
Propagation pattern for moment representation of the lattice
Boltzmann method

John Gounley,
Computational Sciences and Engineering Division at Oak Ridge National Laboratory.

Madhurima Vardhan,
Department of Biomedical Engineering at Duke University.

Erik W. Draeger,
Center for Applied Scientific Computing at Lawrence Livermore National Laboratory.

Pedro Valero-Lara,
Computer Science and Mathematics Division at Oak Ridge National Laboratory.

Shirley V. Moore,
Department of Computer Science at the University of Texas at El Paso.

Amanda Randles
Department of Biomedical Engineering at Duke University.

Abstract

A propagation pattern for the moment representation of the regularized lattice Boltzmann method

(LBM) in three dimensions is presented. Using effectively lossless compression, the simulation

state is stored as a set of moments of the lattice Boltzmann distribution function, instead of

the distribution function itself. An efficient cache-aware propagation pattern for this moment

representation has the effect of substantially reducing both the storage and memory bandwidth

required for LBM simulations. This paper extends recent work with the moment representation by

expanding the performance analysis on central processing unit (CPU) architectures, considering

how boundary conditions are implemented, and demonstrating the effectiveness of the moment

representation on a graphics processing unit (GPU) architecture.

Keywords

Lattice Boltzmann methods; High performance computing; Fluid dynamics

1 INTRODUCTION

Managing data motion remains a key challenge to developing efficient, scalable algorithms

for computational multiphysics. As floating point operations become increasingly

inexpensive, reworking existing algorithms to reduce the required memory bandwidth

becomes an important avenue to improving computational performance. For instance, the

gounleyjp@ornl.gov .

HHS Public Access
Author manuscript
IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

Published in final edited form as:
IEEE Trans Parallel Distrib Syst. 2022 March ; 33(3): 642–653. doi:10.1109/tpds.2021.3098456.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

lattice Boltzmann method (LBM) has been widely applied within computational fluid

dynamics and related domains (e.g., porous media [1], additive manufacturing [2], and

supersonic flows [3]). However, LBM simulations are highly memory-bound on modern

architectures [4]. In our previous work [5], we reformulated a regularized lattice Boltzmann

method to store LBM simulation data in a compressed format based on moments. Combined

with a cache-aware propagation pattern maximizing data reuse, this scheme substantially

reduces the memory and data motion required for LBM. In this companion paper, we extend

the performance analysis of the scheme, discuss integration with boundary conditions and

complex geometries, and port the scheme for graphics processing unit (GPU) architectures.

One approach to reducing LBM’s storage and memory bandwidth requirements involves

developing more efficient propagation patterns. There are two fundamental computational

kernels, collision and streaming, in the LBM timestep. Baseline propagation patterns

for LBM implement these kernels as separate routines. While separate routines enable

individual optimizations of each kernel, the arrangement is not optimal with respect to

overall data motion. To address this, collision and streaming are ‘fused’ into a single kernel

to reduce the amount of data motion to and from memory [6], [7]. Subsequently, a series of

LBM propagation patterns (AA, swap, shift, esoteric twist, etc.) have been developed that

store a single copy of the distribution array [6], [8], [9], [10]. While originally designed to

reduce storage requirements, some of these propagation patterns may also further reduce

data motion by avoiding write allocates [11].

A second approach to reducing data motion and storage for LBM is to simplify the

lattice Boltzmann method itself. Several such implementations store only the density and

momentum variables, analogously to pressure and velocity in Navier-Stokes (e.g., [12], [13],

[14]). This reduction is valid for the special case where the LBM relaxation time τ = 1.

However, for larger Reynolds numbers, an extremely high resolution grid would be required

to maintain a sufficiently small Mach number to ensure stability [14]. A more advanced

version of this idea, introduced by Argentini et al., stores additional moments beyond

density and momentum but is still limited to low Reynolds numbers [15]. Consequently,

while effective at decreasing memory requirements, this approach is less well-suited for

non-laminar flows.

Instead, regularization provides a more general approach to data reduction for the lattice

Boltzmann method. Regularization is an integral component in the formulation of LBM

schemes for finite Knudsen numbers [16] and microfluidic flows [17]. Regularization

has also proven key to maintaining stability at high Reynolds numbers [18], [19]. The

fundamental idea of this projection-based regularization process is to base the number of

degrees of freedom on the moments of the physical system being approximated by LBM,

rather than on the number of distribution components in the LBM lattice [20]. With fewer

such moments than distribution components, it becomes possible to decrease the memory

bandwidth and storage requirements. Moreover, this compression is effectively lossless

because the moments are chosen so as to maintain the same order of approximation of the

physical equation (e.g., Navier-Stokes) being solved with LBM [21].

Gounley et al. Page 2

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this paper, we extend our recent work in developing a moment-based propagation

pattern of the regularized lattice Boltzmann method [5]. We take full advantage of the

simplifications provided by regularized LBM and integrate them into a propagation pattern

that reduces both in-memory storage and memory bandwidth requirements. Along with a

more thorough explanation of the proposed algorithm, this extension paper makes three

additional contributions:

• First, we compare performance of our moment representation algorithm with

two benchmark LBM implementations, measuring performance versus a roofline

model for two central processing unit (CPU) architectures and for two LBM

lattices. Additionally, we evaluate factors associated with the algorithm’s cache

usage and performance.

• Second, we discuss implementing LBM boundary conditions with the moment

representation.

• Third, we show how our moment representation algorithm can be adapted to

GPUs and demonstrate improved performance for 2D simulations.

2 LATTICE BOLTZMANN METHODS

2.1 Single relaxation time LBM

LBM simulations evolve according to the lattice Boltzmann equation [22]. Formulated in

terms of the LBM particle distribution function f and using the single relaxation time (BGK)

collision operator, the equation may be written for each distribution component fi as

fi x+ci, t + 1 = fi(x, t) − 1
τ fi(x, t) − fi

eq(x, t) (1)

for the approximation fi
eq of the Maxwell-Boltzmann equilibrium distribution, discrete

velocities ci of the lattice, relaxation time τ, lattice site x, and timestep t. Equivalently, the

right side of the equation 1 may be rewritten as

fi x+ci, t + 1 = fi
eq(x, t) + 1 − 1

τ fi
neq(x, t) (2)

where the non-equilibrium distribution is computed as fneq = f − feq. It is conceptually

convenient to separate the right and left sides of equation 2 into ‘collision’ and ‘streaming’

kernels, respectively:

fi
∗(x, t) = fi

eq(x, t) + 1 − 1
τ fi

neq(x, t) (3)

fi x+ci, t + 1 = fi
∗(x, t) . (4)

Gounley et al. Page 3

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This distinction is useful because collision is local to the lattice site and nonlinear, while

streaming is non-local but linear. Hydrodynamic variables are computed as moments of

distribution f with respect to Hermite polynomials ℋ:

ℋ(0) = 1 (5)

ℋα
(1) = ciα (6)

ℋαβ
(2) = ciαciβ − cs2δαβ (7)

in which cs is the lattice speed of sound and δ is the Kronecker delta [23]. For a second-

order approximation of the Navier-Stokes equations, the simulation state is characterized by

the first three moments: density ρ, momentum ρu, and the second order tensor Π:

ρ = ∑
i = 1

Q
ℋ(0)fi(x, t) (8)

ρuα = ∑
i = 1

Q
ℋα

(1)fi(x, t) (9)

Παβ = ∑
i = 1

Q
ℋαβ

(2)fi(x, t) . (10)

The second-order approximation of the Maxwell-Boltzmann equilibrium distribution fi
eq is

computed in terms of the hydrodynamic moments ρ and ρu:

fi
eq = ωiρ ℋ(0) + 1

cs2
ℋα

(1)uα + 1
2cs4

ℋαβ
(2)uαuβ (11)

for lattice weights ωi.

