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Abstract

While diabetes has profound effects on multiple organ systems, the loss of vision caused by 

diabetic retinopathy may be of one of the most impactful in a patient’s life. The retina is a highly 

metabolically active tissue that requires a complex interaction of cells spanning light sensing 

photoreceptors to neurons transferring the electrochemical signal to the brain with support by glia 

and vascular tissue. Neuronal function depends on a complex inter-dependency of retinal cells 

that includes the formation of a blood-retinal barrier (BRB). This dynamic system is negatively 

impacted by diabetes, which alters normal cell-cell interactions and leads to profound vascular 

abnormalities, loss of the blood-barriers and impaired neuronal function. Understanding the 

normal cell signaling interactions and how they are altered by diabetes has already led to novel 

therapies that have improved visual outcomes for many patients. Recent research highlighted 

in this review, has led to new understanding of retinal pathophysiology during diabetes and 

uncovered potential for new therapeutic avenues to treat this debilitating disease.

Introduction

Diabetic retinopathy (DR) is one of the most common complication of diabetes and remains 

a leading cause of visual loss and blindness globally1. Diabetes impacts many components 

of the eye, but the primary vision threatening pathology occurs in the retina. Research 

has revealed alterations to both neuronal and vascular cells of the retina in DR. While 

a complete understanding of disease etiology is needed, recent breakthroughs for treating 

DR that focus on targeting vascular endothelial growth factor A (VEGF-A) now provide 

effective treatment options in the clinic. However, anti-VEGF therapy is only effective in 

the late stages of DR, requires regular intravitreous injections and not all patients respond 

optimally. The increasing rate of diabetes globally, the need to prevent progression from 

the early stages of DR, patients that fail to respond to anti-VEGF therapy and patients with 

*Corresponding Author: dantonet@med.umich.edu. 

HHS Public Access
Author manuscript
Nat Rev Endocrinol. Author manuscript; available in PMC 2022 April 29.

Published in final edited form as:
Nat Rev Endocrinol. 2021 April ; 17(4): 195–206. doi:10.1038/s41574-020-00451-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ischemic retinopathy for which anti-VEGF is inappropriate, collectively requires the need 

for the development of new therapeutic approaches for this disease.

This review focuses on the current understanding of the molecular and cellular pathology 

of DR with a primary focus on the cellular signaling between the neuronal and vascular 

retina that promote formation of the inner blood-retinal barrier (iBRB) of the retinal 

vasculature as an important point of intervention. Changes in visual function will be 

correlated with novel retinal biomarkers identified by clinical imaging modalities such 

as optical coherence tomography angiography and ultrawide field retinal imaging. New 

therapies under investigation that may complement current laser treatment and anti-VEGF 

therapy will be presented along with the mechanism of action. Finally, the translational 

potential of novel approaches such as the development of patient-derived cells and retinal 

organoids for experimental investigation and the potential of tissue restoration will be 

considered.

Classification of Disease Severity

Studies on pathogenesis and treatment of diabetic retinal disease rely on the use of accurate 

methods to classify DR that are reflective of its natural history. DR has been well described 

using the modified Airlie House classification scale as applied in the Early Treatment 

Diabetic Retinopathy Study (ETDRS)2 and recently detailed in a position statement from the 

American Diabetes Association3. Altered retinal blood flow and vascular permeability4, 

basement membrane thickening5, loss of pericytes and acellular capillary formation6 

contribute to clinically visible nonproliferative DR (NPDR) lesions such as microaneurysms, 

venous beading and intraretinal microvascular abnormalities. As ischemia increases, patients 

may develop proliferative DR (PDR), which presents a substantial risk for visual loss due 

to neovascular complications such as vitreous hemorrhaging or retinal detachment as blood 

vessels grow into the vitreous7 (figure 1).

Also linked to ischemia, diabetic macular edema (DME) develops as a result of abnormal 

permeability of retinal capillaries and from microaneurysms leading to the accumulation of 

extracellular fluid and thickening of the normally compact macular tissue. As the severity 

of DR increases, the risk of developing DME similarly increases8. Loss of vision from 

DME correlates with the location and extent of retinal thickening on optical coherence 

tomography (OCT) scans and, macular blood vessel permeability and perfusion as assessed 

by fluorescein angiography9,10. Data from the ETDRS evaluating eyes with DME have 

shown that thickening involving the center of the macula, termed center-involved DME, has 

a nearly ten-fold greater risk for developing moderate visual loss compared to eyes without 

center involvement11.

The retinal pigment epithelium (RPE) and the underlying choroid are also compromised 

during diabetes. The RPE provides a barrier controlling exchange of metabolites from the 

rods and cones with the underlying choroidal vessels and imaging focused on the RPE 

reveal evidence of permeability in patients with DME12 which may relate to breakdown 

of the outer BRB13 and activation of inflammation-linked pathways that drive pathology 

in the photoreceptors14. The RPE also shows impaired regulation of fluid outflow during 
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diabetes that may be linked to dysfunction of the normal activity of Na/K ATPase pumps 

and aquaporin channels15. These outer retina changes occur concomitantly with what has 

been termed diabetic choroidopathy16 which manifests as progressive non-perfusion of the 

choriocapillaris.

