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Abstract

A propagation pattern for the moment representation of the regularized lattice Boltzmann method 

(LBM) in three dimensions is presented. Using effectively lossless compression, the simulation 

state is stored as a set of moments of the lattice Boltzmann distribution function, instead of 

the distribution function itself. An efficient cache-aware propagation pattern for this moment 

representation has the effect of substantially reducing both the storage and memory bandwidth 

required for LBM simulations. This paper extends recent work with the moment representation by 

expanding the performance analysis on central processing unit (CPU) architectures, considering 

how boundary conditions are implemented, and demonstrating the effectiveness of the moment 

representation on a graphics processing unit (GPU) architecture.
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1 INTRODUCTION

Managing data motion remains a key challenge to developing efficient, scalable algorithms 

for computational multiphysics. As floating point operations become increasingly 

inexpensive, reworking existing algorithms to reduce the required memory bandwidth 

becomes an important avenue to improving computational performance. For instance, the 
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lattice Boltzmann method (LBM) has been widely applied within computational fluid 

dynamics and related domains (e.g., porous media [1], additive manufacturing [2], and 

supersonic flows [3]). However, LBM simulations are highly memory-bound on modern 

architectures [4]. In our previous work [5], we reformulated a regularized lattice Boltzmann 

method to store LBM simulation data in a compressed format based on moments. Combined 

with a cache-aware propagation pattern maximizing data reuse, this scheme substantially 

reduces the memory and data motion required for LBM. In this companion paper, we extend 

the performance analysis of the scheme, discuss integration with boundary conditions and 

complex geometries, and port the scheme for graphics processing unit (GPU) architectures.

One approach to reducing LBM’s storage and memory bandwidth requirements involves 

developing more efficient propagation patterns. There are two fundamental computational 

kernels, collision and streaming, in the LBM timestep. Baseline propagation patterns 

for LBM implement these kernels as separate routines. While separate routines enable 

individual optimizations of each kernel, the arrangement is not optimal with respect to 

overall data motion. To address this, collision and streaming are ‘fused’ into a single kernel 

to reduce the amount of data motion to and from memory [6], [7]. Subsequently, a series of 

LBM propagation patterns (AA, swap, shift, esoteric twist, etc.) have been developed that 

store a single copy of the distribution array [6], [8], [9], [10]. While originally designed to 

reduce storage requirements, some of these propagation patterns may also further reduce 

data motion by avoiding write allocates [11].

A second approach to reducing data motion and storage for LBM is to simplify the 

lattice Boltzmann method itself. Several such implementations store only the density and 

momentum variables, analogously to pressure and velocity in Navier-Stokes (e.g., [12], [13], 

[14]). This reduction is valid for the special case where the LBM relaxation time τ = 1. 

However, for larger Reynolds numbers, an extremely high resolution grid would be required 

to maintain a sufficiently small Mach number to ensure stability [14]. A more advanced 

version of this idea, introduced by Argentini et al., stores additional moments beyond 

density and momentum but is still limited to low Reynolds numbers [15]. Consequently, 

while effective at decreasing memory requirements, this approach is less well-suited for 

non-laminar flows.

Instead, regularization provides a more general approach to data reduction for the lattice 

Boltzmann method. Regularization is an integral component in the formulation of LBM 

schemes for finite Knudsen numbers [16] and microfluidic flows [17]. Regularization 

has also proven key to maintaining stability at high Reynolds numbers [18], [19]. The 

fundamental idea of this projection-based regularization process is to base the number of 

degrees of freedom on the moments of the physical system being approximated by LBM, 

rather than on the number of distribution components in the LBM lattice [20]. With fewer 

such moments than distribution components, it becomes possible to decrease the memory 

bandwidth and storage requirements. Moreover, this compression is effectively lossless 

because the moments are chosen so as to maintain the same order of approximation of the 

physical equation (e.g., Navier-Stokes) being solved with LBM [21].
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In this paper, we extend our recent work in developing a moment-based propagation 

pattern of the regularized lattice Boltzmann method [5]. We take full advantage of the 

simplifications provided by regularized LBM and integrate them into a propagation pattern 

that reduces both in-memory storage and memory bandwidth requirements. Along with a 

more thorough explanation of the proposed algorithm, this extension paper makes three 

additional contributions:

• First, we compare performance of our moment representation algorithm with 

two benchmark LBM implementations, measuring performance versus a roofline 

model for two central processing unit (CPU) architectures and for two LBM 

lattices. Additionally, we evaluate factors associated with the algorithm’s cache 

usage and performance.

• Second, we discuss implementing LBM boundary conditions with the moment 

representation.

• Third, we show how our moment representation algorithm can be adapted to 

GPUs and demonstrate improved performance for 2D simulations.