2.2 Regularized LBM

The regularized lattice Boltzmann method was introduced by Latt and Chopard [20], [21].

Regularized LBM modifies the BGK collision kernel by projecting the pre-collision non-

equilibrium distribution into the space of Hermite polynomials. This modification effectively

replaces the BGK collision operator with one that still has a single relaxation time, but that

depends only on ρ, u, and Π.

The regularization projection is performed in two stages. First, the non-equilibrium second

order tensor Π(1) is approximated from the non-equilibrium distribution fneqas

Gounley et al. Page 4

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Παβ
(1) = ∑

i = 1

Q
ℋαβ

(2)fi
neq(x, t) . (12)

This is sufficient because the first two moments do not depend on fneq:

∑
i = 1

Q
ℋ(0)fi

neq(x, t) = ∑
i = 1

Q
ℋα

(1)fi
neq(x, t) = 0. (13)

Second, the tensor Παβ
(1) is projected back to distribution space with the equation

fi
(1) = ωi

2cs4
ℋαβ

(2)Παβ
(1)

(14)

where fi
(1) is the non-equilibrium distribution projected onto the Hermite basis. Accordingly,

for regularized LBM, equation 3 is modified to

fi
∗(x, t) = fi

eq(x, t) + 1 − 1
τ fi

(1)(x, t) (15)

and the streaming kernel proceeds unchanged. Like the collision kernel, regularization is

entirely local and does not alter the computational profile beyond introducing a modest

amount of additional computation.

3 MOMENT REPRESENTATION OF REGULARIZED LBM

The three moments ρ, ρu, and Π are sufficient to describe the entire state of the regularized

LBM simulation, interchangeably with the distribution f. For linguistic convenience, we

will refer to the simulation state in terms of distribution f as the distribution representation

and the equivalent simulation state in terms of moments ρ, ρu, and Π as the moment

representation.

The regularized collision kernel can easily be reformulated in terms of the moment

representation, as is already done for the MRT collision kernel [24]. However, the LBM

streaming operation is only defined in terms of the distribution representation. A finite

difference-style approximation of streaming using the moment representation, akin to the

streaming operation in fractional step lattice Boltzmann [25], violates the exact streaming

property that ranks among LBM’s most significant characteristics [26]. Instead, to avoid

modifications to regularized LBM itself, one must map from moment to distribution

representation of the same data to perform the streaming operation, and then back to the

moment representation after streaming has been completed. Equations 8–10 convert from

distribution to moments, while the reverse conversion is performed by the equation:

Gounley et al. Page 5

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fi = ωi ℋ(0)ρ + 1
cs2

ℋα
(1)ρuα + 1

2cs4
ℋαβ

(2)Παβ . (16)

However, moments cannot be computed at a lattice site until streaming at all neighboring

lattice sites is completed, which introduces a requirement for lattice sites to be updated

in a particular order. This requirement is not present in most propagation patterns for the

distribution representation. An additional wrinkle is posed by boundary conditions, as most

LBM boundary conditions are implemented in terms of the distribution representation. In the

next sections, the propagation pattern for CPUs and an approach for implementing boundary

conditions are discussed.

3.1 Propagation pattern for CPU architectures

The propagation pattern for a moment representation of regularized LBM is determined

by two factors. First, as with distribution representations, it is advantageous to store only

a single copy of the moment array. Not only would this reduce storage requirements,

but it would also minimize write allocates for stores if the moments remained in cache.

Second, maintaining a distribution array to facilitate streaming does not adversely impact

performance if the array size is sufficiently small that it remains in cache. Together, these

factors motivated a sliding window algorithm [15].

Decomposing the domain of a given MPI task into a series of ‘blocks’ is a standard strategy

for improving data reuse in LBM. A simple instance of such a block decomposition is

show in figure 1(a). While data reuse in distribution-based LBM propagation patterns is

limited to efficient cache line usage, performance improvements for LBM and related stencil

computation with blocking and tiling schemes are well documented [6], [7], [27].

For this sliding window algorithm, a 1D decomposition is performed such that the cross

sectional area of each block is smaller than a given threshold selected based on the size of

the CPU last level cache, as illustrated in figure 1(b). Within each block, the sliding window

will sequentially perform the LBM update on all points in a layer, from the bottom layer to

the top layer, before moving on the the next block. For each lattice point in a given layer,

the moments {ρ, ρu, Π} are read from memory and collision is performed. Since ρ and

ρuare conserved, collision is only performed on the second order tensor. Consequently, the

equivalent of equations 3 and 15 takes the form:

Παβ
∗ = Παβ − 1

τ Παβ − Παβ
eq

(17)

= ρuαuβ + 1 − 1
τ Παβ

neq
(18)

for equilibrium tensor Παβ
eq = ρuαuβ and non-equilibrium tensor Παβ

neq = Παβ − Παβ
eq . Instead of

being written back to memory, the post-collision moments ρ, ρu, Π∗ are converted from

moment to distribution representation using equation 16. This post-collision distribution data

Gounley et al. Page 6

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is streamed into a distribution array associated with the sliding window domain, according to

a scheme such as direct addressing or an indirect addressing adjacency list.

After streaming a given layer into the sliding window domain, the distribution components

associated with streaming into that layer will not be complete until both the layers

immediately above and below the given layer have also streamed into the sliding window

domain. However, as the layers of the block are being processed from bottom to top,

the layer immediately below the given layer will be completely represented in the sliding

window domain. Accordingly, after performing streaming on a given layer, the subsequent

step will be to recompute the moments on the layer immediately below using equations

8–10. The resulting sliding window algorithm is illustrated in figure 2.

For this propagation pattern, the moments at each lattice point will be read and written

once per timestep, assuming the block size is small enough to avoid write allocates. Further,

the distribution array resides entirely in cache and permits data reuse in distribution space

without additional cost. However, in the typical case of multiple blocks per MPI rank, an

additional challenge arises related to performing streaming across the interface between

blocks. As discussed in [5], the instances of streaming between blocks can be divided into

streaming ‘forward’, from the current block to a block not yet been updated this timestep,

and ‘backward’, from the current block to a previously updated block.

Streaming ‘backward’ across block boundaries is addressed with recomputation: performing

an additional collision operation on those lattice points and computing only those

distribution components that stream into the current block. ‘Forward’ streaming is more

challenging, as the previously applied update to those blocks precludes recomputation.

Instead, distribution components that would stream forward across block boundaries are

identified during preprocessing and they are streamed to a separate array, which is read from

when the block into which they are streaming is updated. The size of this separate array will

be proportional to the area of the interface between blocks.

The memory usage of the propagation pattern for the moment representation (MR) is

assessed relative to two distribution representation LBM propagation patterns:

1. AB pattern: a fused collision and streaming kernel with two copies of the LBM

distribution function.

2. AA pattern: a fused kernel scheme with a single copy of the LBM distribution

function, but different updates for even and odd timesteps.

