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Abstract

Purpose: Mapping brain white matter (WM) is essential for building an understanding of brain 

anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) 

are the principal tools for investigating WM. These procedures rely on time-consuming dMRI 

acquisitions that may not always be available, especially for legacy or time-constrained studies. To 

address this problem, we aim to generate WM tracts from structural magnetic resonance imaging 

(MRI) image by deep learning.

Methods: Following recently proposed innovations in structural anatomical segmentation, we 

evaluate the feasibility of training multiply spatial localized convolution neural networks to 

learn context from fixed spatial patches from structural MRI on standard template. We focus 

on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, 
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automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these 

techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the 

Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.

Results: The proposed framework identifies fiber bundles with high agreement against 

tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, 

achieving improved subject-specific accuracy when compared to population atlas-based methods. 

We demonstrate the generalizability of the proposed framework on three externally available 

datasets.

Conclusions: We show that patch-wise convolutional neural network can achieve robust bundle 

segmentation from T1w. We envision the use of this framework for visualizing the expected course 

of WM pathways when dMRI is not available.

Keywords
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1 | INTRODUCTION

Mapping WM is essential to understand anatomy1 and function.2 DMRI works as the 

noninvasive imaging method to examine the white matter (WM) pathway in vivo. DMRI 

measures random microscopic motion (or diffusion) of water molecules in the brain tissue as 

the contrast parameter.3 The motion is anisotropic because of arrangement of fibers within 

WM. Based on this property, tractography is performed to estimate anatomical trajectories 

of WM. One popular workflow is to estimate local fiber orientation based on diffusion 

signal model like tensor4 or other advanced models5,6 and reference long-range pathways 

from local orientation.7 The subsequent dissection8 of streamlines across from whole-brain 

tractograms allows for the segmentation or mapping of WM pathways.

In order for DMRI to be appropriate for tractography, many gradient directions and high 

b-value shells are needed, which are not commonly acquired in clinical settings and require 

long scan times.9 The computation and dissection of whole brain tractograms derived from 

tractography is also time-consuming, which limits the applicability of tractography in time-

constrained settings. Structural T1 weighted (T1w) MRI acquisitions are widely used in 

neuroimaging research and in the clinical setting. However, it is challenging to directly 

delineate WM pathways from T1w MRI, as the lack of directionality information of bundles 

in T1w.

Fortunately, image registration is an established way of transferring different WM labels 

from population-based atlases to T1w MRI and can isolate different WM regions in T1w 

MRI. In general, WM atlases from the diffusion-weighted MRI (dMRI) community can 

be divided into two categories: streamline-based atlases10–13 and volumetric atlases.14–16 

Streamline-based WM atlases contain streamlines assigned to various WM pathways, while 

volumetric WM atlases contain labels indicating the pathway assignment(s) of a given voxel. 

One such widely used volumetric atlas was proposed by Mori et al. and recognizes 48 

different WM labels.15 WM atlases are very popular in neuroimaging analysis but have 
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key limitations. They require that different WM regions are not overlapping and often 

contain a limited amount of information outside deep WM (Figure 1). To navigate these 

limitations, Hansen et al. recently proposed the Pandora WM bundle atlases, which are 

volumetric atlases that present 216 overlapping WM pathways from 2300 healthy subjects. 

This approach has subsequently allowed for both the identification of overlapping pathways 

and improved WM labeling outside the deep structures on T1w MRI without dMRI.16

Compared with large cohort population atlas, deep convolutional neural networks have the 

potential to capture subject-specific variations. Among convolutional neural networks, the 

U-Net17 has obtained impressive results for performing 3D medical image segmentation 

including brain18 and abdomen.19 Brébisson et al. proposed a deep neural network learning 

2D and 3D patches from structural brain MRI to predict the anatomical class of each 

voxel.20 DeepNat leverages a hierarchical multi-task network to achieve brain segmentation 

with 3D patches.21 SLANT18 learns spatially localized 3D patches from structural MRI to 

achieve brain structure segmentation. Additionally, current deep learning approaches20,22 

have demonstrated superior performance compared with atlas-based methods on healthy 

brain segmentation from structural images.

Thus, driven by the need for improved subject-specificity in WM segmentation, we propose 

a spatially localized patch-wise framework to delineate WM regions from structural T1w 

MRI. We envision this framework as a tool for researchers to localize WM regions when 

dMRI is not available. To make this tool comprehensive, we select six state-of-the-art 

tractography algorithms.

2 | MATERIAL AND METHODS

The pipeline of predicting WM labels directly from T1w MRI with deep learning includes 

four steps:tractography, registration, normalization, and patch-wise networks as shown in 

Figure 2.

2.1 | Data

We use 2416 deidentified images from the Baltimore Longitudinal Study of Aging 

(BLSA),23 1105 images from Human Connectome Project S1200 release,24 and 349 images 

from Vanderbilt University (VU) to train all deep neural networks. We also select three 

open-source datasets to perform external validation to test the generalizability of the 

proposed learning method. We study 26 images from HCP lifeSpan (HCPLS),24 394 images 

from IXI (IXI, http://brain-development.org/ixi-dataset), and 12 images from the Unilateral 

Glaucoma dataset (UG, https://openneuro.org/datasets/ds001743/versions/1.0.1). All above 

images include paired T1w MRI and dMRI. The voxel resolution of T1w MRI and dMRI, 

the b0-value and diffusion volumes are shown in Table 1.

