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Background: In patients undergoing assisted reproduction, levels of mitochondrial 
DNA  (mtDNA) in the trophectodermal cells of the developing blastocyst are 
suggested to be associated with its ability to implant. However, discrepancies exist 
regarding the use of mtDNA levels as a reliable biomarker to predict outcomes 
of assisted reproduction. Aims: The aim of the study is to explore the association 
of trophectodermal mtDNA levels to determine blastocyst quality, implantation 
potential of blastocyst and clinical outcomes in couples who have undergone 
pre‑implantation genetic testing for aneuploidy  (PGT‑A). Study Setting: Private 
fertility centre. Study Design: Retrospective analysis. Materials and Methods: 
We analysed mtDNA levels in the trophectodermal cells of 287 blastocysts from 61 
couples undergoing PGT‑A. The levels of mtDNA were estimated by next‑generation 
sequencing method. mtDNA levels were correlated with maternal age, blastocyst 
morphology, ploidy status, implantation rates, miscarriage rate and live birth rate. 
Statistical Analysis Used: Linear regression and one‑way ANOVA with Tukey’s 
all column comparison test. Results: The trophectodermal mtDNA levels did not 
correlate with maternal age. There were no significant differences in their levels 
in grade  1 and grade  2 blastocysts. No significant differences were seen between 
mtDNA levels of implanted and non‑implanted blastocysts or those blastocysts that 
resulted in miscarriage or live birth. However, significantly lower amounts of mtDNA 
were seen in euploid blastocysts as compared to that in aneuploid blastocysts. 
Conclusion: mtDNA levels in the trophectodermal cells of the blastocyst do not 
associate with blastocyst quality  (grade  1 and grade  2), implantation potential and 
clinical outcomes but can differentiate between aneuploid and euploid blastocysts. 
Our study does not support the use of trophectodermal mtDNA levels as a biomarker 
for blastocyst quality and predictor of clinical outcomes.
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and embryo quality.[2‑5] The current methods for 
assessing embryo quality involve the use of qualitative 
grading criteria or real‑time monitoring with multiple 
quantitative end points. Despite these add‑ons, an 

Introduction

Assisted reproduction technologies  (ARTs) have 
witnessed significant progress in the last three 

decades and have benefitted many infertile couples. 
However, despite tremendous advancements in the field, 
take‑home baby rates remain low.[1] The success of ART 
is determined by several crucial factors such as maternal 
and paternal age, gamete quality, endometrial receptivity 
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absolute improvement in pregnancy rates has not been 
observed.[6‑8] The advent of single‑cell genetic analysis 
has made it apparent that a large number of embryos 
developed in vitro are chromosomally aneuploid.[9,10] This 
has prompted the routine evaluation of the chromosomal 
complement of embryos by pre‑implantation genetic 
testing for aneuploidy  (PGT‑A). While the introduction 
of PGT‑A has led to a reduction in miscarriage rates,[11] 
the improvements in live birth rates following PGT‑A 
remain relatively low.[12] As many as 50% of embryos 
diagnosed as “euploid” by PGT‑A still do not implant, 
and many “mosaic” embryos still result in pregnancy.[13,14] 
Thus, the routine use of PGT‑A in IVF clinics as a tool 
for embryo selection has been challenged.[15,16] Thus, 
there is a need to identify markers that may aid in 
embryo selection for improving pregnancy rates in 
patients undergoing assisted reproduction.