To compare the memory usage of the moment-based propagation pattern with distribution-

based versions, we consider the simplified case illustrated in figure 3 of a dense cuboid

geometry with I, J, and K points in each dimension, for a total of N=IJK fluid points. It is

divided into 2 blocks with B = IJ
2 per layer of block, and with block interface area of JK.

The lattice has Q distribution components, M moments, and R distribution components able

to stream forward or backward across the block interface (for Q=19 and 27, R=5 and 9,

respectively).

Gounley et al. Page 7

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For the common D3Q19 lattice, table 1 shows that the moment-based propagation pattern’s

M=10 moments for the second-order approximation of the Navier-Stokes equations would

offer a modest savings for the amount of distribution, moment, and indirect addressing

memory stored per lattice site. Instead of 376 bytes/lattice site for AB and 224 for AA,

as few as 156 would be required for MR if the layer and block interface data remained

in cache. For the D3Q27 lattice, the reduced memory cost of the moment representation

becomes more pronounced: 536 bytes per point for AB, 320 for AA, and as few as 188 for

MR.

We observe that, while this study focuses on single speed lattices, regularized lattice

Boltzmann has been extended to multi-speed lattices such as D3Q39 [28]. Two notable

changes occur for multi-speed lattices: more than three layers would be required for the

distribution space window and the inclusion of higher-order moments may result in a less

favorable ratio of Q to M than D3Q19 or D3Q27.

3.2 Boundary conditions

An LBM propagation pattern for the moment representation poses a potential challenge for

implementing boundary conditions because these are typically formulated in terms of the

distribution f. Simple conditions such as halfway bounceback can be embedded directly

into streaming without additional computational complexity. Other boundary conditions

could be applied with the standard distribution representation in the sliding window

domain, after the layer has been completely streamed in but before moments have been

recomputed [5]. However, it would be simpler and more efficient if boundary conditions

could be reformulated in the moment representation. Interest in interpreting LBM boundary

conditions in terms of their moment representation dates to [29] and moment-based LBM

boundary conditions have since become an active research area [30], [31].

It is straightforward to implement such moment-based boundary conditions in the moment

representation, but it is less clear how existing distribution-based boundary conditions

would be reformulated. In this section, we discuss recasting a distribution-based boundary

condition in terms of the moment representation, without reference to the distribution. We

consider the finite difference velocity gradient method from Latt et al [32] imposing a

Dirichlet condition u = u0. We previously implemented this condition for inlets and outlets

of blood flow simulations using the standard distribution representation [33].

3.2.1 Distribution-based scheme—In this condition, each distribution component fi

at the boundary is replaced using the equilibrium distribution fi
eq(ρ, u) and strain rate tensor

Sαβ:

fi = fi
(eq) ρ, u0 − ρωiτ

cs2
ℋαβ

(2):Sαβ, (19)

The strain rate tensor is evaluated using a finite difference method with velocities from

adjacent lattice sites, which are known either from streaming or from the velocity boundary

condition u = u0. However, the unknown density ρ at a straight boundary lattice site is

Gounley et al. Page 8

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computed using the post-streaming components of the distribution as in the Zou-He scheme

[34]. Without loss of generality, let us assume an xy boundary plane with the positive z-unit

vector pointing out of the simulation domain. Borrowing Latt’s simple formulation [21], we

may define partition ρ into

ρl = ∑
i ∣ ciz = l

fi (20)

for l = − 1, 0, and 1. After streaming, ρ0 and ρ1 will be determined and ρ−1 unknown. Since

ρ = ρ−1 + ρ0 + ρ1 and ρuz = ρ1 − ρ−1, then ρ is computed as

ρ = 1
1 + uz

ρ0 + 2ρ1 . (21)

3.2.2 Moment-based scheme—Due to the conservation of density and momentum,

the moment representation of equation 19 simplifies to a formula for computing the second-

order moments,

Παβ = ρuαuβ − 2ρτcs2Sαβ . (22)

using equation 21 from Latt et al [32]. Moreover, the evaluation of contributions to Sαβ for

non-boundary lattice sites is simplified since velocities are trivial to recompute from ρ and

ρu. However, equation 21 cannot be used to solve for density ρ because the post-streaming

distribution components are not directly available.

In the moment representation, what is known at the boundary after streaming is not

distribution components, but the partial sums ρ and ρu of the density and momentum. The

necessary components of these two quantities, ρ and ρuz can easily be rewritten in terms of

the partition from equation 20:

ρ = ρ0 + ρ1 ρuz = ρ1 . (23)

Consequently, we may reformulate equation 21 in terms of equation 23 to produce a moment

representation version:

ρ = 1
1 + uz

ρ + ρuz (24)

The resulting implementation of this boundary condition in the moment representation

offers modest computational advantages over the distribution representation version. Only

the second-order moments are newly computed at each lattice site, instead of Q new

distribution components in the distribution representation. Likewise, the evaluation of the

product ℋαβ
(2):Sαβ is eliminated.

Gounley et al. Page 9

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 CPU PERFORMANCE RESULTS

4.1 Software and hardware details

In this study, the computational performance of the propagation pattern for the moment

representation (MR) is compared with the previously mentioned AB and AA distribution

representation propagation patterns. The AB, AA, and MR methods are implemented in

HARVEY, a LBMbased scalable application for simulating blood flow in complex vascular

geometries [35]. Blood flow in vascular geometries is a common setting for assessing

performance and scalability of LBM implementations (e.g., [36], [37]).

The CPU version of HARVEY uses a array of structures (AoS) data layout and is

parallelized with MPI and OpenMP. As vascular geometries are typically sparse and

irregular, load balancing is performed with Metis [38] and an indirect addressing adjacency

list is used to reduce memory storage requirements. Validation of HARVEY for various

applications is discussed in previous work (e.g., [18], [39]).

HARVEY runtime performance for the three propagation patterns is measured for

Newtonian flow in two complex vascular geometries. The necessarily irregular domain

decomposition of these complex geometries poses a useful test of the robustness and

flexibility of the MR method. As depicted in figure 4, the aortic and cerebral vasculatures

have complex shapes with varied vessel diameters. The aortic geometry has one inlet and

five outlets, while the cerebral geometry has 2 inlets and 11 outlets. The finite difference

velocity gradient method discussed above is used to enforce a velocity boundary condition

at inlets and a pressure boundary condition at outlets. The no-slip condition is maintained

elsewhere on the vessel walls using the halfway bounceback method.

Testing was conducted on two CPU node architectures: Intel Broadwell and IBM Power9.

The Intel node had two Xeon E5–2699V4 processors, with each processor having 20 cores

available to the job scheduler and a shared 55 MB last level cache. The IBM node has two

Power9 22Cs processors, with each processor having 21 cores available to the job scheduler

and a total of 120 MB last level cache shared between core pairs. Measured memory

bandwidth on each node from the STREAM’s Copy benchmark [40] is 56.9 GB/s on the

Broadwell node and 227 GB/s on the Power9 node. Intel and IBM XL compilers were used

for the Broadwell and Power9 architectures, respectively.

In previous work, we presented a hierarchical roofline model on the Broadwell architecture

and evaluated the memory bound performance of our algorithm [5]. In the next section,

we focus on a an application-focused roofline that has proven useful to characterize LBM

performance in previous studies [41]. Computational performance is measured in MFLUPS

(million fluid lattice updates per second). Because lattice Boltzmann implementations are

typically memory bound, optimal performance MFLUPSmax can be estimated by a simple

function of (1) CPU memory bandwidth BBW in bytes and (2) number of bytes transferred to

and from memory to perform a fluid lattice update (bytes per FLUP, or B/F), as

Gounley et al. Page 10

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

MFLUPSmax = BBW
106 × B/F

. (25)

Table 2 shows the numbers of bytes per FLUP for the three propagation patterns in this

study using indirect addressing. The corresponding roofline estimates of the MFLUPSmax

using equation 25 are listed in table 3.