2 LATTICE BOLTZMANN METHODS

2.1 Single relaxation time LBM

LBM simulations evolve according to the lattice Boltzmann equation [22]. Formulated in 

terms of the LBM particle distribution function f and using the single relaxation time (BGK) 

collision operator, the equation may be written for each distribution component fi as

fi x+ci, t + 1 = fi(x, t) − 1
τ fi(x, t) − fi

eq(x, t) (1)

for the approximation fi
eq of the Maxwell-Boltzmann equilibrium distribution, discrete 

velocities ci of the lattice, relaxation time τ, lattice site x, and timestep t. Equivalently, the 

right side of the equation 1 may be rewritten as

fi x+ci, t + 1 = fi
eq(x, t) + 1 − 1

τ fi
neq(x, t) (2)

where the non-equilibrium distribution is computed as fneq = f − feq. It is conceptually 

convenient to separate the right and left sides of equation 2 into ‘collision’ and ‘streaming’ 

kernels, respectively:

fi
∗(x, t) = fi

eq(x, t) + 1 − 1
τ fi

neq(x, t) (3)

fi x+ci, t + 1 = fi
∗(x, t) . (4)
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This distinction is useful because collision is local to the lattice site and nonlinear, while 

streaming is non-local but linear. Hydrodynamic variables are computed as moments of 

distribution f with respect to Hermite polynomials ℋ:

ℋ(0) = 1 (5)

ℋα
(1) = ciα (6)

ℋαβ
(2) = ciαciβ − cs2δαβ (7)

in which cs is the lattice speed of sound and δ is the Kronecker delta [23]. For a second-

order approximation of the Navier-Stokes equations, the simulation state is characterized by 

the first three moments: density ρ, momentum ρu, and the second order tensor Π:

ρ = ∑
i = 1

Q
ℋ(0)fi(x, t) (8)

ρuα = ∑
i = 1

Q
ℋα

(1)fi(x, t) (9)

Παβ = ∑
i = 1

Q
ℋαβ

(2)fi(x, t) . (10)

The second-order approximation of the Maxwell-Boltzmann equilibrium distribution fi
eq is 

computed in terms of the hydrodynamic moments ρ and ρu:

fi
eq = ωiρ ℋ(0) + 1

cs2
ℋα

(1)uα + 1
2cs4

ℋαβ
(2)uαuβ (11)

for lattice weights ωi.

2.2 Regularized LBM

The regularized lattice Boltzmann method was introduced by Latt and Chopard [20], [21]. 

Regularized LBM modifies the BGK collision kernel by projecting the pre-collision non-

equilibrium distribution into the space of Hermite polynomials. This modification effectively 

replaces the BGK collision operator with one that still has a single relaxation time, but that 

depends only on ρ, u, and Π.

The regularization projection is performed in two stages. First, the non-equilibrium second 

order tensor Π(1) is approximated from the non-equilibrium distribution fneqas
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Παβ
(1) = ∑

i = 1

Q
ℋαβ

(2)fi
neq(x, t) . (12)

This is sufficient because the first two moments do not depend on fneq:

∑
i = 1

Q
ℋ(0)fi

neq(x, t) = ∑
i = 1

Q
ℋα

(1)fi
neq(x, t) = 0. (13)

Second, the tensor Παβ
(1) is projected back to distribution space with the equation

fi
(1) = ωi

2cs4
ℋαβ

(2)Παβ
(1)

(14)

where fi
(1) is the non-equilibrium distribution projected onto the Hermite basis. Accordingly, 

for regularized LBM, equation 3 is modified to

fi
∗(x, t) = fi

eq(x, t) + 1 − 1
τ fi

(1)(x, t) (15)

and the streaming kernel proceeds unchanged. Like the collision kernel, regularization is 

entirely local and does not alter the computational profile beyond introducing a modest 

amount of additional computation.

3 MOMENT REPRESENTATION OF REGULARIZED LBM

The three moments ρ, ρu, and Π are sufficient to describe the entire state of the regularized 

LBM simulation, interchangeably with the distribution f. For linguistic convenience, we 

will refer to the simulation state in terms of distribution f as the distribution representation 

and the equivalent simulation state in terms of moments ρ, ρu, and Π as the moment 

representation.

The regularized collision kernel can easily be reformulated in terms of the moment 

representation, as is already done for the MRT collision kernel [24]. However, the LBM 

streaming operation is only defined in terms of the distribution representation. A finite 

difference-style approximation of streaming using the moment representation, akin to the 

streaming operation in fractional step lattice Boltzmann [25], violates the exact streaming 

property that ranks among LBM’s most significant characteristics [26]. Instead, to avoid 

modifications to regularized LBM itself, one must map from moment to distribution 

representation of the same data to perform the streaming operation, and then back to the 

moment representation after streaming has been completed. Equations 8–10 convert from 

distribution to moments, while the reverse conversion is performed by the equation:
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fi = ωi ℋ(0)ρ + 1
cs2

ℋα
(1)ρuα + 1

2cs4
ℋαβ

(2)Παβ . (16)

However, moments cannot be computed at a lattice site until streaming at all neighboring 

lattice sites is completed, which introduces a requirement for lattice sites to be updated 

in a particular order. This requirement is not present in most propagation patterns for the 

distribution representation. An additional wrinkle is posed by boundary conditions, as most 

LBM boundary conditions are implemented in terms of the distribution representation. In the 

next sections, the propagation pattern for CPUs and an approach for implementing boundary 

conditions are discussed.

3.1 Propagation pattern for CPU architectures

The propagation pattern for a moment representation of regularized LBM is determined 

by two factors. First, as with distribution representations, it is advantageous to store only 

a single copy of the moment array. Not only would this reduce storage requirements, 

but it would also minimize write allocates for stores if the moments remained in cache. 

Second, maintaining a distribution array to facilitate streaming does not adversely impact 

performance if the array size is sufficiently small that it remains in cache. Together, these 

factors motivated a sliding window algorithm [15].

