Skip to main content
. 2022 Mar 31;15(1):34–41. doi: 10.4103/jhrs.jhrs_147_21

Table 4.

Multivariate binary logistic regression analysis showing polycystic ovary syndrome as a dependent variable on independent variables age, body mass index, serum fasting glucose, serum fasting insulin and serum homocysteine levels

Variables B SE Wald statistic P OR 95.0% CI for OR

Lower Upper
Age 0.044 0.068 0.407 0.524 1.045 0.914 1.194
Fasting glucose 0.093 0.060 2.411 0.120 1.098 0.976 1.234
Fasting insulin −0.107 0.353 0.091 0.763 0.899 0.450 1.796
HOMA-IR 0.522 1.594 0.107 0.743 1.685 0.074 38.340
Serum homocysteine 0.158 0.065 5.977 0.014 1.172 1.032 1.330
BMI −0.032 0.079 0.159 0.690 0.969 0.829 1.132
Constant −10.626 5.612 3.585 0.058 <0.001

Classification table based on binary logistic regression
Projected group Group Total

PCOS Controls

PCOS 29 7 36
Controls 6 28 34

Classifying efficacy of predictive model

Sensitivity Specificity PPV NPV Accuracy

82.9 80.0 80.6 77.8 81.4

BMI=Body mass index, SE=Standard error, OR=Odds ratio, CI=Confidence interval, HOMA-IR=Homoeostatic assessment of insulin resistance, PCOS=Polycystic ovary syndrome, PPV=Positive predictive value, NPV=Negative predictive value