4.2 Node-level performance

Single-node performance is shown for the Broadwell node in figure 5 for the D3Q19 and

D3Q27 lattices. Excellent agreement between the performance model and the measured

results is observed for both lattices using the AB and AA propagation patterns. The MR

pattern also meets the roofline expectations for the D3Q19 lattice, showing the moment

approach is effective in reducing data motion to and from main memory. Performance

for the D3Q27 lattices with the MR pattern still greatly exceeds the AA or AB, but falls

short of the roofline; there are a couple of potential reasons for this comparatively weaker

performance. First, previous studies have observed slightly worse performance for D3Q27

than D3Q19 after normalizing by the number of distribution components [42]. Second,

an alternate data layout such as array of structures (AoS) or array of structure of arrays

(AoSoA) may deliver superior performance on larger lattices like D3Q27. Nonetheless,

when averaged over the two geometries, we find performance of MR exceeds that of AA

by about 56% for D3Q19 and 58% for D3Q27. As the AA propagation pattern is typically

the most performant LBM scheme on CPUs [41], these speedups represents a significant

improvement.

The much higher measured bandwidth on the Power9 node enables significantly higher

bandwidth versus the Broadwell node. While performance does improve, MFLUPS are

closer to 50–60% of the performance model, as illustrated in figure 6. We expect that a

difference in threading on the two architectures may account for this difference. On the

Broadwell node, the two hardware threads on each physical core were used for two OpenMP

threads per core in HARVEY, which resulted in a 1.8–2x speedup versus using a single

thread. However, using simultaneous multithreading on the Power9 cores with OpenMP did

not improve performance. As a result, the Power9 runs were conducted with a single thread

per core. Additionally, we expect that a different data layout, structure of arrays instead of

array of structures, may improve performance on Power9. Nonetheless, the MR propagation

pattern significantly outperforms AA for both lattices, with MFLUPS an average of 31%

higher for D3Q19 and 43% higher for D3Q27.

On both architectures, simulations for the MR propagation pattern were conducted for a

range of layer sizes. From this group, the best results for each geometry and lattice were

used in figure 5 and 6. The dependence of MR performance on layer size is evaluated in the

next section.

Gounley et al. Page 11

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.3 Layer size dependence and cache awareness

The MR propagation pattern is cache-aware in the sense that, by setting a maximum cross-

sectional layer area for the block decomposition, the amount of distribution data for the

sliding window domain can be fixed. However, the amount of distribution data that must

remain in cache is not only a function of layer size: as noted in table 1, distribution data

that streams forward across the block interface must also be temporarily stored. Moreover,

the size of the forward streaming data is non-trivial: as illustrated in figure 3, it is not

difficult to describe a decomposition where the data for sliding window domain and forward

streaming have comparable sizes. Particularly for complex geometries, the size of the block

interface can only be determined by one parameter: the dimension of the domain in which

the sliding window moves (additionally, in the degenerate single block case, the area of the

block interface is trivially zero). Accordingly, this section focuses on the two controllable

aspects of cache awareness: 1) understanding how MR propagation pattern performance

varies with maximum layer size and 2) considering how the choice of the dimension in

which the sliding window moves affects distribution data size.

In figures 7 and 8, performance is considered as a function of maximum layer size on the

Broadwell and Power9 processors, respectively. The HARVEY run configuration has one

MPI rank per physical core, so the layer size indicated in these figures is the maximum layer

size (measured in lattice points) for a single MPI rank. We observe that while the different

geometries and resulting load balances led to modest differences in optimal node-level

performance, the results of these differences are more evident in this context. The aortic

geometry on Broadwell obtains near-peak performance over maximum layer sizes of 1500–

3000 lattice points on D3Q19, while sustained best performance for the sparser cerebral

geometry with that lattice is with 3000–4000 lattice points. A steep drop in performance

results from larger layer sizes. This overall trend persists for the D3Q27 lattice, albeit with

the curves being moved to the left due to this lattice having nearly 50% more distribution

data at each lattice point. Due to the large last level cache on the Power9 node, near-peak

performance is maintained over a wider interval, with ranges of 2000–7000 and 2000–6000

lattice points for the D3Q19 and D3Q27 lattices, respectively.

To better understand how the cache size influences performance, it is necessary to consider

all distribution data, from both the sliding window and forward streaming. In figure 9,

results from the D3Q19 runs in figure 8 are represented as a function of the total size

of distribution data. For both geometries, a sharp drop in performance is observed when

distribution data size exceeds last level cache size. However, while optimal performance for

the cerebral geometry is maintained almost until the cache capacity is exhausted, the aortic

geometry’s peak occurs at a somewhat smaller distribution data size.

It was expected that the most efficient configuration would be to have the sliding window

moving along the longest axis of the domain. Such a configuration minimizes the number

of blocks necessary for a given maximum layer size and, therefore, the number of times

recomputation is performed for backward streaming across a block interface. However,

using the middle or shortest axis for the sliding window has the effect of reducing the size of

the block interface itself. For small layer sizes, this has the effect of significantly decreasing

the distribution data size for a given layer size. Given the generous last level cache sizes on

Gounley et al. Page 12

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the Power9 node, only marginally better performance was observed when using the middle

or shortest dimension for the sliding window. However, in environments where cache space

is at a premium, the benefits of these alternative configurations may bemore clear.

4.4 Boundary conditions

The influence of boundary conditions on LBM performance varies considerably. While

halfway bounceback can be embedded within an indirect addressing scheme, more complex

conditions must be applied as a kernel separate from streaming. If a more complex

condition, such as the finite difference velocity gradient method, were applied over the

full surface of the geometry, the additional memory access and computation will influence

load balance and overall runtime. Moreover, Feiger et al [33] observed that the choice

of boundary condition influences time-to-solution not only in terms of the runtime of the

boundary condition itself, but also in the resolution at which the simulation must be run to

obtain convergence.

As discussed above, the moment representation of the finite difference boundary condition

has the potential to improve performance versus distribution representation. Both memory

accesses and floating point operations are dramatically reduced by performing equation

22 in the moment representation. In figure 10, the relative time spent applying the inlet

and outlet conditions for both geometries and lattices is considered. In each case, the MR

scheme is at least four times faster than AB and AA. The advantage here is two-fold:

not only does the moment representation provide better performance, but it simplifies

the implementation and application of the highly stable finite difference velocity gradient

scheme.

5 MOMENT REPRESENTATION ON GPUS

GPUs have become an important architecture for high performance lattice Boltzmann

simulations, due to the relative ease with which the method can be ported to GPUs and

the strong performance of the method on these architectures. However, since LBM remains

bandwidth bound on GPUs and problem sizes are limited by the size of global memory on

GPUs, the proposed moment representation method has potential for reducing storage and

improving time-to-solution on this architecture as well.