ETDRS severity levels have been used to guide clinical practice recommendations for 

patient follow-up and treatment. In the ETDRS, a total of 13 eye and 26 patient levels 

of severity have been described and have been used extensively in research and clinical 

trials. The American Academy of Ophthalmology formed a consensus panel and created 

a simplified classification called the International Clinical DR and DME Disease Severity 

Scale17. This scale simplified descriptions of the categories of DR but is not a replacement 

for ETDRS levels of DR in large-scale clinical trials or studies in which precise DR 

classification is necessary. Despite advances in retinal imaging, the current DR classification 

scales have not incorporated new approaches such as ultrawide field imaging for the retinal 

periphery or optical coherence tomography for macular edema or neuroretinal changes. 

The current grading scales are still largely based on clinically visible retinal microvascular 

lesions and do not include neurodegenerative changes that may occur early and distinct from 

vascular changes18. The evolution of DR classifications are inevitable and should include 

measures that will better prognosticate and predict patient outcomes. But until then, the 

ETDRS severity levels should remain the standard for determining disease severity in both 

clinical and research settings.

While the pathological changes that occur during DR are often considered a progression, 

it remains possible that environmental or genetic factors promote a specific pathology. 

Epidemiological studies have quantified the risks for developing DR or DME and have 

shown significant differences between type 1 (T1DM) and 2 (T2DM) diabetes mellitus19. 

Both glycemic control and diabetes duration have been found to be significant risk factors in 

the development to DR and DME19. However, the 25 year rate of developing some degree 

of DR is over 95% in T1DM and only 60% in T2DM8. Furthermore, the 10 year rate 

of developing DME is 20% in T1DM, 25% in T2DM taking insulin and 14% in T2DM 

not taking insulin20. In general, T1DM patients tend to develop more DR and PDR while 

T2DM patients taking insulin are more at risk for developing DME. Future research on 

understanding what causes patients to present with DME, PDR or aspects of inflammation 

and whether these represent a progression or separate pathologies are greatly needed.

Multiple large-scale clinical studies have shown that glycemic control is essential to 

preventing progression of diabetic complications and DR (reviewed in21). A meta-analysis 

of multiple population-based studies of DR reveals glycosylated hemoglobin, blood 

pressure, and serum total cholesterol associate with the incidence and progression of 

retinopathy but only explain 9% of DR progression and 10% of PDR development22. 

Therefore, additional factors likely contribute to disease pathology. A recent study has 

implied very long chain (VLC) fatty acids that incorporate into VLC ceramides affect 

endothelial barrier properties23. Diabetes leads to loss of elongases including ELOV4 

and alters the retinal lipid profile24. Depletion of ELOV4 can reduce endothelial barrier 

properties while overexpression promotes barrier properties and reduces diabetes effect on 

permeability in vivo23.
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Markers for Disease Activity

The ETDRS standardized grading scale is based on 30° retinal images from 7 standard 

defined retinal fields and characterizes the extent of retinal lesions located in the posterior 

pole. However, ultrawide field imaging has demonstrated that retinal lesions can appear or 

develop outside of the ETDRS fields25–30. Predominantly peripheral lesions (PPL) describe 

eyes with DR lesions that are greater in extent or severity outside the ETDRS standard 

fields. Eyes with PPL were shown to have increased retinal nonperfusion compared to eyes 

without PPL. The cause of PPL is currently unknown and may involve loss of autoregulation 

in retinal arterioles or microvascular degeneration causing capillary nonperfusion and retinal 

ischemia31. PPL are present in ~50% of eyes with DR and identify a more severe level 

of DR in ~10% of eyes compared to standard ETDRS field imaging25,27. Moreover, the 

baseline presence of PPL in an eye suggests an increased risk of future DR worsening and 

the development of advanced, sight-threatening retinopathy over the subsequent 4 years by 

3.2 and 4.7 fold, respectively27. These findings suggest that PPL may become a robust 

marker of DR progression. Another marker may be the presence of vitreous hyperreflective 

foci in OCT scans. In a study of 97 patients, these foci, presumed to represent inflammatory 

cells, were increased in patients with DME compared to control or diabetic patients without 

DME32. Future longitudinal analyses can reveal whether these scans provide true biomarkers 

for disease progression.

The advent of optical coherence tomography-angiography (OCT-A) is providing an 

unprecedented assessment of retinal vascular detail and may reveal important changes not 

previously observed by traditional methods available to ophthalmologists. OCT-A allows the 

noninvasive mapping of retinal vessels and blood flow allowing visualization of the retina 

and choroidal vasculature33,34. Both the superficial vessels and deep retinal vascular layers, 

can be readily differentiated with OCT-A enabling the identification of specific retinal 

capillary layers responsible for the underlying disease35. A deeper understanding of how 

capillaries change over the course of diabetes and in response to treatments for diabetic eye 

disease provided by OCT-A may provide novel insight into disease treatment approach. In 

addition, there has been recent interest in the use of metabolomics to identify biomarkers. 