The processes of fertilisation and embryonic development 
rely heavily on energy derived from mitochondria.[17,18] 
The human oocytes contain the highest number of 
mitochondria per cell.[19] Studies in human embryos 
have highlighted that conditions such as aneuploidy, 
advanced maternal age or chemically induced stress 
are associated with higher mtDNA content.[20,21] This 
has prompted several groups to investigate if levels 
of mtDNA in the developing embryos can aid as a 
marker for embryo selection in ART. Fragouli et  al. 
were the first to report that embryos with high levels 
of mtDNA have compromised implantation potential.[22] 
These findings were corroborated by additional studies 
that reported an increased mtDNA copy number was 
associated with lower implantation rates of euploid 
embryos.[23‑29] Collectively, these findings reinforced the 
notion that beyond aneuploidy, quantification of mtDNA 
levels could serve as a biomarker for embryo selection. 
However, some studies have challenged this notion and 
have demonstrated that after controlling for inter‑patient 
variables, mtDNA quantitation was not able to predict 
the implantation potential of an embryo.[30‑32] Studies 
have also failed to find a correlation of mtDNA levels 
with blastocyst grade, implantation rates or on‑going 
pregnancy rates in patients undergoing euploid embryo 
transfer.[23,31‑35] Thus, it is unclear if mtDNA levels 
can predict the implantation potential of embryos and 
pregnancy outcomes.

Our centre routinely offers PGT‑A by next‑generation 
sequencing (NGS) to eligible couples who are undergoing 
assisted reproduction. To evaluate if the mitochondrial 
DNA content in the blastocyst is a useful marker for 
determining the implantation potential of the blastocysts, 
we recorded these data from the NGS files and analysed 
its association with outcomes in ART. Herein, we report 

the association of trophectodermal mtDNA levels to 
determine blastocyst quality, implantation potential of 
blastocyst and clinical outcomes in couples who have 
undergone PGT‑A.

Materials and Methods
Ethics statement
The study is a retrospective analysis of the anonymised 
data collected at Craft Hospital and Research Center. 
The ethical review board of Craft Hospital and Research 
Center Hospital and Research Center approved the 
study  (Ethics no: 002/21/3/2019). The study was 
conducted following the ethical standards and adhered to 
the Declaration of Helsinki 2013. Informed consent was 
obtained from every participant included in this study.

Study design
A total of 61 couples agreed to undergo PGT‑A by NGS 
from January 2016 to July 2017. Controlled ovarian 
stimulation was performed with antagonist protocol 
using gonadotropins with doses ranging between 150 and 
300  IU depending on age and body mass index  (BMI). 
Oocytes were aspirated under local anaesthesia after 36 h 
of agonist trigger. Denudation was performed an hour 
after oocyte retrieval. Intracytoplasmic sperm injection 
(ICSI) was performed as described previously.[36] For 
patients requiring oocyte accumulation, oocytes were 
frozen within 30  min post‑denudation and ICSI was 
performed later. Zygotes were cultured in VITROMED 
culture medium  (VITROMED, Germany) for 5–6  days. 
Fertilisation was checked on the day following ICSI after 
which day 3 embryo quality was checked. Good‑quality 
day 3 cleavage stage embryos  (defined as embryos with 
6–8  cells, equal size of blastomeres and cytoplasmic 
fragmentation less than 10%) were allowed to grow till 
the blastocyst stage. Blastocyst quality was graded as 
described previously.[37,38]

Embryo/blastocyst biopsy and vitrification
Trophectoderm biopsy of only grade  1 and grade  2 
blastocysts was done on day 5 as described 
previously.[13,39] Grade  3 blastocyst were excluded. 
Briefly, on day 5, herniating blastocysts were selected, 
and 5–10 trophectoderm cells were removed by suction 
followed by laser pulsation. The trophectoderm cells 
were collected in phosphate‑buffered saline and stored 
at  −80°C until further processing. The vitrification 
method was used to freeze down blastocysts. Briefly, the 
blastocysts were immersed in equilibration solution for 
12–15 min, followed by transfer to vitrification solution. 
This was finally transferred to a cryolock containing 
liquid nitrogen.
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Whole‑genome amplification and next‑generation 
sequencing of trophectodermal cells
Whole‑genome amplification  (WGA) on each biopsy 
was performed using the Rubicon PicoPLEX WGA 
kit  (Agilent, CA, USA) as per the manufacturer’s 
recommendations as detailed previously.[39,40] Following 
WGA, NGS of the trophectodermal biopsies was 
carried out. For constructing WGA library, Ion Xpress 
Plus fragment library kit and Ion Xpress barcode 
adapters kit were used as per the manufacturer’s 
instructions  (Thermo Fisher Scientific, MA, USA). 
Briefly, 150  ng of WGA DNA was fragmented 
to generate 280 base pair fragments. The purified 
fragmented DNA was barcoded and amplified as per the 
manufacturer’s instructions  (Thermo Fisher Scientific, 
MA, USA). These  (a pool of 24  samples) were then 
loaded on an Ion 520 Chip and were sequenced on the 
Ion Gene Studio S5 system (Ion S5 System User Guide, 
Thermo Fisher Scientific, MA, USA). Approximately 
4.8–5 million reads were obtained for each run 
generating 200,000–300,000 reads/embryo.