Decomposing the domain of a given MPI task into a series of ‘blocks’ is a standard strategy 

for improving data reuse in LBM. A simple instance of such a block decomposition is 

show in figure 1(a). While data reuse in distribution-based LBM propagation patterns is 

limited to efficient cache line usage, performance improvements for LBM and related stencil 

computation with blocking and tiling schemes are well documented [6], [7], [27].

For this sliding window algorithm, a 1D decomposition is performed such that the cross 

sectional area of each block is smaller than a given threshold selected based on the size of 

the CPU last level cache, as illustrated in figure 1(b). Within each block, the sliding window 

will sequentially perform the LBM update on all points in a layer, from the bottom layer to 

the top layer, before moving on the the next block. For each lattice point in a given layer, 

the moments {ρ, ρu, Π} are read from memory and collision is performed. Since ρ and 

ρuare conserved, collision is only performed on the second order tensor. Consequently, the 

equivalent of equations 3 and 15 takes the form:

Παβ
∗ = Παβ − 1

τ Παβ − Παβ
eq

(17)

= ρuαuβ + 1 − 1
τ Παβ

neq
(18)

for equilibrium tensor Παβ
eq = ρuαuβ and non-equilibrium tensor Παβ

neq = Παβ − Παβ
eq . Instead of 

being written back to memory, the post-collision moments ρ, ρu, Π∗  are converted from 

moment to distribution representation using equation 16. This post-collision distribution data 
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is streamed into a distribution array associated with the sliding window domain, according to 

a scheme such as direct addressing or an indirect addressing adjacency list.

After streaming a given layer into the sliding window domain, the distribution components 

associated with streaming into that layer will not be complete until both the layers 

immediately above and below the given layer have also streamed into the sliding window 

domain. However, as the layers of the block are being processed from bottom to top, 

the layer immediately below the given layer will be completely represented in the sliding 

window domain. Accordingly, after performing streaming on a given layer, the subsequent 

step will be to recompute the moments on the layer immediately below using equations 

8–10. The resulting sliding window algorithm is illustrated in figure 2.

For this propagation pattern, the moments at each lattice point will be read and written 

once per timestep, assuming the block size is small enough to avoid write allocates. Further, 

the distribution array resides entirely in cache and permits data reuse in distribution space 

without additional cost. However, in the typical case of multiple blocks per MPI rank, an 

additional challenge arises related to performing streaming across the interface between 

blocks. As discussed in [5], the instances of streaming between blocks can be divided into 

streaming ‘forward’, from the current block to a block not yet been updated this timestep, 

and ‘backward’, from the current block to a previously updated block.

Streaming ‘backward’ across block boundaries is addressed with recomputation: performing 

an additional collision operation on those lattice points and computing only those 

distribution components that stream into the current block. ‘Forward’ streaming is more 

challenging, as the previously applied update to those blocks precludes recomputation. 

Instead, distribution components that would stream forward across block boundaries are 

identified during preprocessing and they are streamed to a separate array, which is read from 

when the block into which they are streaming is updated. The size of this separate array will 

be proportional to the area of the interface between blocks.

The memory usage of the propagation pattern for the moment representation (MR) is 

assessed relative to two distribution representation LBM propagation patterns:

1. AB pattern: a fused collision and streaming kernel with two copies of the LBM 

distribution function.

2. AA pattern: a fused kernel scheme with a single copy of the LBM distribution 

function, but different updates for even and odd timesteps.

To compare the memory usage of the moment-based propagation pattern with distribution-

based versions, we consider the simplified case illustrated in figure 3 of a dense cuboid 

geometry with I, J, and K points in each dimension, for a total of N=IJK fluid points. It is 

divided into 2 blocks with B = IJ
2  per layer of block, and with block interface area of JK. 

The lattice has Q distribution components, M moments, and R distribution components able 

to stream forward or backward across the block interface (for Q=19 and 27, R=5 and 9, 

respectively).
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For the common D3Q19 lattice, table 1 shows that the moment-based propagation pattern’s 

M=10 moments for the second-order approximation of the Navier-Stokes equations would 

offer a modest savings for the amount of distribution, moment, and indirect addressing 

memory stored per lattice site. Instead of 376 bytes/lattice site for AB and 224 for AA, 

as few as 156 would be required for MR if the layer and block interface data remained 

in cache. For the D3Q27 lattice, the reduced memory cost of the moment representation 

becomes more pronounced: 536 bytes per point for AB, 320 for AA, and as few as 188 for 

MR.

We observe that, while this study focuses on single speed lattices, regularized lattice 

Boltzmann has been extended to multi-speed lattices such as D3Q39 [28]. Two notable 

changes occur for multi-speed lattices: more than three layers would be required for the 

distribution space window and the inclusion of higher-order moments may result in a less 

favorable ratio of Q to M than D3Q19 or D3Q27.

3.2 Boundary conditions

An LBM propagation pattern for the moment representation poses a potential challenge for 

implementing boundary conditions because these are typically formulated in terms of the 

distribution f. Simple conditions such as halfway bounceback can be embedded directly 

into streaming without additional computational complexity. Other boundary conditions 

could be applied with the standard distribution representation in the sliding window 

domain, after the layer has been completely streamed in but before moments have been 

recomputed [5]. However, it would be simpler and more efficient if boundary conditions 

could be reformulated in the moment representation. Interest in interpreting LBM boundary 

conditions in terms of their moment representation dates to [29] and moment-based LBM 

boundary conditions have since become an active research area [30], [31].