Metabolomic analysis of vitreous and serum samples have identified dysregulation in 

pathways such as the pentose phosphate pathway, arginine to proline pathway, polyol 

pathway and ascorbic acidic pathways36,37. However, further research is necessary to 

establish causative and longitudinal associations with DR.

Diabetes Alters the Neural/Vascular Interaction in the Retina

The retinal neurovascular unit (NVU) refers to the inter-dependency of the vascular 

endothelial cells with pericytes, glia, neurons and retinal-resident immune cells. While 

the vasculature provides the required nutritional support for the neural tissue, the neural 

and glial cells along with pericytes, signal to the vascular endothelial cells creating the 

blood-retinal barrier (BRB) providing tight control of the neural environment (figure 2A). 

An early deficiency in the function of the NVU in diabetes is observed after short-term 

diabetes in animal models38 and patients39 and results in impaired neurovascular coupling, 

loss of autoregulation and control of blood flow as well as disruption of the iBRB. Diabetes 
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also impacts Müller glia leading to mis-localized active transport mechanisms of inwardly 

rectifying channels at the capillary:Müller glial interface that contributes to swelling of 

Müller glia in diabetic retina40. Changes to Kir4.1 and aquaporins on Müller glia are 

consistent findings in diabetic animal models41 and these changes can be rectified by 

blocking the accumulation of lipoxidation end products42. Further, Müller glial response 

in diabetes may amplify inflammation by activating microglia through P2X7 purinergic 

receptors leading to neuroinflammation and vascular damage, including leakage43. Indeed, 

microglial activation has a significant impact on the retinal NVU and neuroinflammation-

driven breakdown in the inner BRB in DR44.

Vascular endothelial changes have so far, represented the only successful therapeutic 

target for diabetic retinopathy. Laser photocoagulation has long provided an effective 

means of controlling proliferation and edema in many patients45. More recent success 

in treating DR has evolved in the clinic by targeting factors that drive microvascular 

abnormalities. Vascular changes in DR have been attributed in part, to elevated VEGF-

A that signals to retinal endothelial cells altering the blood vessel permeability and 

promoting neovascularization (reviewed in46,47). Multiple, multi-center clinical trials have 

demonstrated targeting VEGF-A with antibodies or trap can effectively reduce DME, 

prevent further vison loss and, in some patients, improve vision48–50. Among patients with 

PDR, anti-VEGF-A therapy has been shown to prevent or reverse neovascularization with 

43% of treated patients demonstrating resolution of neovascularization after 2 years and 

only 27% worsening since the previous visit51. However, for PDR and DME52 clinical 

studies reveal that approximately half of patients receive benefit while others remain 

unresponsive to anti-VEGF-A therapy suggesting other factors may drive disease pathology 

in DR. Interestingly a recent study has shown significant correlations between inflammatory 

cytokines and VEGF and, in particular, that the iBRB is regulated by localization of the 

tight junction protein claudin-5 via rho-associated coiled-coil–containing protein kinase 

(ROCK) activation. Administration of ripasudil, a selective ROCK inhibitor, attenuated 

retinal inflammation and claudin-5 redistribution. When combined with an anti-VEGF 

agent, this ROCK inhibitor was synergistic in suppressing cytokine upregulation, monocyte/

macrophage infiltration, macrophage/microglia activation, and claudin-5 redistribution, an 

effect that was demonstrated pre-clinically but also in patients resistant to anti-VEGF53. 

These data indicates that inflammation may be a key mechanism in the responsiveness to 

anti-VEGF therapy in DME.

Associated with VEGF-A, notch signaling may be altered in DR. In vascular angiogenesis 

during retinal development, VEGF-A signal stimulates an endothelial cell with the highest 

VEGFR2 response to become a tip cell that migrates toward the VEGF source and signal to 

neighboring cells to become the proliferating stalk cells of the angiogenic sprout. This cell 

to cell communication utilizes the notch signaling pathway with delta like canonical notch 

ligand 4 (DLL4) and notch receptor54. Recent studies suggest both DLL4 and the typical 

notch antagonist jagged-1, are increased in diabetic mouse models and in endothelial cells 

in a glucose dependent manner55. Intra-ocular injections of either ligand induced a modest 

increase in retinal permeability dependent on notch since conditional gene-deletion of notch 

prevented the permeability response. Further, a notch trap reduced permeability in a diabetic 

animal model55.
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Diabetes alters the normal pericyte endothelial interaction in the retina. Studies using 

targeted genetic deletion of pericytes reveal that pericyte coverage of retinal vessels is 

required for proper formation of the BRB56. Platelet derived growth factor (PDGF)-B 

signaling to pericytes controls vessel stabilization as deletion of PDGF-B retention signal, 