Schemes relying heavily on data reuse enabled by cache memory may map poorly to

GPUs, where the larger number of threads compete to use a smaller amount of cache

memory. Accordingly, a port of the moment representation method must expose a much

larger degree of parallelism and make more efficient use of cache, even at the expense of

other important factors such as minimizing accesses to GPU global memory. The resulting

port of the moment representation method is similar to that of Matyas for fractional

step lattice Boltzmann [43], but with the advantage of maintaining the standard lattice

Boltzmann method without approximating exact streaming. In this section, we describe a 2D

implementation of the moment representation method on a GPU and discuss performance

with the D2Q9 lattice.

Gounley et al. Page 13

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.1 GPU propagation pattern

For a 2D geometry, the computational domain is decomposed in one dimension, as shown

on the left side of figure 11 for the decomposition in the horizontal dimension. Each

column from this decomposition is associated with a thread block. Each column is further

decomposed in the axial dimension into a series of tiles, with the tile being a cross-section

of the column that is one or more grid points in height. The number of threads in the thread

block is the sum of the number of lattice points in the tile plus a one lattice point-wide halo

in the horizontal direction. Consequently, for a tile with dimensions xt× yt, the number of

threads in the thread block is (xt+ 2) × yt.

At each timestep, thread blocks begin by reading from global memory the moments

associated with its lattice point in the bottom tile or that tile’s halo. As in the CPU version,

collision is performed and the post-collision moments are mapped to the distribution

representation. The distribution components are streamed by writing them to the appropriate

positions in a shared memory array using direct or indirect addressing. The shape of the

shared memory array is based on the tile size, along with a one lattice point-wide halo in

the vertical direction for distribution components streaming up or down out of the tile. The

resulting amount for shared memory usage per thread block is:

xt ∗ yt + 2 ∗ Q (26)

double precision values. After the thread block has completed streaming and synced, post-

streaming distribution values are available for all lattice points in the tile (albeit not in the

halo) except for the top layer. Accordingly, moments are recomputed for all lattice points in

the tile except the top layer and written back to global memory.

As reads from the halo are necessary for streaming and synchronization cannot be used to

ensure that reads from other thread blocks are performed prior to writes, a single moment

array cannot naively be used for reading and writing of moments. Moreover, the simple

alternative – maintaining two copies of the moment array – does not reduce storage versus

schemes like AA that maintain a single copy of the distribution array. Instead, tiled circular

array shifting, a scheme originally described for lattice Boltzmann by Dethier et al [44] and

illustrated on the right side of figure 11, is employed with an extra tile in each column for

shifting. For a large problem size, this extra tile size is amortized and the effective memory

usage is M moments, instead of Q distribution components, per lattice site.

After the bottom tile has been updated and written, the thread block proceeds to update the

tile above until reaching the top of the column. The algorithm remains the same except with

respect to the top layer in each tile. As the complete post-streaming distribution for this layer

is not available until the tile above has been streamed into shared memory, it is maintained in

the shared memory array until being written back to global memory with the tile above it.

The GPU propagation pattern for the moment representation differs in a two important

respects from its CPU-based counterpart. First, and most notably, instead of updating blocks

successively and with an explicit dependence from one to the next, each column in the GPU

version is updated independently. Likewise, the complexity of forward streaming between

Gounley et al. Page 14

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

blocks is eliminated on the GPU, replaced by redundant reads on the tile’s horizontal

halo. This change exposes sufficient parallelism to make efficient use of the GPU. Second,

circular array shifting replaces the simple single moment array in the CPU version. While

not offering a performance advantage on the GPU, array shifting does permit the reduced

use of global memory. We observe that this GPU propagation pattern could be used on CPUs

as well and is well-suited for using many-core processors with large numbers of threads per

MPI rank.

5.2 GPU performance analysis

To understand the performance of the MR scheme on GPUs, it is evaluated against a

reference implementation of the AB propagation pattern based on the pull scheme [45].

Both the AB and MR propagation patterns are implemented in CUDA, have a structure of

arrays (SoA) memory access pattern, and simulate a two dimensional channel flow with the

D2Q9 lattice. The finite difference velocity gradient boundary condition from section 3.2 is

used for the inlet and outlet, while halfway bounceback is applied on the channel walls. In

this section, we assess performance in MFLUPS on a Nvidia V100 GPU and compare with

predictions from roofline performance models.

A hierarchical roofline model for the performance of the MR propagation pattern on the

V100 is shown in figure 12 using the methodology from [46] and Nvidia’s nvprof profiler.

The arithmetic intensity of LBM algorithms is typically low and this remains true for the

MR algorithm as well. We observe that, while located in the memory bound region, HBM

intensity falls somewhat short of the roofline, achieving 1.01 teraflops versus an expected

1.34. Consequently, it is clear that only about 75% of the available GPU memory bandwidth

is utilized. Because of the negligible data reuse in LBM, L2 intensity is predictably close

to HBM, with only a slight decrease in arithmetic intensity. On the other hand, L1 intensity

should be somewhat lower due to the reuse of the distribution array in shared memory.

However, we find that this decrease is exacerbated by the large number of bank conflicts

occurring when storing in shared memory due to the complexity of the LBM streaming

operations.

As in the previous section for CPUs, we also use an LBM performance model to estimate

the ideal performance in MFLUPS [47] for both propagation patterns. Based on the

results of the hierarchical roofline, we expect that this LBM performance model will

overestimate performance of the MR algorithm due to bank conflicts in shared memory

and the incomplete use of HBM memory bandwidth. Equation 25 is used with the hardware

information from table 4 to produce the estimates in table 5. For the AB and MR patterns,

there are two global memory accesses each timestep, but the sizes of the data being read and

written are different. For AB, there are Q=9 double precision distribution components per

lattice site, while MR pattern has M=6 moments per lattice site: density, two momenta, and

the three unique components of the second order tensor. Based on the bytes/FLUP for each

scheme and GPU memory bandwidth in bytes, the LBM roofline estimates MFLUPSmax are

computed in table 5.

Figure 13 graphically illustrates the performance for the AB and MR GPU implementations

over a range of problem sizes and in comparison with the roofline predictions. The average

Gounley et al. Page 15

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performance of the AB approach is about 5, 300 MFLUPS, which is approximately 85%

of the theoretical peak. The average performance of the MR approach using an SoA

pattern is significantly higher, achieving about 7, 000 MFLUPS, or approximately 75%

of the theoretical peak performance. This matches the 75% utilization of HBM memory

bandwidth mentioned above. As data access patterns in GPU memory have an important

impact on GPU performance, we also consider an alternative array of structures (AoS)

memory access pattern for the MR scheme. As expected, the AoS pattern significantly

underperforms SoA for the MR scheme, as has been well-documented for standard

lattice Boltzmann propagation patterns [45], [47], [48]. Overall, while it achieves a lower

percentage of theoretical peak performance reflected in the roofline model, the MR

approach is nonetheless able to achieve a much higher performance than our reference AB

implementation.

Although we are able to accelerate the execution time of the LBM simulations by using

the MR approach on GPUs, it is also important to highlight that one of the main targets

of this approach is to minimize the memory requirements for simulations. For D2Q9, 6

double precision elements per lattice site are required for the MR approach, versus 9 for

AA and 18 for AB. This memory reduction is important due to limited GPU memory

capacity; it enables larger simulations to be run on a single GPU without incurring the

performance loss associated with communication. Unlike other approaches that reduced the

memory requirements for LBM simulations on GPUs [49], our MR approach is able to not

only reduce the memory requirements further but also accelerate the execution of the LBM

timestep itself.