Analysis of ploidy and mitochondrial DNA levels
The ploidy status and mtDNA levels for all the 
blastocysts undergoing PGT‑A with NGS were assessed 
with Ion Reporter Cloud‑based software 5.18.2.0 
(Thermo Fisher Scientific, MA, USA).

Embryo transfer
The endometrium was prepared for transplantation using 
hormone replacement protocol. Estradiol valerate was 
administered from day 2 of the cycle in a dose‑dependent 
manner. Serial ultrasound monitoring was performed 
to check endometrial thickness  (10  mm), after which 
oral and vaginal progesterone was administered and 
frozen embryo was transferred. The vitrified blastocyst 
from the cryolock was first directly placed in transfer 
solution followed by washing with sucrose solution at 
37°C. Serum β‑human chorionic gonadotropin  (HCG) 
levels were measured using HCG STAT Elecsys assay 
on Cobas E601 Immunology Analyser  (Roche, Basel, 
Switzerland) after 2  weeks of embryo transfer to 
detect biochemical pregnancy. Clinical pregnancy was 
determined as visualisation of an intrauterine gestation 
sac by transvaginal ultrasound performed at 6 weeks.

Estimation of implantation and clinical pregnancy 
rate
Implantation rate was calculated as the number of 
gestational sacs seen at 6  weeks of gestation in 
ultrasound divided by the total number of embryos 
transferred.

Statistical analysis
As it is a retrospective analysis, sample size calculations 
were not done. Linear regression analysis was performed 
to study the correlation between maternal age at the time 
of oocyte retrieval and mtDNA from the trophectodermal 
cells of the blastocyst. Correlation between mtDNA 
level and blastocyst morphology, ploidy status and 
pregnancy outcomes was carried out using one‑way 
ANOVA with Tukey’s all column comparison test. 
GraphPad Prism version 5.0 for Windows, GraphPad 
Software, La Jolla California USA, www.graphpad.com 
was used to perform all statistical analysis, and P < 0.05 
was accepted as statistically significant.

Results
A total of 61 couples opted for PGT‑A during the study 
period. There were 287 grade 1 and grade 2 blastocysts 
from 61 couples who finally underwent NGS analysis 
for PGT‑A. Presented below are the results from these 
287 blastocysts [Figure 1].

Mitochondrial DNA levels in trophectodermal cells 
of the blastocyst and maternal age at the time of 
oocyte retrieval
To investigate the association of maternal age and 
trophectoderm mtDNA levels, data from 287 blastocysts 
were analysed by linear regression analysis. These 
embryos were generated from 61 women aged between 
24 and 46  years  (average age of 32.6  ±  4.13  years). 
The results revealed no correlation between maternal 
age at the time of oocyte retrieval and mtDNA 
levels  [Figure  2]. The slope was 6.046e‑005 and the R 
square value was 0.01327, and this was not statistically 
significant.

