 0.91 2714 0.90
Metamyelocyte 480 0.60 605 0.66 752 0.69 785 0.72 856 0.76 925 0.75 986 0.76 1017 0.77
Myelocyte 390 0.53 589 0.55 665 0.59 720 0.62 869 0.70 950 0.78 1015 0.79 1199 0.80
Promyelocyte 65 0.44 102 0.46 256 0.52 285 0.54 320 0.59 326 0.62 360 0.64 409 0.62
Blast 1050 0.69 1785 0.76 2029 0.78 2590 0.81 2896 0.80 3268 0.83 3526 0.84 3950 0.84
Erythroblast 620 0.72 1150 0.78 1390 0.80 1580 0.82 2028 0.89 2295 0.90 2480 0.92 2668 0.92
Megakaryocyte
nucleus

5 0.32 7 0.35 18 0.52 19 0.55 19 0.55 23 0.60 23 0.59 23 0.60

Lymphocyte 390 0.47 530 0.48 689 0.50 706 0.51 780 0.52 1015 0.59 1150 0.62 1305 0.66
Monocyte 62 0.47 98 0.51 295 0.57 368 0.61 423 0.62 485 0.65 520 0.68 569 0.72
Plasma cell 29 0.57 45 0.59 50 0.61 82 0.63 105 0.67 135 0.68 158 0.71 176 0.72
Eosinophil 31 0.59 38 0.63 135 0.83 172 0.86 185 0.88 221 0.95 228 0.95 249 0.97
Megakaryocyte 25 0.49 30 0.52 90 0.77 90 0.77 92 0.78 95 0.80 100 0.81 106 0.82
Debris 1380 0.58 2680 0.62 3450 0.65 3920 0.68 4490 0.73 4901 0.77 5260 0.77 5603 0.79
Histiocyte 38 0.34 72 0.42 147 0.48 163 0.48 168 0.51 174 0.52 182 0.54 191 0.54
Platelet 790 0.41 1680 0.46 2150 0.48 2560 0.52 2890 0.58 3250 0.65 3680 0.65 3971 0.64
Platelet clump 93 0.37 146 0.41 320 0.54 409 0.56 475 0.57 536 0.58 563 0.61 585 0.62
Average 6128 0.52 10813 0.56 14004 0.64 16205 0.66 18491 0.69 20649 0.72 22629 0.74 24735 0.75

Model training started with a small dataset at the first and second iteration, and then is improved (especially on rare cellular objects) in the subsequent iterations by using active learning.
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Fig. 5 Generating the Histogram of Cell Types (HCT) and converged Integrated Histogram of Cell Types. a Each histogram of cell types (HCT) is
created individually for each Region of Interest (ROI) tile. The Integrated HCT (IHCT) is then updated as successive ROI histogram are accumulated. This
process is stopped once the IHCT is converged using the Chi-square (χ2) distance. Collective cytological information from a patient bone marrow aspirate
is then represented as an IHCT and a table with summary statistics such as the number of each cell type, percentage, BMME ratio and Chi-Square distance.
b Variation of the Chi-square distance through visiting and analyzing selected ROI tiles by the architecture and how an IHCT is converged by processing
each tile. For five samples of patients, the IHCT is converged after visiting a number of tiles in the range of 400 to 500 tiles.
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from disk, creating the tiles with a size of 512*512 pixels, and
applying the proposed ROI detection model). Consequently, the
whole process to examine each tile takes about 30 milliseconds.
For cell detection and classification, 50 milliseconds on average
take for both detection and classification in each tile. As in most
cases, the IHCT is converged in almost 400 to 500 tiles, the whole
process of generating the IHCT took approximately 5min.
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