6 CONCLUSION AND FUTURE WORK

In this paper, the moment representation of the regularized lattice Boltzmann method

from Vardhan et al. [5] has been extended with node-level CPU performance analysis,

consideration of applying boundary conditions, and a proofof-concept GPU implementation.

Using the moment representation, we demonstrated significant speedups on CPU-based flow

simulations in two vascular geometries versus existing methods. Moreover, we showed how

an existing LBM boundary condition from the distribution representation can be formulated

in terms of moments and that this reformulation improves the efficiency of applying

boundary conditions. Finally, we discussed how the moment representation propagation

pattern can be ported to run on a GPU and observed that the performance is superior to

existing implementations while reducing memory usage.

There are several opportunities for further improving the performance of the moment

representation introduced in this paper. First, constraints on updating lattice points in a

particular order and a cache-aware propagation pattern are also characteristic of another

optimization for time-to-solution of LBM simulations: temporal wavefront blocking [50],

[51]. By performing more than one timestep per load/store, these schemes are able

to maximize LBM data reuse. It appears that temporal wavefront blocking could be

combined with the moment representation to further minimize memory bandwidth usage

on CPUs. Second, additional work is required to more fully understand how memory

layouts impact performance for the GPU version. We will address optimization of the

Gounley et al. Page 16

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GPU moment representation scheme and its 3D formulation in future work. Finally, while

this study considered only projection-based LBM regularization, the overall approach can

be extended to the increasingly important recursive regularization scheme [52] without

significant modifications. Recursive regularization offers further improvements in stability

while maintaining the reduced memory bandwidth requirements of our projection-based

moment representation.

ACKNOWLEDGMENTS

This work was supported by the LDRD Program of Oak Ridge National Laboratory, managed by UT-Battelle,
LLC. Research reported in this publication was supported by the National Institutes of Health under award number
1U01CA253511. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health. This work was also supported by American Heart Association
Predoctoral Fellowship and ACM/IEEE-CS George Michael Memorial High Performance Computing Fellowship.
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC05-00OR22725. This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so,
for United States Government purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

Biography

John Gounleyis a computational scientist in the Biostatistics and Multiscale Systems

Group within the Computational Sciences and Engineering Division at Oak Ridge National

Laboratory. He received a PhD in computational and applied mathematics from Old

Dominion University in 2014. His research focuses on algorithms and scalability for

biomedical simulations and data.

Madhurima Vardhan is a PhD candidate at the Department of Biomedical Engineering

at Duke University. She received her MS degree in Biomedical Engineering from Duke

University in 2015. Her current research activities focus on studying cardiovascular

diseases by simulating underlying arterial physiology with 3D patientspecific simulations

on leadership-scale supercomputers.

Gounley et al. Page 17

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

Erik W. Draeger is the Deputy Director of Application Development for the Exascale

Computing Project, as well as the Scientific Computing group leader at the Center for

Applied Scientific Computing (CASC) at Lawrence Livermore National Laboratory. He

received a PhD in theoretical physics from the University of Illinois, Urbana-Champaign

in 2001 and has over a decade of experience developing scientific applications to achieve

maximum scalability and time to solution on next-generation architectures.

Pedro Valero-Lara received his B.S. and M.S. degree in computer science from the

Universidad of Castilla-La Mancha (Spain), in 2009 and 2010, respectively, and the Ph.D.

degree in computer science and applied mathematics from the Complutense University

of Madrid (Spain) in 2015. Currently, he is a Computer Scientist at Oak Ridge National

Laboratory (ORNL). He was Senior Research Engineer at Cray, where he led the efforts of

the Cray LibSci-ACC library. Also, he was a Recognized Researcher and the founder and

PI of the Math Libraries unit at the Barcelona Supercomputing Center (BSC) in Spain. His

research interest includes high performance and scientific computing.

Shirley V. Moore received her Ph.D. in Computer Sciences from Purdue University in

1990. She is currently an Associate Professor in the Computer Science Department at

the University of Texas at El Paso. She has previously been a researcher at Oak Ridge

National Laboratory and at the Innovative Computing Laboratory at the University of

Tennessee. Her research interests are in the area of performance analysis and optimization

for heterogeneous high performance computing systems, and she has published over fifty

peer-reviewed publications in this area. She has participated in several areas of the U.S.

Department of Energy Exascale Computing Project, including hardware evaluation, proxy

applications, application assessment, and GAMESS computational chemistry project.

Gounley et al. Page 18

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Amanda Randlesis the Alfred Winborne and Victoria Stover Mordecai Assistant Professor

of Biomedical Sciences at Duke University. She received her Ph.D. in Applied Physics and

Master’s Degree in Computer Science from Harvard University. She obtained her B.A. in

Computer Science and Physics from Duke University. Her research interests include high

performance computing, scientific computing, computational fluid dynamics, and modeling

biomedical phenomena.

REFERENCES

[1]. Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, and Nieken U, “Three-dimensional lattice
Boltzmann simulations of high density ratio two-phase flows in porous media,” Computers &
Mathematics with Applications, vol. 75, no. 7, pp. 2445–2465, 2018.

[2]. Klassen A, Scharowsky T, and Korner C, “Evaporation model¨ for beam based additive
manufacturing using free surface lattice Boltzmann methods,” Journal of Physics D: Applied
Physics, vol. 47, no. 27, p. 275303, 2014.

[3]. Latt J, Coreixas C, Beny J, and Parmigiani A, “Efficient supersonic flow simulations using lattice
Boltzmann methods based on numerical equilibria,” Philosophical Transactions of the Royal
Society A, vol. 378, no. 2175, p. 20190559, 2020.

[4]. Succi S, Amati G, Bernaschi M, Falcucci G, Lauricella M, and Montessori A, “Towards exascale
lattice Boltzmann computing,” Comput. Fluids, 2019.

[5]. Vardhan M, Gounley J, Hegele LA, Draeger EW, and Randles A, “Moment representation in the
lattice Boltzmann method on massively parallel hardware,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2019,
p. 1.

[6]. Pohl T, Kowarschik M, Wilke J, Iglberger K, and Rude U, ¨ “Optimization and profiling of the
cache performance of parallel lattice Boltzmann codes,” Parallel Process. Lett, vol. 13, no. 04,
pp. 549–560, 2003.

[7]. Wellein G, Zeiser T, Hager G, and Donath S, “On the single processor performance of simple
lattice Boltzmann kernels,” Comput. Fluids, vol. 35, no. 8–9, pp. 910–919, 2006.

[8]. Mattila K, Hyvaluoma J, Rossi T, Aspn M¨ as, and J. Westerholm, ¨ “An efficient swap algorithm
for the lattice Boltzmann method,” Comput. Phys. Commun, vol. 176, no. 3, pp. 200–210, 2007.

[9]. Bailey P, Myre J, Walsh SD, Lilja DJ, and Saar MO, “Accelerating lattice Boltzmann fluid
flow simulations using graphics processors,” in International Conference on Parallel Processing.
IEEE, 2009, pp. 550–557.

[10]. Geier M. and Schoenherr M, “Esoteric twist: an efficient inplace streaming algorithmus for the
lattice Boltzmann method on massively parallel hardware,” Computation, vol. 5, no. 2, p. 19,
2017.

[11]. Wittmann M, Zeiser T, Hager G, and Wellein G, “Comparison of different propagation steps for
lattice Boltzmann methods,” Comput. Math. Appl, vol. 65, no. 6, pp. 924–935, 2013.