Mitochondrial DNA levels in the trophectodermal 
cells of the blastocyst and blastocyst morphology
At our centre, PGT‑A is only performed on grade  1 
and 2 blastocysts. Thus, data for only these two grades 
are available. To understand if there is a correlation 
between the mtDNA levels in the trophectoderm 
cells and blastocyst morphology, mtDNA levels of 
grade  1  (n  =  134) and grade  2  (n  =  153) blastocysts 
were analysed. The results revealed no significant 
difference in the mtDNA levels between grade  1 and 
grade 2 blastocysts [Figure 3a].

Mitochondrial DNA levels in trophectodermal cells 
in aneuploid blastocysts
The blastocysts were classified as euploid and aneuploid 
to study the correlation between mtDNA levels and 
ploidy status of the blastocysts. Out of 287 blastocysts 
analysed, 170 were euploid and 117 were aneuploid. Of 
117 aneuploid blastocysts, 41 were monosomic, 31 were 
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trisomic and 45 were polysomic  (aneuploidy of more 
than 1 chromosome). mtDNA levels were significantly 
high in aneuploid blastocysts compared to euploid 
blastocyst  (P  <  0.05)  [Figure  3b]. When stratified by 
the type of aneuploidy, the mtDNA levels in polysomic 
blastocysts were significantly higher compared to euploid 
and monosomic blastocysts (P < 0.05) [Figure 3c].

Levels of mitochondrial DNA in trophectodermal 
cells of blastocyst in embryo implantation and 
clinical outcomes
In our study, all the couples had at least one euploid 
embryo for transfer. 90 embryos were transferred in 
all. Of these, 84 were single embryo transfers and 3 

were double embryo transfers. From the 90 embryos 
transferred, 68 implanted successfully and 22 embryos 
did not implant. Thus, the overall implantation rate was 
75.55%. There was no statistical difference in levels of 
mtDNA of implanted  (n  =  68) versus non‑implanted 
blastocysts  (n  =  22). The couples who were positive 
for clinical pregnancy were followed up until term. 
There was no statistically significant difference in 
mtDNA levels and pregnancy [Figure 4] that resulted in 
miscarriage (n = 4) or live birth (n = 42).

Discussion
In the present study, we analysed if blastocyst mtDNA 
levels can predict implantation potential. Our results 
indicate that mtDNA levels differ between euploid 
and aneuploid blastocysts, but mtDNA levels in the 
trophectoderm of grade  1 and 2 blastocysts do not 
correlate with their ability to implant.

The selection of a blastocyst for transfer in couples 
undergoing ART has been a major clinical challenge. 
With the discovery that a large proportion of in  vitro 
developed human blastocysts are aneuploid,[41] the 
application of PGT‑A to select euploid blastocysts has 
been integrated into mainstream clinical practice. While 
PGT‑A has helped identify euploid embryos, one‑quarter 
to half of these embryos still fail to implant,[42,43] 
suggesting that additional factors may govern embryo 
implantation. In recent years, measurement of mtDNA 
levels in the blastocyst has gained attention as a potential 
biomarker to predict the implantation potential of the 
embryo and pregnancy outcomes in ART.[44‑46]

Mitochondria play a key role in cellular metabolism and 
fulfil a cell’s energy requirements. In most organisms, 
the mitochondria are exclusively maternal in origin 

Figure 1: Flowchart depicting the numbers of embryos used to analyse the correlation between mtDNA levels in trophectoderm cells of the blastocyst 
and other parameters

Figure 2: Correlation of mtDNA levels in trophectodermal cells data with 
maternal age at the time of oocyte retrieval. Values on X‑axis are maternal 
age in years. Y‑axis is relative mtDNA levels in the trophectodermal cells. 
The data are derived from 287 independent embryos. The equation of the 
slope is provided. mtDNA: Mitochondrial DNA
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and any disruptions in their levels or activity can 
compromise cellular functions. It is well established 
that advanced maternal age has a detrimental effect 
on pregnancy outcomes due to compromised oocyte 