It is straightforward to implement such moment-based boundary conditions in the moment 

representation, but it is less clear how existing distribution-based boundary conditions 

would be reformulated. In this section, we discuss recasting a distribution-based boundary 

condition in terms of the moment representation, without reference to the distribution. We 

consider the finite difference velocity gradient method from Latt et al [32] imposing a 

Dirichlet condition u = u0. We previously implemented this condition for inlets and outlets 

of blood flow simulations using the standard distribution representation [33].

3.2.1 Distribution-based scheme—In this condition, each distribution component fi 

at the boundary is replaced using the equilibrium distribution fi
eq(ρ, u) and strain rate tensor 

Sαβ:

fi = fi
(eq) ρ, u0 − ρωiτ

cs2
ℋαβ

(2):Sαβ, (19)

The strain rate tensor is evaluated using a finite difference method with velocities from 

adjacent lattice sites, which are known either from streaming or from the velocity boundary 

condition u = u0. However, the unknown density ρ at a straight boundary lattice site is 
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computed using the post-streaming components of the distribution as in the Zou-He scheme 

[34]. Without loss of generality, let us assume an xy boundary plane with the positive z-unit 

vector pointing out of the simulation domain. Borrowing Latt’s simple formulation [21], we 

may define partition ρ into

ρl = ∑
i ∣ ciz = l

fi (20)

for l = − 1, 0, and 1. After streaming, ρ0 and ρ1 will be determined and ρ−1 unknown. Since 

ρ = ρ−1 + ρ0 + ρ1 and ρuz = ρ1 − ρ−1, then ρ is computed as

ρ = 1
1 + uz

ρ0 + 2ρ1 . (21)

3.2.2 Moment-based scheme—Due to the conservation of density and momentum, 

the moment representation of equation 19 simplifies to a formula for computing the second-

order moments,

Παβ = ρuαuβ − 2ρτcs2Sαβ . (22)

using equation 21 from Latt et al [32]. Moreover, the evaluation of contributions to Sαβ for 

non-boundary lattice sites is simplified since velocities are trivial to recompute from ρ and 

ρu. However, equation 21 cannot be used to solve for density ρ because the post-streaming 

distribution components are not directly available.

In the moment representation, what is known at the boundary after streaming is not 

distribution components, but the partial sums ρ and ρu of the density and momentum. The 

necessary components of these two quantities, ρ and ρuz can easily be rewritten in terms of 

the partition from equation 20:

ρ = ρ0 + ρ1 ρuz = ρ1 . (23)

Consequently, we may reformulate equation 21 in terms of equation 23 to produce a moment 

representation version:

ρ = 1
1 + uz

ρ + ρuz (24)

The resulting implementation of this boundary condition in the moment representation 

offers modest computational advantages over the distribution representation version. Only 

the second-order moments are newly computed at each lattice site, instead of Q new 

distribution components in the distribution representation. Likewise, the evaluation of the 

product ℋαβ
(2):Sαβ is eliminated.
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4 CPU PERFORMANCE RESULTS

4.1 Software and hardware details

In this study, the computational performance of the propagation pattern for the moment 

representation (MR) is compared with the previously mentioned AB and AA distribution 

representation propagation patterns. The AB, AA, and MR methods are implemented in 

HARVEY, a LBMbased scalable application for simulating blood flow in complex vascular 

geometries [35]. Blood flow in vascular geometries is a common setting for assessing 

performance and scalability of LBM implementations (e.g., [36], [37]).

The CPU version of HARVEY uses a array of structures (AoS) data layout and is 

parallelized with MPI and OpenMP. As vascular geometries are typically sparse and 

irregular, load balancing is performed with Metis [38] and an indirect addressing adjacency 

list is used to reduce memory storage requirements. Validation of HARVEY for various 

applications is discussed in previous work (e.g., [18], [39]).

HARVEY runtime performance for the three propagation patterns is measured for 

Newtonian flow in two complex vascular geometries. The necessarily irregular domain 

decomposition of these complex geometries poses a useful test of the robustness and 

flexibility of the MR method. As depicted in figure 4, the aortic and cerebral vasculatures 

have complex shapes with varied vessel diameters. The aortic geometry has one inlet and 

five outlets, while the cerebral geometry has 2 inlets and 11 outlets. The finite difference 

velocity gradient method discussed above is used to enforce a velocity boundary condition 

at inlets and a pressure boundary condition at outlets. The no-slip condition is maintained 

elsewhere on the vessel walls using the halfway bounceback method.

Testing was conducted on two CPU node architectures: Intel Broadwell and IBM Power9. 

The Intel node had two Xeon E5–2699V4 processors, with each processor having 20 cores 

available to the job scheduler and a shared 55 MB last level cache. The IBM node has two 

Power9 22Cs processors, with each processor having 21 cores available to the job scheduler 

and a total of 120 MB last level cache shared between core pairs. Measured memory 

bandwidth on each node from the STREAM’s Copy benchmark [40] is 56.9 GB/s on the 

Broadwell node and 227 GB/s on the Power9 node. Intel and IBM XL compilers were used 

for the Broadwell and Power9 architectures, respectively.