that localizes the growth factor to the pericellular space, also causes deterioration of 

retinal vessels57 and PDGF receptor-β blocking antibody induces retinal hemorrhage and 

permeability in a FOX01 dependent manner58. Interestingly, this study also revealed 

that loss of retinal pericytes in adult mice using inducible, targeted diphtheria toxin 

expression, does not confer leaky retinal vessels as observed in other organs such as 

lung and skin. Instead, loss of pericytes make the retinal vasculature highly susceptible 

to VEGF-A signaling with a dramatic increase in hemorrhage and vascular permeability to 

dextran58. Pericytes control endothelial expression of angiopoietin 2 and VEGFR2 through 

transcription factor FOX01, with loss of pericytes dramatically promoting VEGF signaling. 

This heightened response of retinal vascular endothelial cells to VEGF-A after pericytes 

loss has stark implications for the well-established loss of retinal pericytes in diabetes. In 

addition, chronic hyperglycemia has been shown to reduce PDGF receptor tyrosine kinase 

signalling which promotes pericyte apoptosis and diabetic vasculopathy through activation 

of protein kinase C-δ (PKC-δ) and increased expression of the tyrosine phosphatase 

Src homology-2 domain–containing phosphatase-1 (SHP-1)59,60. These studies provide a 

mechanistic link to diabetes.

Glial cells provide Wnt signaling to retinal vascular endothelial cells required for formation 

of the BRB and may be a target for treating DR. The cytokine norrin is not a Wnt 

molecule but like Wnt, norrin signals through the frizzled 4 (FZD4) receptor complex61. 

Gene deletion studies of norrin, the receptor frizzled 4 or the co-receptors low density 

lipoprotein receptor-related protein 5/6 (LRP5/6), or tetraspanin (TSPAN)12 reveal that 

this signaling complex is required for both retinal angiogenesis62 and BRB formation63,64. 

Importantly, norrin and FZD4 knockout mice show high retinal vascular permeability that 

correlates with reduced endothelial cell border immunostaining of the TJ protein claudin 

5, and increased expression of the transcytosis marker and plasmalemma vesicle associated 

protein. Further, this phenotype can be reversed by the expression of a stabilized form 

of β-catenin revealing the role of canonical Wnt pathway. Studies have begun to explore 

whether norrin signaling may be used to restore vascular function in animal models. Norrin 

treatment may reduce avascular area and inhibit neovascularization in oxygen-induced 

retinopathy models65 and transgenic expression of norrin may reduce vaso-obliteration and 

promote vascular growth66,67. Recent studies demonstrate that norrin can reverse VEGF 

induced permeability in cell culture and in animals after intravitreal injection of VEGF 

or in diabetes68. Interestingly, these studies reveal that VEGF actually promotes norrin 

signaling by increasing membrane content of the FZD4 co-receptor TSPAN12. The addition 

of norrin after VEGF then promotes barrier induction suggesting a potential novel approach 

to vascular restoration. It will be important to ascertain whether norrin expression, as well 

as other Wnt signaling mediators, changes during diabetes to determine whether neuronal 

changes in Wnt signaling alter BRB in diabetes.

A variety of studies suggest cell signaling through inflammatory factors may contribute to 

DR pathogenesis. Vitreous proteomic analyses have identified a host of altered inflammatory 
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factors in the vitreous or aqueous humor at varying stages of diabetic retinopathy (reviewed 

in69 and70), many of which are highlighted here. Gene deletion and cytokine capture studies 

in animal models have provided strong evidence for a role of tumor necrosis factor-α 
(TNF-α)71,72 in DR and evidence of leukostasis with a role for intercellular adhesion 

molecule-1 or its binding partner CD1873. Human studies of vitreous fluid have found 

an association of elevated interleukin IL-1β and TNF-α in PDR patients74–76. IL-6, IL-8 

and chemokine, C-C motif, ligand (CCL)-2 were also identified as elevated in patients 

with diabetic macular edema and PDR77. Conversely, antiangiogenic mediators such as 

pigment epithelium-derived factor (PEDF) have been reported to be in low patients with 

diabetes and in patients with active PDR78. Studies demonstrate targeting inflammation by 

inhibiting atypical protein kinase C (aPKC) may control vascular permeability in the retina. 

The aPKC isoforms contribute to endothelial permeability from a variety of inflammatory 

factors and growth factors including VEGF and also contribute to NFκB activation79,80. 

Reducing aPKC activation with a small molecule inhibitor or conditional expression of a 

dominant negative form of the kinase reduced permeability and monocyte and granulocytes 

recruitment in models of retinal inflammation81. Beyond broad-spectrum, anti-inflammatory 

approaches such as corticosteroids already in clinical use, targeting specific cytokines based 

on measures of patient vitreous or aqueous cytokine profiles remains an exciting possibility 

to improve therapeutic options82.

Given sufficient time the development of DR is nearly universal in patients with diabetes8 

but the development of PDR plateaus at 60%, even after more than 50 years of diabetes8,83. 