[12]. Martys NS and Hagedorn JG, “Multiscale modeling of fluid transport in heterogeneous materials
using discrete Boltzmann methods,” Mater. Struct, vol. 35, no. 10, pp. 650–658, 2002.

[13]. Vidal D, Roy R, and Bertrand F, “A parallel workload balanced and memory efficient lattice-
Boltzmann algorithm with single unit BGK relaxation time for laminar Newtonian flows,”
Comput. Fluids, vol. 39, no. 8, pp. 1411–1423, 2010.

[14]. Matyka M, “Memory-efficient lattice Boltzmann method for low Reynolds number flows,” arXiv
preprint arXiv:1912.09327, 2019.

[15]. Argentini R, Bakker A, and Lowe C, “Efficiently using memory in lattice Boltzmann
simulations,” Future Gener. Comp. Sy, vol. 20, no. 6, pp. 973–980, 2004.

[16]. Succi S, “Lattice Boltzmann beyond Navier-Stokes: where do we stand?” in AIP Conference
Proceedings, vol. 1786, no. 1. AIP Publishing, 2016, p. 030001.

Gounley et al. Page 19

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[17]. Montessori A, Lauricella M, La Rocca M, Succi S, Stolovicki E, Ziblat R, and Weitz
D, “Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds
microfluidics flows,” Comput. Fluids, vol. 167, pp. 33–39, 2018.

[18]. Hegele L Jr, Scagliarini A, Sbragaglia M, Mattila K, Philippi P, Puleri D, Gounley J, and Randles
A, “High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method,” Phys.
Rev. E, vol. 98, no. 4, p. 043302, 2018.

[19]. Mattila KK, Philippi PC, and Hegele LA Jr, “High-order regularization in lattice-Boltzmann
equations,” Phys. Fluids, vol. 29, no. 4, p. 046103, 2017.

[20]. Latt J. and Chopard B, “Lattice Boltzmann method with regularized pre-collision distribution
functions,” Math. Comput. Simul, vol. 72, no. 2–6, pp. 165–168, 2006.

[21]. Latt J, “Hydrodynamic limit of lattice Boltzmann equations,” Ph.D. dissertation, University of
Geneva, 2007.

[22]. Kruger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, ¨ and Viggen EM, “The lattice
Boltzmann method,” Springer International Publishing, vol. 10, no. 978–3, pp. 4–15, 2017.

[23]. Coreixas C, Chopard B, and Latt J, “Comprehensive comparison of collision models in the
lattice Boltzmann framework: Theoretical investigations,” Physical Review E, vol. 100, no. 3, p.
033305, 2019.

[24]. d’Humieres D, Ginzburg I, Krafczyk M, Lallemand P, and L.-S.` Luo, “Multiple–relaxation–time
lattice Boltzmann models in three dimensions,” Philos. Trans. R. Soc. A, vol. 360, no. 1792, pp.
437–451, 2002.

[25]. Shu C, Niu X, Chew Y-T, and Cai Q, “A fractional step lattice Boltzmann method for simulating
high Reynolds number flows,” Math. Comput. Simul, vol. 72, no. 2–6, pp. 201–205, 2006.

[26]. Succi S, “Lattice Boltzmann 2038,” EPL (Europhysics Letters), vol. 109, no. 5, p. 50001, 2015.

[27]. Williams S, Carter J, Oliker L, Shalf J, and Yelick K, “Lattice Boltzmann simulation optimization
on leading multicore platforms,” in 2008 IEEE International Symposium on Parallel and
Distributed Processing. IEEE, 2008, pp. 1–14.

[28]. Zhang R, Shan X, and Chen H, “Efficient kinetic method for fluid simulation beyond the
Navier-Stokes equation,” Phys Rev E, vol. 74, no. 4, p. 046703, 2006.

[29]. Bennett S, Asinari P, and Dellar PJ, “A lattice Boltzmann model for diffusion of binary gas
mixtures that includes diffusion slip,” Int. J. Numer. Meth. Fl, vol. 69, no. 1, pp. 171–189, 2012.

[30]. Allen R. and Reis T, “Moment-based boundary conditions for lattice Boltzmann simulations of
natural convection in cavities,” Prog. Comput. Fluid Dy, vol. 16, no. 4, pp. 216–231, 2016.

[31]. Krastins I, Kao A, Pericleous K, and Reis T, “Moment-based boundary conditions for straight
on-grid boundaries in three dimensional lattice Boltzmann simulations,” Int. J. Numer. Methods
Fluids, 2020.

[32]. Latt J, Chopard B, Malaspinas O, Deville M, and Michler A, “Straight velocity boundaries in the
lattice Boltzmann method,” Phys. Rev. E, vol. 77, no. 5, p. 056703, 2008.

[33]. Feiger B, Vardhan M, Gounley J, Mortensen M, Nair P, Chaudhury R, Frakes D, and Randles
A, “Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in
image-derived vasculature,” Int. J. Numer. Method Biomed. Eng, vol. 35, no. 6, p. e3198, 2019.

[34]. Zou Q. and He X, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK
model,” Phys. Fluids, vol. 9, no. 6, pp. 1591–1598, 1997.

[35]. Randles A, Kale V, Hammond J, Gropp W, and Kaxiras E, “Performance analysis of the lattice
Boltzmann model beyond Navier-Stokes,” in Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on. IEEE, 2013, pp. 1063–1074.

[36]. Godenschwager C, Schornbaum F, Bauer M, Kostler H, and¨ Rude U, “A framework for hybrid
parallel flow simulations with¨ a trillion cells in complex geometries,” in SC’13: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 2013, pp. 1–12.

[37]. Randles A, Draeger EW, Oppelstrup T, Krauss L, and Gunnels JA, “Massively parallel models
of the human circulatory system,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2015, p. 1.

[38]. Karypis G. and Kumar V, “A fast and high quality multilevel scheme for partitioning irregular
graphs,” SIAM J. Sci. Comput, vol. 20, no. 1, pp. 359–392, 1998.

Gounley et al. Page 20

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[39]. Gounley J, Chaudhury R, Vardhan M, Driscoll M, Pathangey G, Winarta K, Ryan J, Frakes
D, and Randles A, “Does the degree of coarctation of the aorta influence wall shear stress
focal heterogeneity?” in 2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2016, pp. 3429–3432.

[40]. McCalpin JD et al. , “Memory bandwidth and machine balance in current high performance
computers,” IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
newsletter, vol. 1995, pp. 19–25, 1995.

[41]. Wittmann M, Haag V, Zeiser T, Kostler H, and Wellein G, “Lattice Boltzmann benchmark kernels
as a testbed for performance analysis,” Comput. Fluids, vol. 172, pp. 582–592, 2018.

[42]. Shet AG, Sorathiya SH, Krithivasan S, Deshpande AM, Kaul B, Sherlekar SD, and Ansumali S,
“Data structure and movement for lattice-based simulations,” Physical Review E, vol. 88, no. 1,
p. 013314, 2013.

[43]. Matyas A, “Fractional step lattice Boltzmann methods with coarse corrective steps,” Comput.
Fluids, vol. 187, pp. 60–68, 2019.

[44]. Dethier G, de Marneffe P-A, and Marchot P, “Lattice Boltzmann simulation code optimization
based on constant-time circular array shifting,” Procedia Comput. Sci, vol. 4, pp. 1004–1013,
2011.