In previous work, we presented a hierarchical roofline model on the Broadwell architecture 

and evaluated the memory bound performance of our algorithm [5]. In the next section, 

we focus on a an application-focused roofline that has proven useful to characterize LBM 

performance in previous studies [41]. Computational performance is measured in MFLUPS 

(million fluid lattice updates per second). Because lattice Boltzmann implementations are 

typically memory bound, optimal performance MFLUPSmax can be estimated by a simple 

function of (1) CPU memory bandwidth BBW in bytes and (2) number of bytes transferred to 

and from memory to perform a fluid lattice update (bytes per FLUP, or B/F), as
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MFLUPSmax = BBW
106 × B/F

. (25)

Table 2 shows the numbers of bytes per FLUP for the three propagation patterns in this 

study using indirect addressing. The corresponding roofline estimates of the MFLUPSmax 

using equation 25 are listed in table 3.

4.2 Node-level performance

Single-node performance is shown for the Broadwell node in figure 5 for the D3Q19 and 

D3Q27 lattices. Excellent agreement between the performance model and the measured 

results is observed for both lattices using the AB and AA propagation patterns. The MR 

pattern also meets the roofline expectations for the D3Q19 lattice, showing the moment 

approach is effective in reducing data motion to and from main memory. Performance 

for the D3Q27 lattices with the MR pattern still greatly exceeds the AA or AB, but falls 

short of the roofline; there are a couple of potential reasons for this comparatively weaker 

performance. First, previous studies have observed slightly worse performance for D3Q27 

than D3Q19 after normalizing by the number of distribution components [42]. Second, 

an alternate data layout such as array of structures (AoS) or array of structure of arrays 

(AoSoA) may deliver superior performance on larger lattices like D3Q27. Nonetheless, 

when averaged over the two geometries, we find performance of MR exceeds that of AA 

by about 56% for D3Q19 and 58% for D3Q27. As the AA propagation pattern is typically 

the most performant LBM scheme on CPUs [41], these speedups represents a significant 

improvement.

The much higher measured bandwidth on the Power9 node enables significantly higher 

bandwidth versus the Broadwell node. While performance does improve, MFLUPS are 

closer to 50–60% of the performance model, as illustrated in figure 6. We expect that a 

difference in threading on the two architectures may account for this difference. On the 

Broadwell node, the two hardware threads on each physical core were used for two OpenMP 

threads per core in HARVEY, which resulted in a 1.8–2x speedup versus using a single 

thread. However, using simultaneous multithreading on the Power9 cores with OpenMP did 

not improve performance. As a result, the Power9 runs were conducted with a single thread 

per core. Additionally, we expect that a different data layout, structure of arrays instead of 

array of structures, may improve performance on Power9. Nonetheless, the MR propagation 

pattern significantly outperforms AA for both lattices, with MFLUPS an average of 31% 

higher for D3Q19 and 43% higher for D3Q27.

On both architectures, simulations for the MR propagation pattern were conducted for a 

range of layer sizes. From this group, the best results for each geometry and lattice were 

used in figure 5 and 6. The dependence of MR performance on layer size is evaluated in the 

next section.
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4.3 Layer size dependence and cache awareness

The MR propagation pattern is cache-aware in the sense that, by setting a maximum cross-

sectional layer area for the block decomposition, the amount of distribution data for the 

sliding window domain can be fixed. However, the amount of distribution data that must 

remain in cache is not only a function of layer size: as noted in table 1, distribution data 

that streams forward across the block interface must also be temporarily stored. Moreover, 

the size of the forward streaming data is non-trivial: as illustrated in figure 3, it is not 

difficult to describe a decomposition where the data for sliding window domain and forward 

streaming have comparable sizes. Particularly for complex geometries, the size of the block 

interface can only be determined by one parameter: the dimension of the domain in which 

the sliding window moves (additionally, in the degenerate single block case, the area of the 

block interface is trivially zero). Accordingly, this section focuses on the two controllable 

aspects of cache awareness: 1) understanding how MR propagation pattern performance 

varies with maximum layer size and 2) considering how the choice of the dimension in 

which the sliding window moves affects distribution data size.

In figures 7 and 8, performance is considered as a function of maximum layer size on the 

Broadwell and Power9 processors, respectively. The HARVEY run configuration has one 

MPI rank per physical core, so the layer size indicated in these figures is the maximum layer 

size (measured in lattice points) for a single MPI rank. We observe that while the different 

geometries and resulting load balances led to modest differences in optimal node-level 

performance, the results of these differences are more evident in this context. The aortic 

geometry on Broadwell obtains near-peak performance over maximum layer sizes of 1500–

3000 lattice points on D3Q19, while sustained best performance for the sparser cerebral 

geometry with that lattice is with 3000–4000 lattice points. A steep drop in performance 

results from larger layer sizes. This overall trend persists for the D3Q27 lattice, albeit with 

the curves being moved to the left due to this lattice having nearly 50% more distribution 

data at each lattice point. Due to the large last level cache on the Power9 node, near-peak 

performance is maintained over a wider interval, with ranges of 2000–7000 and 2000–6000 

lattice points for the D3Q19 and D3Q27 lattices, respectively.

To better understand how the cache size influences performance, it is necessary to consider 

all distribution data, from both the sliding window and forward streaming. In figure 9, 

results from the D3Q19 runs in figure 8 are represented as a function of the total size 

of distribution data. For both geometries, a sharp drop in performance is observed when 

distribution data size exceeds last level cache size. However, while optimal performance for 

the cerebral geometry is maintained almost until the cache capacity is exhausted, the aortic 

geometry’s peak occurs at a somewhat smaller distribution data size.