Therefore, there may be protective mechanisms that delay or prevent the progression to 

PDR84. Proteomic analysis identified elevated concentrations of photoreceptor-secreted 

retinol binding protein 3 (RBP3) in the retina and vitreous of patients protected from 

advanced DR despite diabetes durations of over 50 years85, consistent with earlier findings 

that RBP3 was reduced in the general patient population with diabetic retinopathy86. Retinal 

cell based assays and rodent models have demonstrated that RBP3 can prevent diabetes 

induced vascular permeability and altered retinal function measured by electroretinogram 

(ERG)85. RBP3 may have a role in protection against the progression of DR by decreasing 

the expression and signalling of inflammatory cytokines and VEGF. Further this group 

provided evidence for RPB3 reducing glucose uptake into Müller cells by binding and 

inhibiting glucose transporter 1, thereby mitigating the effects of chronic hyperglycemia85. 

These studies require further exploration of the normal physiological role of RBP3 in 

mediating glucose uptake but provide novel insight into retinal metabolism and potential 

therapeutic approaches to treat DR.

Novel Pathogenic Pathways

Studies have identified a range of alternative neurovascular signaling pathways that lead 

to leakage and/or neovascularization in addition to VEGF. Amongst the most promising 

targets is the kinin–kallikrein system. Carbonic anhydrase I (CA-1) and activation of plasma 

kallikrein (PK) was identified in the vitreous of patients with advanced DR87. Subsequent 

studies established PK cleavage of kininogen generates bradykinin which acts through 

bradykinin receptors on the blood vessels to induce permeability. Inhibitors of PK can block 

or reduce retinal permeability in animal models of diabetes and in response to direct CA-1 
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and PK injection88 but not VEGF-A, suggesting a distinct pathway of vessel permeability. 

Currently, a range of PK inhibitors are being tested in clinical trials for patients with DME.

Recent experimental studies have implicated angiopoietin like 4 (ANGPTL4) in DR. 

ANGPTL4 was initially found elevated in aqueous fluid from the anterior chamber 

of patients with DME and the level of ANGPTL4 correlated with the ability of the 

aqueous fluid to induce permeability in an endothelial cell culture assay89. ANGPTL4 

is downstream of hypoxia inducible factor regulated gene transcription and can induce 

endothelial permeability90. Interestingly ANGPTL4 was shown to bind to neuropilin and 

activates the small G-protein RhoA89. Neuropilin is a co-receptor for VEGFR2; however, 

the ability of ANGPTL4 to induce permeability was independent of VEGFR2, demonstrated 

in knockdown studies in cell culture. A soluble form of neuropilin was able to block 

ANGPTL4 and VEGF-induced permeability in cell culture and mice. It should be noted 

that there are a number of conflicting reports of the role of ANGPTL4 in permeability. For 

example, studies reveal ANGPTL4 can reduce permeability in the brain in stroke and can 

specifically attenuate VEGF induced permeability by inhibiting Src phosphorylation and 

activation91 and recent findings reveal ANGPTL4 can inhibit pro-inflammatory genes and 

promote anti-inflammatory genes in macrophages in cell culture and in a myocardial infarct 

model92. Clearly additional studies on the complex role of ANGPTL4 are needed. However, 

a previous study identified another neuropilin binding protein semaphorin 3A (Sema3A) 

also induces retinal permeability and conditional knockout of neuropilin prevented Sema3A 

induced permeability but not VEGF induced permeability93. Targeting neuropilin may 

provide a novel option to treat DR and may potentially prevent induction of permeability 

from multiple sources if no toxicity is associated with this therapy.

Gene expression studies of pathological angiogenesis identified elevated expression of 

leucine-rich alpha-2-glycoprotein 1 (Lrg1) that promotes neovascularization. Lrg1 modifies 

transforming growth factor β (TGF-β) signaling by binding to the accessory receptor 

endoglin and promoting a pro-angiogenic signaling pathway94. Lrg1 knockout mice have 

a modest delay in retinal vascular development but both the knock out mice or an anti-Lrg1 

antibody could dramatically reduce pathological angiogenesis in animal models. Currently, 

a humanized monoclonal antibody to LRG1 called Magacizumab is undergoing phase I/IIa 

clinical trial and could potentially provide an additional therapeutic option for PDR.

Finally, the direct role of hyperglycemia on endothelial cells has been extensively studies. 