quality.[3,47] Studies have reported low mtDNA levels 
in cumulus cells or oocytes of women with advanced 
age.[48‑50] In contrast, elevated mtDNA content is 
observed in blastocysts from women with advanced 
age.[21,22,27,28,51] In our study, however, we did not find any 
correlation between trophectoderm mtDNA levels and 
maternal age on analysing women within the age group 
of 24–46 years. Our findings are in agreement with other 
studies where a lack of correlation between maternal age 
and mtDNA copy number has been reported.[23,26,31,33,34,52] 
Differences in sample size and in the number of women 
with advanced maternal age could be possible reasons 
for such discrepancies in results across studies. Since, in 
our study, there were very few women with advanced 
maternal age  (i.e.  greater than 40 years)  (age <35 = 45, 
age  >35  =  16), it is possible that we have missed any 
correlation of mtDNA levels in women in the higher 
age group. However, the lack of correlation between 
advanced maternal age and mtDNA in the blastocyst is 
not unexpected because oocytes are arrested in meiosis 
prenatally, and hence, mitochondrial copy numbers 
are expected to be similar for all mothers irrespective 

Figure  4: The association of mtDNA levels in trophectodermal cells 
with implanted euploid embryos and clinical outcomes. Values on the Y 
axis are relative mtDNA levels. The numbers (n) of blastocysts are given 
in each case. P < 0.05 was accepted as statistically significant. In each 
violin, the solid horizontal bar is median and the dotted bars quartiles. 
mtDNA: Mitochondrial DNA

Figure 3: Association of levels of mtDNA in trophectodermal cells with blastocyst morphology and ploidy status. (a) Comparison of mtDNA levels in 
grade 1 and grade 2 blastocysts. (b) Comparison of mtDNA levels in euploid and aneuploid blastocysts. (c) Comparison of mtDNA levels in euploid, 
monosomic, trisomic and polysomic blastocyst. In all the graphs, the value on the Y‑axis is relative mtDNA levels. In each violin, the solid horizontal 
bar is median and the dotted bars quartiles. The numbers (n) of blastocysts are given in each case. P < 0.05 was accepted as statistically significant. 
mtDNA: Mitochondrial DNA

c
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of their age. Indeed, a large population‑based study 
has shown that there is mtDNA turnover in oocytes 
during meiotic arrest, which contributes to an increase 
in numbers of mutations in the mtDNA, and there is a 
drift in heteroplasmy frequencies with age.[53] Together, 
the data indicate that maternal age may not contribute 
to alterations in mtDNA levels in the blastocysts 
although its effects on mtDNA genome sequence and 
heteroplasmy warrant further investigations.

The system of embryo grading based on morphological 
and or morphokinetic criteria is based on the premise 
that anatomically high‑quality embryos must result in 
higher implantation. This is also evident from studies 
where endometrial stromal cells can differentiate 
between a morphologically good‑quality and bad‑quality 
embryo.[54] It is suggested that good‑quality embryos have 
low metabolism whereas an embryo under stress tends 
to be more metabolically active.[55] This hypothesis has 
prompted several investigators to analyse levels of mtDNA 
in association with the developmental competence of the 
embryo. High levels of mtDNA in poor‑quality embryos 
have been reported by several groups.[23,26,56] Interestingly, 
in our study, we did not find any correlation between 
mtDNA levels in the trophectodermal cells and the 
morphological grade of blastocysts. However, our analysis 
is only limited to grade 1 and 2 blastocysts as we did not 
perform PGT‑A of grade  3 blastocysts, and hence, the 
data for the mtDNA in these are lacking. Indeed, it was 
reported that mtDNA levels best predicted the lowest and 
highest grades of embryos but not mid‑grade embryos.[34] 
It must be kept in mind that these results are derived from 
embryos that are already visibly compromised, and hence, 
the clinical utility of mtDNA scores/levels for predicting 
blastocyst quality is rather limited.