[45]. Valero-Lara P, Pinelli A, and Prieto-Mat´ıas M, “Accelerating solid-fluid interaction using
lattice-Boltzmann and immersed boundary coupled simulations on heterogeneous platforms,”
in Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns,
Queensland, Australia, 10–12 June, 2014, ser. Procedia Computer Science, vol. 29. Elsevier,
2014, pp. 50–61.

[46]. Yang C, Kurth T, and Williams S, “Hierarchical roofline analysis for gpus: Accelerating
performance optimization for the nersc9 perlmutter system,” Concurrency and Computation:
Practice and Experience, vol. 32, no. 20, p. e5547, 2020.

[47]. Valero-Lara P, Igual FD, Prieto-Mat´ıas M, Pinelli A, and Favier J, “Accelerating fluid-solid
simulations (lattice-Boltzmann & immersed-boundary) on heterogeneous architectures,” J.
Comput. Sci, vol. 10, pp. 249–261, 2015.

[48]. Herschlag G, Lee S, Vetter JS, and Randles A, “GPU data access on complex geometries
for D3Q19 lattice Boltzmann method,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2018, pp. 825–834.

[49]. Valero-Lara P, “Reducing memory requirements for large size LBM simulations on GPUs,”
Concurr. Comput. Pract. Exp, vol. 29, no. 24, 2017.

[50]. Wellein G, Hager G, Zeiser T, Wittmann M, and Fehske H, “Efficient temporal blocking for
stencil computations by multicoreaware wavefront parallelization,” in 2009 33rd Annual IEEE
International Computer Software and Applications Conference, vol. 1. IEEE, 2009, pp. 579–586.

[51]. Fu Y, Li F, Song F, and Zhu L, “Designing a parallel memoryaware lattice Boltzmann algorithm
on manycore systems,” in 2018 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). IEEE, 2018, pp. 97–106.

[52]. Malaspinas O, “Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity
and regularization,” arXiv preprint arXiv:1505.06900, 2015.

Gounley et al. Page 21

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
(a) Domain decomposition for generic loop blocking, (b) 1D domain decomposition based

on cross-sectional area of layers of blocks, (c) Division of 1D domain decomposition into

layers.

Gounley et al. Page 22

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Depiction of sliding window algorithm: Moments from a given layer (orange) undergo

collision, are mapped to the distribution representation, and written to the sliding window

domain according to an indirect addressing scheme (peach). Subsequently, moments for

the previous layer (red) are recomputed in the sliding window domain and written back to

memory.

Gounley et al. Page 23

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Illustration of layer and block interface dimensions for a simple cuboid example with two

blocks.

Gounley et al. Page 24

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Aortic (left) and cerebral (right) vasculatures used for hemodynamic simulations.

Gounley et al. Page 25

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Single node performance for AB, AA, and MR propagation patterns on using the D3Q19

and D3Q27 lattices for the Broadwell node. Dashed black lines indicate estimate from

roofline model.

Gounley et al. Page 26

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Single node performance for AB, AA, and MR propagation patterns on using the D3Q19

and D3Q27 lattices for the Power9 node. Dashed black lines indicate estimate from roofline

model.

Gounley et al. Page 27

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Influence of cache block size on Broadwell node performance.

Gounley et al. Page 28

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Influence of cache block size on Power 9 node performance.

Gounley et al. Page 29

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Performance in MFLUPS as a function of distribution data size per rank on the Power9

node for the aortic (top) and cerebral (bottom) geometries and the D3Q19 lattice. Vertical

dotted line indicates approximate last level cache size per physical core on the Power9 node.

Layer dimension indicates whether the sliding window moves along the longest, middle, or

shortest axis of computational domain of each rank.

Gounley et al. Page 30

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Runtime of the inlets and outlets conditions for the AA pattern normalized by the MR

pattern runtime on the Power 9 node.

Gounley et al. Page 31

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
(a) Decomposition of geometry into columns, each associated with a thread block. Each

column is ‘padded’, with the top tile being initially vacant. (b) For a given thread block,

the post-collision distribution on a tile (orange) is written into shared memory (peach) with

memory locations determined by streaming. Moments are recomputed for the previous tile

(purple), but are shifted one tile below when writing back to global memory (red). (c) This

shift is based on tiled circular array shifting, updated from bottom to top, with the moments

of each updated tile written to the location beneath it.

Gounley et al. Page 32

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
Hierarchical roofline analysis of the MR algorithm on the V100 GPU. Lines for HBM and

double precision FLOPs are taken from Nvidia Nsight profiler, while those for L1 and L2

are taken from [46].

Gounley et al. Page 33

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
Performance evaluation in MFLUPS of the AB and MR propagation patterns for D2Q9 on a

V100 GPU as a function of the number of fluid points in the simulation domain.

Gounley et al. Page 34

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 35

TABLE 1

Memory requirements for AB, AA, and moment representation (MR) propagation patterns for single speed

lattices.

Component AB AA MR

Distribution (double) 2NQ NQ 3BQ + RJK

Moments (double) 0 0 MN

Indirect addressing (int) N(Q-1) N(Q-1) NQ

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 36

TABLE 2

Bytes per fluid lattice update (B/F) for propagation patterns of distribution- and moment-representations using

indirect addressing, with Q distribution components and M moments in the lattice. In the third and fourth

columns, the B/F formula in the second column is applied to the D3Q19 and D3Q27 lattices, respectively.

Pattern Bytes/FLUP (B/F) D3Q19 B/F D3Q27 B/F

AB 3Q*double + (Q-1)*int 528 752

AA
2Q*double +

1
2 (Q-1)*int

340 484

MR 2M*double + Q*int 236 268

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 37

TABLE 3

Estimated optimal MFLUPSmax from roofline performance model for each propagation pattern and CPU

architecture, based on measured bandwidth and the bytes per FLUP computed in table 2.

Broadwell (MFLUPS) Power9 (MFLUPS)

Pattern D3Q19 D3Q27 D3Q19 D3Q27

AB 108 77 432 303

AA 167 118 671 471

MR 241 212 966 851

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 38

TABLE 4

Summary of the main features of the Nvidia V100 GPU

Frequency 1, 455 MHz

CUDA cores 5, 120

SM count 80

On-chip Mem. Shared: up to 96 KB per SM
L1: up to 96 KB per SM
L2: 6, 144 KB (unified)

Memory HBM2 16 GB

Bandwidth 900 GB/s

Compiler nvcc v11.0.221

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gounley et al. Page 39

TABLE 5

Estimated optimal MFLUPSmaxfrom LBM roofline performance model for a V100 GPU using direct

addressing and equation 25.

Pattern Bytes/FLUP (B/F) D2Q9 B/F D2Q9 Roofline

AB 2Q*double 144 6250

MR 2M*double 96 9375

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2023 March 01.

	Abstract
	INTRODUCTION
	LATTICE BOLTZMANN METHODS
	Single relaxation time LBM
	Regularized LBM

	MOMENT REPRESENTATION OF REGULARIZED LBM
	Propagation pattern for CPU architectures
	Boundary conditions
	Distribution-based scheme
	Moment-based scheme

	CPU PERFORMANCE RESULTS
	Software and hardware details
	Node-level performance
	Layer size dependence and cache awareness
	Boundary conditions

	MOMENT REPRESENTATION ON GPUS
	GPU propagation pattern
	GPU performance analysis

	CONCLUSION AND FUTURE WORK
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