However, a recent study provides an intriguing model of hyperglycemia regulated epigenetic 

control of oxidative stress in endothelial cells. Using siRNA and pharmacological inhibition 

of DNA methylation and hydroxymethylation, the investigators provide evidence for 

hyperglycemia induced increase in 5-hydroxy methyl cytosine and NFkB induced gene 

activation of Ras-related C3 botulinum toxin substrate 1 (Rac1)95. Rac1 is an essential 

component of NADPH oxidase 2 (Nox2) promoting reactive oxygen species (ROS) 

production, which is activated early in hyperglycemia induced endothelial cell dysfunction 

and contributes to mitochondrial production of ROS. These studies provide a novel model to 

link hyperglycemia induced epigentic gene regulation to ROS production and mitochondrial 

dysfunction (reviewed in96).
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Altered Neuronal Function

While most clinical focus has been on vascular pathology during DR, there is now wide 

recognition that the impact of diabetes more broadly affects the cells of the retina. In 

addition to the clinically visible vascular defects, evidence points to changes occurring in 

the neural retina as well. For example, apoptosis of non-vascular cells has been consistently 

identified in animal models of DR97. Longitudinal studies of patients with diabetes suggests 

retinal degeneration as observed by thinning of the nerve fiber and ganglion cell layer, 

termed retinal neurodegeneration, without evidence of vascular pathology98. A number 

of changes in retinal function have been characterized that may occur before clinically 

observable vascular pathology including reduced electrical response as measured by ERG 

and diminished contrast sensitivity (reviewed in99,100). A recent animal study found that 

apoptosis in the diabetic retina depended on protein regulated in development and DNA 

damage response 1 (REDD1)101. REDD1 promotes dephosphorylation and inhibition of Akt 

kinase activity allowing the transcription factor FOXO1 to promote cell death. Depletion 

of REDD1 in retinal neural cell culture prevented hyperglycemia induced apoptosis and 

deletion of REDD1 in mouse reduced diabetes induced retinal apoptosis and attenuated 

aspects of visual loss, most prominently loss of b-wave intensity in scotopic ERG and loss 

of contrast sensitivity. Some factors may directly impact both vascular and neural tissue such 

as endothelin which impacts vascular and neural tissue through different receptors subtypes. 

Recent data revealed topical administration of an endothelin antagonist in a diabetic mouse 

model prevented neurodegeneration102.

While vascular and neuronal changes clearly both occur during DR, the question remains 

whether neural or vascular dysfunction initiates the disease process or whether the 

alterations are coincident but unrelated. The European Consortium for the Early Treatment 

of Diabetic Retinopathy (EUROCONDOR) recently studied 449 diabetic patients with no 

versus mild vascular defects as assessed by ETDRS scoring and measured alterations in 

retinal function using multifocal ERG (mfERG) or retinal structure measured by OCT. The 

study found 61% of patients without microvascular disease presented abnormalities related 

to neurodegeneration assessed by mfERG or OCT103. Conversely, 32% of patients with 

visible microvascular disease did not present any sign of neurodegeneration. It is important 

to note that the lack of observable vascular defects do not confirm unaltered vessel function. 

However, the authors raise the possibility of distinct disease etiology in DR. The use of 

conditional gene regulation targeting specific cell types is necessary to begin to elucidate 

the causal relationship between retinal vascular and neural changes observed in animal 

models of diabetes. Further, longitudinal studies of patient populations assessing vascular 

and neuronal alterations and retinal function are needed to clarify potential differences in 

disease progression that will inform therapeutic approaches.

There is growing clinical evidence that neurovascular changes occur in the brain of 

patients with diabetes, especially in the context of T2DM leading to increased risk of 

dementia104 or Alzheimer disease105. There is also growing evidence of an association 

between retinal vessel abnormalities and cognitive impairment and dementia106 with the 

possibility of retinal imaging as an effective biomarker for neurodegenerative diseases. 

Recent proteomic analysis of the vitreous has identified changes in proteins associated 
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with Alzheimer’s and Parkinson’s disease107. While these studies are intriguing, significant 

research with mechanistic detail is needed to explore a potential role for diabetes in brain 

neurodegeneration and similarities or differences with the retina.

Extensive studies have illuminated a role of oxidative stress in contributing to the pathology 

of DR (reviewed in108). NF-E2-related factor 2 (Nrf2) is a transcription factor that is a 

master regulator of a host of genes that act in a cytoprotective manner and provide cellular 

antioxidant gene products. Nrf2 is normally bound and inhibited by Keap1, targeting Nrf2 

for degradation. Stress induced alteration in Keap1 binding stabilize Nrf2 and provide 

cellular protection. Gene deletion of Nrf2 exacerbates the degree of retinal ischemia and 

increases pre-retinal neovascularization in the oxygen induced retinopathy (OIR) model109. 

The OIR model takes advantage of the plasticity of the neonatal retina and creates a 

central retinal ischemia which drives pathological angiogenesis. By using broad neuronal 

conditional knockout, glial specific knockout and endothelial knockout, the investigators 

demonstrated this effect on vascular development, particularly the increased avascular 

area, was driven by neuronal cells. Loss of Nrf2 increases expression of semaphorin 

(Sema)6a that acts extracellularly on endothelial cells through notch signaling. The vascular 

pathologies in the Nrf2 knockout animals were reversed by lentiviral delivery of shRNA 

targeting Sema6a. A role of Nrf2 signaling in diabetes was demonstrated with increased 

vessel permeability and loss of visual acuity in Nrf2 gene deleted diabetic animals110 and an 

ischemia reperfusion (IR) model was used to demonstrate a role of Nrf2 in retinal ganglion 

cell protection111. IR was previously shown to model aspects of VEGF-dependent vascular 

permeability, inflammation and retinal cell loss observed in diabetes but more dramatically 

and over a shorter time-frame112,113. Recent studies reveal an impressive protection of visual 

acuity with a Nrf2 activating drug in the IR model114 suggesting this approach may provide 

therapeutic benefit for neurons in ischemic retinal diseases including DR.