We next tested the levels of mtDNA in trophectodermal 
cells and its association with the ploidy status of the 
blastocyst. We observed higher levels of mtDNA in 
trophectodermal cells of aneuploid blastocysts as compared 
to euploid blastocysts. Interestingly, higher levels of 
mtDNA in the trophectodermal cells were restricted to 
polysomic blastocysts; the levels in monosomic or trisomic 
blastocysts were comparable to those in the euploid 
blastocysts. Our results are consistent with earlier studies 
that report elevated levels of mtDNA in aneuploid embryos, 
specifically in polysomic embryos.[24,26,57] Elevated levels of 
mtDNA  (above the mean  ±  2SD standard deviation) were 
seen only in 4/45 polysomic and 1/31 trisomic blastocysts 
and were not a uniform feature of all polysomic or 
aneuploid blastocysts. These results imply that, in a clinical 
setup, the measurement of mtDNA in the trophectoderm 
cells cannot be a reliable feature to predict the ploidy status 
in most blastocysts.

The transfer of a morphologically and developmentally 
competent blastocyst to the uterus does not always 
result in pregnancy, and there is a constant search of 
endometrial and embryonic factors to predict the success 
of implantation.[58] Several studies have demonstrated 
that euploid embryos with higher mtDNA levels  (above 
a particular cut‑off) failed to implant, whereas embryos 
with low mtDNA implanted successfully.[21,22,24,57,59] 
However, we failed to detect any changes in mtDNA 
content in blastocysts that implanted versus those that 
did not implant. These results were consistent even after 
adjusting for single versus two embryo transfer cycles. 
We also failed to detect any embryos in our cohort that 
had mtDNA quantity above the threshold proposed by 
Fragouli et  al.[22] In fact, in our cohort, the embryos 
that did not implant had mtDNA levels identical to 
those which implanted. Our results are in concordance 
with the studies that also reported that mtDNA levels or 
mitoscores were not associated with implantation rates 
and noted that there was no threshold above or below 
which pregnancy would or would not occur.[31,33,52] 
It is reported that embryos from women with higher 
BMI have higher mtDNA copy numbers and that high 
levels of maternal serum progesterone are inversely 
correlated with mtDNA levels.[26] However, in our 
study, the baseline BMI and serum progesterone levels 
did not significantly differ between the different groups 
analysed and had no effect on mtDNA levels after 
adjustments  (data not shown). Thus, our results do not 
support the use of mtDNA levels  (or mitoscore) to be 
used in ART clinics for embryo selection.

Finally, we asked if mtDNA levels could predict 
outcomes of implanted blastocysts. Our results revealed 
that levels of mtDNA in the blastocyst did not correlate 
with the risk of miscarriage or chance of live birth. 
Although the numbers of patients in the miscarriage 
group were few, the absence of an association between 
the mtDNA levels and miscarriage has also been 
reported in other studies.[33,52,59] However, most of these 
are retrospective analyses of the data with a limited 
sample size precluding statistical analysis.

Conclusion
Our results, in conjunction with the findings from 
other studies, reveal a lack of association of mtDNA 
levels with the different ART outcomes specifically in 
predicting blastocyst implantation potential or pregnancy 
outcomes. The limitations of the study are the nature 
of study design  (retrospective analysis), small sample 
size  (n  =  61 couples) and single‑centre data. Further, 
methodological differences in the quantification of 
mtDNA, number of cells during biopsy and sample 
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storage method are other reasons for the inconsistent 
results between various studies.[43,45,60] There is a need to 
develop consistent selection criteria and a standardised 
procedure to study the correlation between mtDNA and 
ART outcomes. Multicentric data with uniform protocols 
and patient selection criteria are needed to arrive at a 
final consensus.

In summary, the present study fails to support the 
notion that trophectodermal mtDNA level can predict 
embryo quality, implantation ability of the blastocysts or 
pregnancy outcomes in ART. The results of our centre 
highlight that mtDNA copy number does not provide 
any advantage in embryo ranking and would lead to 
de‑selection of blastocysts that may otherwise result in 
healthy pregnancies.
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