It was expected that the most efficient configuration would be to have the sliding window 

moving along the longest axis of the domain. Such a configuration minimizes the number 

of blocks necessary for a given maximum layer size and, therefore, the number of times 

recomputation is performed for backward streaming across a block interface. However, 

using the middle or shortest axis for the sliding window has the effect of reducing the size of 

the block interface itself. For small layer sizes, this has the effect of significantly decreasing 

the distribution data size for a given layer size. Given the generous last level cache sizes on 
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the Power9 node, only marginally better performance was observed when using the middle 

or shortest dimension for the sliding window. However, in environments where cache space 

is at a premium, the benefits of these alternative configurations may bemore clear.

4.4 Boundary conditions

The influence of boundary conditions on LBM performance varies considerably. While 

halfway bounceback can be embedded within an indirect addressing scheme, more complex 

conditions must be applied as a kernel separate from streaming. If a more complex 

condition, such as the finite difference velocity gradient method, were applied over the 

full surface of the geometry, the additional memory access and computation will influence 

load balance and overall runtime. Moreover, Feiger et al [33] observed that the choice 

of boundary condition influences time-to-solution not only in terms of the runtime of the 

boundary condition itself, but also in the resolution at which the simulation must be run to 

obtain convergence.

As discussed above, the moment representation of the finite difference boundary condition 

has the potential to improve performance versus distribution representation. Both memory 

accesses and floating point operations are dramatically reduced by performing equation 

22 in the moment representation. In figure 10, the relative time spent applying the inlet 

and outlet conditions for both geometries and lattices is considered. In each case, the MR 

scheme is at least four times faster than AB and AA. The advantage here is two-fold: 

not only does the moment representation provide better performance, but it simplifies 

the implementation and application of the highly stable finite difference velocity gradient 

scheme.

5 MOMENT REPRESENTATION ON GPUS

GPUs have become an important architecture for high performance lattice Boltzmann 

simulations, due to the relative ease with which the method can be ported to GPUs and 

the strong performance of the method on these architectures. However, since LBM remains 

bandwidth bound on GPUs and problem sizes are limited by the size of global memory on 

GPUs, the proposed moment representation method has potential for reducing storage and 

improving time-to-solution on this architecture as well.

Schemes relying heavily on data reuse enabled by cache memory may map poorly to 

GPUs, where the larger number of threads compete to use a smaller amount of cache 

memory. Accordingly, a port of the moment representation method must expose a much 

larger degree of parallelism and make more efficient use of cache, even at the expense of 

other important factors such as minimizing accesses to GPU global memory. The resulting 

port of the moment representation method is similar to that of Matyas for fractional 

step lattice Boltzmann [43], but with the advantage of maintaining the standard lattice 

Boltzmann method without approximating exact streaming. In this section, we describe a 2D 

implementation of the moment representation method on a GPU and discuss performance 

with the D2Q9 lattice.
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5.1 GPU propagation pattern

For a 2D geometry, the computational domain is decomposed in one dimension, as shown 

on the left side of figure 11 for the decomposition in the horizontal dimension. Each 

column from this decomposition is associated with a thread block. Each column is further 

decomposed in the axial dimension into a series of tiles, with the tile being a cross-section 

of the column that is one or more grid points in height. The number of threads in the thread 

block is the sum of the number of lattice points in the tile plus a one lattice point-wide halo 

in the horizontal direction. Consequently, for a tile with dimensions xt× yt, the number of 

threads in the thread block is (xt+ 2) × yt.

At each timestep, thread blocks begin by reading from global memory the moments 

associated with its lattice point in the bottom tile or that tile’s halo. As in the CPU version, 

collision is performed and the post-collision moments are mapped to the distribution 

representation. The distribution components are streamed by writing them to the appropriate 

positions in a shared memory array using direct or indirect addressing. The shape of the 

shared memory array is based on the tile size, along with a one lattice point-wide halo in 

the vertical direction for distribution components streaming up or down out of the tile. The 

resulting amount for shared memory usage per thread block is:

xt ∗ yt + 2 ∗ Q (26)

double precision values. After the thread block has completed streaming and synced, post-

streaming distribution values are available for all lattice points in the tile (albeit not in the 

halo) except for the top layer. Accordingly, moments are recomputed for all lattice points in 

the tile except the top layer and written back to global memory.

As reads from the halo are necessary for streaming and synchronization cannot be used to 

ensure that reads from other thread blocks are performed prior to writes, a single moment 

array cannot naively be used for reading and writing of moments. Moreover, the simple 

alternative – maintaining two copies of the moment array – does not reduce storage versus 

schemes like AA that maintain a single copy of the distribution array. Instead, tiled circular 

array shifting, a scheme originally described for lattice Boltzmann by Dethier et al [44] and 

illustrated on the right side of figure 11, is employed with an extra tile in each column for 

shifting. For a large problem size, this extra tile size is amortized and the effective memory 

usage is M moments, instead of Q distribution components, per lattice site.

After the bottom tile has been updated and written, the thread block proceeds to update the 

tile above until reaching the top of the column. The algorithm remains the same except with 

respect to the top layer in each tile. As the complete post-streaming distribution for this layer 

is not available until the tile above has been streamed into shared memory, it is maintained in 

the shared memory array until being written back to global memory with the tile above it.