Potential for Regenerative Medicine

Recent studies have begun to explore the potential for retinal vascular regeneration. In 

a clinical case study, spontaneous re-perfusion of ischemic retina followed by recovery 

of visual acuity has been reported following radiation retinopathy115 thus suggesting that 

return of adequate blood flow can restore retinal function. Spontaneous re-perfusion of 

the ischemic diabetic retina has been reported116 117 although this is generally a rare 

occurrence in DR and there is a general assertion that normal vascular reparative processes 

are defective in early diabetes and can, at least in part, account for the observed progressive 

vascular degeneration. The diabetes-related deficiencies in vascular repair processes are not 

well-understood although it is widely appreciated that diabetic patients suffer exacerbated 

cardiac and peripheral limb ischemia through reduced collateral vessel development and 

abnormal repair following infarct118. Interestingly, the Joslin Medalist T1DM cohort show 

normal levels of endothelial progenitor cells (EPC) and circulating progenitor cells when 

compared to other patient cohorts with diabetes suggesting endogenous, protective factors 

may serve to provide a protective effect in the Medalist119. Indeed, there is increasing 

evidence that diabetes suppresses resident progenitor cells that would normally be activated 

by injury120,121. This is especially true for the recently identified, side population cells that 

possess a progenitor phenotype in the endothelium122,123. Lineage tracing experiments in 

Antonetti et al. Page 10

Nat Rev Endocrinol. Author manuscript; available in PMC 2022 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mice show that these self-renewing progenitors can become activated by vessel damage 

after which they re-establish a viable endothelium and restore perfusion123–127. Although 

currently unknown, altered retinal progenitor cells could account for the observed deficits in 

repair in DR.

In view of diabetes-related damage to the retinal NVU, a strategy that could replace 

damaged endothelium is attractive and has clear translational potential. Cell therapy 

using vasoactive progenitors has received attention since such cells are recruited to 

sites of capillary loss where they promote re-perfusion128. Various cell-types including 

CD34+ cells129, Lin− hematopoietic stem cells (HSCs)130, CD44hi cells131 and circulating 

angiogenic cells132 have all been shown to enhance tissue repair of ischemic tissues in 

pre-clinical models, including the retina. Although described as endothelial progenitor cells 

(EPCs), many such populations are, in fact, heterogenous mixtures of myeloid cell types 

with no evidence of incorporation into the vasculature133. Unfortunately, the majority of 

clinical trials using the heterogenous and poorly defined EPCs have been disappointing134. 

However, an ongoing, retina-focused trial using CD34+ cells has demonstrated in Phase I 

that intravitreous delivery is safe135 and clinical trial for various retinopathies, including 

DR, is currently ongoing (ClinicalTrials.gov Identifier: NCT01736059). This is encouraging, 

although in the context of DR there may need to be some caution since recent evidence 

suggests that the use of progenitors that carry myeloid markers may actively participate in 

pro-inflammatory responses136.

Perhaps the most promising cell from a therapeutic perspective is the EPC-type called 

endothelial colony forming cells (ECFCs) isolated from peripheral adult blood or umbilical 

cord blood. These have proven to be homogenous and distinct from HSCs and cells sorted 

on CD34+ 133. ECFCs possess many endothelial and progenitor cell characteristics and 

lack the hematopoietic markers CD45 and CD14. They also possess de novo endothelial 

tube forming potential in vitro and in vivo and can form de novo vessels or directly 

incorporate into pre-existing capillaries137–140. In vivo, ECFCs appear to share properties 

with side population cells that are present in the vasculature122 and can become activated 

by vessel damage upon which they incorporate into the endothelium124–126. Emerging 

pre-clinical studies validate the potential for ECFCs in diseases where vascular insufficiency 

is a cardinal feature such as stroke, peripheral artery disease, heart disease, and DR141. 

Intravitreous delivered ECFCs have been shown to migrate to ischemic retina and activate 

vascular repair142–144. In diabetic mice, ECFCs combined with recombinant angiopoietin 1 

gene therapy, prevent barrier dysfunction and restores vision as measured by opto-kinetic 

functional readouts145.