The GPU propagation pattern for the moment representation differs in a two important 

respects from its CPU-based counterpart. First, and most notably, instead of updating blocks 

successively and with an explicit dependence from one to the next, each column in the GPU 

version is updated independently. Likewise, the complexity of forward streaming between 

Gounley et al. Page 14

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blocks is eliminated on the GPU, replaced by redundant reads on the tile’s horizontal 

halo. This change exposes sufficient parallelism to make efficient use of the GPU. Second, 

circular array shifting replaces the simple single moment array in the CPU version. While 

not offering a performance advantage on the GPU, array shifting does permit the reduced 

use of global memory. We observe that this GPU propagation pattern could be used on CPUs 

as well and is well-suited for using many-core processors with large numbers of threads per 

MPI rank.

5.2 GPU performance analysis

To understand the performance of the MR scheme on GPUs, it is evaluated against a 

reference implementation of the AB propagation pattern based on the pull scheme [45]. 

Both the AB and MR propagation patterns are implemented in CUDA, have a structure of 

arrays (SoA) memory access pattern, and simulate a two dimensional channel flow with the 

D2Q9 lattice. The finite difference velocity gradient boundary condition from section 3.2 is 

used for the inlet and outlet, while halfway bounceback is applied on the channel walls. In 

this section, we assess performance in MFLUPS on a Nvidia V100 GPU and compare with 

predictions from roofline performance models.

A hierarchical roofline model for the performance of the MR propagation pattern on the 

V100 is shown in figure 12 using the methodology from [46] and Nvidia’s nvprof profiler. 

The arithmetic intensity of LBM algorithms is typically low and this remains true for the 

MR algorithm as well. We observe that, while located in the memory bound region, HBM 

intensity falls somewhat short of the roofline, achieving 1.01 teraflops versus an expected 

1.34. Consequently, it is clear that only about 75% of the available GPU memory bandwidth 

is utilized. Because of the negligible data reuse in LBM, L2 intensity is predictably close 

to HBM, with only a slight decrease in arithmetic intensity. On the other hand, L1 intensity 

should be somewhat lower due to the reuse of the distribution array in shared memory. 

However, we find that this decrease is exacerbated by the large number of bank conflicts 

occurring when storing in shared memory due to the complexity of the LBM streaming 

operations.

As in the previous section for CPUs, we also use an LBM performance model to estimate 

the ideal performance in MFLUPS [47] for both propagation patterns. Based on the 

results of the hierarchical roofline, we expect that this LBM performance model will 

overestimate performance of the MR algorithm due to bank conflicts in shared memory 

and the incomplete use of HBM memory bandwidth. Equation 25 is used with the hardware 

information from table 4 to produce the estimates in table 5. For the AB and MR patterns, 

there are two global memory accesses each timestep, but the sizes of the data being read and 

written are different. For AB, there are Q=9 double precision distribution components per 

lattice site, while MR pattern has M=6 moments per lattice site: density, two momenta, and 

the three unique components of the second order tensor. Based on the bytes/FLUP for each 

scheme and GPU memory bandwidth in bytes, the LBM roofline estimates MFLUPSmax are 

computed in table 5.

Figure 13 graphically illustrates the performance for the AB and MR GPU implementations 

over a range of problem sizes and in comparison with the roofline predictions. The average 
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performance of the AB approach is about 5, 300 MFLUPS, which is approximately 85% 

of the theoretical peak. The average performance of the MR approach using an SoA 

pattern is significantly higher, achieving about 7, 000 MFLUPS, or approximately 75% 

of the theoretical peak performance. This matches the 75% utilization of HBM memory 

bandwidth mentioned above. As data access patterns in GPU memory have an important 

impact on GPU performance, we also consider an alternative array of structures (AoS) 

memory access pattern for the MR scheme. As expected, the AoS pattern significantly 

underperforms SoA for the MR scheme, as has been well-documented for standard 

lattice Boltzmann propagation patterns [45], [47], [48]. Overall, while it achieves a lower 

percentage of theoretical peak performance reflected in the roofline model, the MR 

approach is nonetheless able to achieve a much higher performance than our reference AB 

implementation.

Although we are able to accelerate the execution time of the LBM simulations by using 

the MR approach on GPUs, it is also important to highlight that one of the main targets 

of this approach is to minimize the memory requirements for simulations. For D2Q9, 6 

double precision elements per lattice site are required for the MR approach, versus 9 for 

AA and 18 for AB. This memory reduction is important due to limited GPU memory 

capacity; it enables larger simulations to be run on a single GPU without incurring the 

performance loss associated with communication. Unlike other approaches that reduced the 

memory requirements for LBM simulations on GPUs [49], our MR approach is able to not 

only reduce the memory requirements further but also accelerate the execution of the LBM 

timestep itself.

6 CONCLUSION AND FUTURE WORK

In this paper, the moment representation of the regularized lattice Boltzmann method 

from Vardhan et al. [5] has been extended with node-level CPU performance analysis, 

consideration of applying boundary conditions, and a proofof-concept GPU implementation. 

Using the moment representation, we demonstrated significant speedups on CPU-based flow 

simulations in two vascular geometries versus existing methods. Moreover, we showed how 

an existing LBM boundary condition from the distribution representation can be formulated 

in terms of moments and that this reformulation improves the efficiency of applying 

boundary conditions. Finally, we discussed how the moment representation propagation 

pattern can be ported to run on a GPU and observed that the performance is superior to 

existing implementations while reducing memory usage.

There are several opportunities for further improving the performance of the moment 

representation introduced in this paper. First, constraints on updating lattice points in a 

particular order and a cache-aware propagation pattern are also characteristic of another 

optimization for time-to-solution of LBM simulations: temporal wavefront blocking [50], 

[51]. By performing more than one timestep per load/store, these schemes are able 

to maximize LBM data reuse. It appears that temporal wavefront blocking could be 

combined with the moment representation to further minimize memory bandwidth usage 

on CPUs. Second, additional work is required to more fully understand how memory 

layouts impact performance for the GPU version. We will address optimization of the 

Gounley et al. Page 16

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GPU moment representation scheme and its 3D formulation in future work. Finally, while 

this study considered only projection-based LBM regularization, the overall approach can 

be extended to the increasingly important recursive regularization scheme [52] without 

significant modifications. Recursive regularization offers further improvements in stability 

while maintaining the reduced memory bandwidth requirements of our projection-based 

moment representation.
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Fig. 1. 
(a) Domain decomposition for generic loop blocking, (b) 1D domain decomposition based 

on cross-sectional area of layers of blocks, (c) Division of 1D domain decomposition into 

layers.
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Fig. 2. 
Depiction of sliding window algorithm: Moments from a given layer (orange) undergo 

collision, are mapped to the distribution representation, and written to the sliding window 

domain according to an indirect addressing scheme (peach). Subsequently, moments for 

the previous layer (red) are recomputed in the sliding window domain and written back to 

memory.
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Fig. 3. 
Illustration of layer and block interface dimensions for a simple cuboid example with two 

blocks.
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Fig. 4. 
Aortic (left) and cerebral (right) vasculatures used for hemodynamic simulations.
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Fig. 5. 
Single node performance for AB, AA, and MR propagation patterns on using the D3Q19 

and D3Q27 lattices for the Broadwell node. Dashed black lines indicate estimate from 

roofline model.
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Fig. 6. 
Single node performance for AB, AA, and MR propagation patterns on using the D3Q19 

and D3Q27 lattices for the Power9 node. Dashed black lines indicate estimate from roofline 

model.
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Fig. 7. 
Influence of cache block size on Broadwell node performance.
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Fig. 8. 
Influence of cache block size on Power 9 node performance.
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Fig. 9. 
Performance in MFLUPS as a function of distribution data size per rank on the Power9 

node for the aortic (top) and cerebral (bottom) geometries and the D3Q19 lattice. Vertical 

dotted line indicates approximate last level cache size per physical core on the Power9 node. 

Layer dimension indicates whether the sliding window moves along the longest, middle, or 

shortest axis of computational domain of each rank.
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Fig. 10. 
Runtime of the inlets and outlets conditions for the AA pattern normalized by the MR 

pattern runtime on the Power 9 node.
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Fig. 11. 
(a) Decomposition of geometry into columns, each associated with a thread block. Each 

column is ‘padded’, with the top tile being initially vacant. (b) For a given thread block, 

the post-collision distribution on a tile (orange) is written into shared memory (peach) with 

memory locations determined by streaming. Moments are recomputed for the previous tile 

(purple), but are shifted one tile below when writing back to global memory (red). (c) This 

shift is based on tiled circular array shifting, updated from bottom to top, with the moments 

of each updated tile written to the location beneath it.
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Fig. 12. 
Hierarchical roofline analysis of the MR algorithm on the V100 GPU. Lines for HBM and 

double precision FLOPs are taken from Nvidia Nsight profiler, while those for L1 and L2 

are taken from [46].
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Fig. 13. 
Performance evaluation in MFLUPS of the AB and MR propagation patterns for D2Q9 on a 

V100 GPU as a function of the number of fluid points in the simulation domain.
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TABLE 1

Memory requirements for AB, AA, and moment representation (MR) propagation patterns for single speed 

lattices.

Component AB AA MR

Distribution (double) 2NQ NQ 3BQ + RJK

Moments (double) 0 0 MN

Indirect addressing (int) N(Q-1) N(Q-1) NQ
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TABLE 2

Bytes per fluid lattice update (B/F) for propagation patterns of distribution- and moment-representations using 

indirect addressing, with Q distribution components and M moments in the lattice. In the third and fourth 

columns, the B/F formula in the second column is applied to the D3Q19 and D3Q27 lattices, respectively.

Pattern Bytes/FLUP (B/F) D3Q19 B/F D3Q27 B/F

AB 3Q*double + (Q-1)*int 528 752

AA
2Q*double + 

1
2  (Q-1)*int

340 484

MR 2M*double + Q*int 236 268

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 37

TABLE 3

Estimated optimal MFLUPSmax from roofline performance model for each propagation pattern and CPU 

architecture, based on measured bandwidth and the bytes per FLUP computed in table 2.

Broadwell (MFLUPS) Power9 (MFLUPS)

Pattern D3Q19 D3Q27 D3Q19 D3Q27

AB 108 77 432 303

AA 167 118 671 471

MR 241 212 966 851

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 38

TABLE 4

Summary of the main features of the Nvidia V100 GPU

Frequency 1, 455 MHz

CUDA cores 5, 120

SM count 80

On-chip Mem. Shared: up to 96 KB per SM
L1: up to 96 KB per SM
L2: 6, 144 KB (unified)

Memory HBM2 16 GB

Bandwidth 900 GB/s

Compiler nvcc v11.0.221
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TABLE 5

Estimated optimal MFLUPSmaxfrom LBM roofline performance model for a V100 GPU using direct 

addressing and equation 25.

Pattern Bytes/FLUP (B/F) D2Q9 B/F D2Q9 Roofline

AB 2Q*double 144 6250

MR 2M*double 96 9375
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