While most attention has been focused on replacement of damaged endothelial cells, in 

the diabetic retina there is also a need to restore other damaged cells. For example, 

replacing lost pericytes may be possible using mesenchymal stromal cells (MSCs) since 

their potential has been shown to reside adjacent to retinal vessels and adopt pericyte-like 

phenotype which maintains vascular integrity146,147. Although not yet studied in diabetic 

retina, there is likewise potential for replacement of defective Muller glia, RPE and perhaps 

even neurons148.
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Patient-Specific Cells and Organelles

The potential of using induced pluripotent stem cell (iPSC) technology to produce 

retinal organoids has already led to significant impacts in ophthalmology and vision 

science. So-called “retina in a dish” approaches have been developing apace in recent 

years and they have provided great insight into both developmental biology and retinal 

neurodegenerative diseases149,150. Indeed, iPS-derived, patient-linked cells are already 

advancing other ophthalmic disease fields such as informing the pathogenesis of drusen 

formation in iPSC-RPE from patients with macular degenerative disease151. DR research has 

been heavily reliant on animal models and while this has led to many important advances, 

there have always been limits in the clinical fidelity. Studies using retinal organoids for 

DR research may help circumvent this limitation. There are already findings on iPSC-RPE 

derived from T2DM patient donors revealing decreased barrier function and attenuated 

autophagic capacity when compared to iPSC-RPE from non-diabetic controls have been 

reported152. Depending on the pluripotency approach used, these iPSC-derived cells may 

carry an epigenetic imprint and harbor DNA methylation signatures characteristic of their 

somatic tissue of origin153. Use of iPSC has the potential to combine laboratory studies 

with clinically relevant cells to more fully understand DR phenotypes from a molecular 

perspective with the clear potential to develop more patient-specific therapeutic approaches.

Conclusions

Diabetes remains a leading cause of vision impairment worldwide. While the precise 

etiology of metabolic dysregulation contributing to loss of retinal functions remains to be 

fully elucidated, targeting VEGF-A cytokine signaling driving microvascular pathologies 

has proven effective in preventing disease progression and improving vision for many 

patients. Studies exploring the cellular communication of the NVU in the retina and the 

alterations that occur in diabetes may provide additional targets to treat those patients that 

fail to respond to current therapy. Disease management of DR may by further improved with 

the development of novel biomarkers that take advantage of the unique availability of retinal 

imaging. However, a better understanding of the disease etiology, what factors may drive 

DME or PDR, what specific cytokines or factors mediate specific disease processes and 

additional information on the genetic basis of susceptibility or protection to DR is needed. 

Accurate phenotypic description of patient populations coupled with analysis of altered 

cytokine profiles in vitreous or aqueous fluid may lead to precision medicine with improved 

patient outcomes. In basic research, studies that utilize conditional gene targeting to explore 

the cell communications in vivo are needed to elucidate the functional relationship of the 

cells in the neurovascular unit and the contribution to vascular and neuronal dysfunction in 

DR. Finally, regenerative and restorative approaches provide hope to restore retinal function 

lost by diabetes.
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Figure 1. Diabetic Retinopathy (DR) Manifests with Multiple Pathologies.
A. Patients with diabetes may have no readily observable alterations to the retina as 

observed by fundus photography. Alternatively, microvascular abnormalities, hemorrhages, 

microaneurysms and venous beading reveal evidence of disease process that may range 

from mild to severe and occur in patients with non-proliferative DR (NPDR). Patients 

with proliferative DR (PDR) have neovascularization in the retina that may lead to retinal 

detachment. Diabetic macular edema (DME) may occur in both NPDR or PDR. (Adapted 

from7) B. Schematic diagram of a cross section of the eye. Vessel leak, neovascularization 

and cystoid formation due to DME are indicated. Cross section of retina indicating 

organization of ganglion cells and bipolar cells in the inner retina versus rods and cones 

in the outer retina. Blood vessels in the inner retina make the inner blood-retinal barrier and 

the retinal pigment epithelium (RPE) makes the outer blood-retinal barrier.
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Figure 2. The Neurovascular Unit (NVU) and Cytokine Signaling in Diabetic Retinopathy (DR).
A) Proper retinal functions require an intimate relationship of the retinal blood vessels 

in the inner retina with neurons, glia (astrocytes and Müller cells), and pericytes. Glia 

provide norrin signaling required for BRB formation. Endothelial cells recruit pericytes by 

PDGF-B signaling and pericytes promote BRB by an unknown mechanism. B) In DR, glia 

have increased aquaporin and Kir4.1 channels contributing to swelling and now produce 

vasoactive substances such as VEGF-A and associated DLL-4, ANGPTL4 and LRG that 

promote permeability, angiogenesis or both. Loss of pericytes leads to hyper-responsiveness 

of endothelial cells to VEGF signaling. Further, inflammatory cytokines such as TNFα, 

IL1β and CCL2 among many others, are produced by microglia and other retinal cells as 

well as adherent inflammatory cells. In addition, hyperglycemia induces direct endothelial 

dysfunction through change in redox state (NAD(P)H and ROS). Not shown, RPE also 

undergo dysfunction with increased cytokine production. Collectively these changes disrupt 

the neurovascular unit and alter normal retinal function.
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