2.2 | Tractography

dMRI is often subject to artifacts, which can deteriorate the accuracy of extracting WM 

bundles. To correct these artifacts, we perform correction for susceptibility distortions, 

subject motion, eddy currents, and b-tables prior to analysis.25
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We perform tractography on preprocessed dMRI. Six popular tractography algorithms are 

selected to recognize pathways and annotate WM bundles. All six algorithms were run using 

default parameters. The number of generated pathways of all six tractography algorithms is 

shown in Table 2.

Note that AFQclipped clips the center of each of the 20 AFQ bundles with region of 

interests (ROI)-based exclusion criteria. According to anatomic name for each bundle, we 

notice that there are 10 common bundles across from all six tractography algorithms. Thus, 

216 bundles from TractSeg, RecoBundles, XTRACT, Tracula, AFQ, and AFQclipped are 

not regarded as unique bundles.

2.3 | Registration and intensity normalization

To ensure that all inputs have the same voxel size and dimension, we register all pathways 

derived from dMRI through all six bundle segmentation algorithms and T1w MRI, to the 

Montreal Neurological Institute (MNI) ICBM 152 asymmetric template.31 First, we rigidly 

register the b = 0 s/mm2 volume of each dMRI to the T1w MRI of the same subject using 

FMRIB’s software library (FSL).32 Then, after performing N3 correction of bias field and 

normalization of WM intensity by FreeSurfer33 on raw T1w MRI, corrected T1w MRI is 

registered to the MNI template with antsRegistrationSyn in advanced normalization tools 

(ANTs).34 By linking these registration steps, all pathways are rigidly registered to T1w 

MRI of the same subject. All pathways are affine reoriented to the MNI template and serve 

as ground truth. The affine transformation is also applied to the raw T1w MRI.

After registration, we skull strip all structural images on the MNI template with the bet tool 

in FSL, clip, and normalize the background and the 98th percentile of within-brain intensity 

to intensity units 0 and 1. The pipeline of registration and normalization is visualized in the 

Figure 2

2.4 | Patch-wise network

After transforming all image and ground-truth pathways to MNI template, the high-

resolution image volume could not fit into the 12G GPU (GTX 1080Ti) memory using 

current popular network architectures. Inspired by SLANT,18 we designed 125 overlapped 

3D U-Nets to cover the entire MNI volume and subdivide each image into corresponding 

125 patches. Each patch Ψn is represented by one coordinate (xn, yn, zn) and patch size (dx, 
dy, dz), n ∈ {1, 2, … 125}

ψn = xn: xn + dx , yn: yn + dy , zn: zn + dz (1)

where Ψn represents the nth patch, xn, yn, zn represent the corner coordinates of the nth 

patch. xn and zn ∈ [1, 25, 50, 74, 98] and yn ∈ [1, 34, 67, 101, 134]. The length dx, the width 

dy, and depth dz are 96.

To merge the outputs of the U-Nets after training, the pixel-wise output represents an 

activation value of the neural network rather than specific WM pathways. Thus, the average 

way is adopted to get the final value instead of majority vote:
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pwhole(i) = 1
nk

∑
k = 1

nk
pk(i) (2)

Where pwhole represents all pixels within the structural, image and pwhole(i) means the ith 

pixel. k indexes the U-Nets that covers ith pixel. pk(i) represents the final value of ith pixel 

of kth U-net. Networks not covering a particular voxel are excluded in the final merge 

process.

2.5 | Implementation details

We divided the HCP, BLSA, and VU data into training, validation, and test cohorts 

evenly based on subjects and used HCP_LS, IXI and unilateral glaucoma (UG) as the 

external dataset. We kept the splitting strategy consistent across learning all six diffusion 

tractography algorithms. To remove data corrupted by registration or failed diffusion 

tractography algorithms, exhaustive human review was performed on verifying acceptable 

image registration and inspecting appropriate shape and location of all bundles.16 The 

resultant number of scans for the training, validation, testing cohorts, and external dataset is 

shown in Table 3.

Inspired by the AssemblyNet,35 we adopt a transfer learning technology to utilize the 

weights from trained U-Net to initialize the nearest U-Nets. In the beginning, we trained 

nine U-Nets, and their corner coordinates are shown in Table 4. Then, the trained nine 

models following orders in the Table 4 are used to initialize the nearest 116 models (every 

model is trained only once).

We used pytorch36 to implement baseline U-Net17 as the convolution neural network to learn 

patches from anatomical images and set the batch size 1. The output channel depends on 

the number of WM bundles recognized by the bundle segmentation algorithm. We set a 

learning rate of 0.0001 and do not perform learning rate decay during the training process. 

We adopted the sum binary cross-entropy for each effective WM bundle as a loss function 

and train all models using the Adam optimizer. When we inferred the WM regions based 

on deep neural networks, we appended a sigmoid function to the output of each patch-wise 

neural network to map the final merged output to (0, 1).

2.6 | Baseline methods

We compare the quantitative performance of transferring labels with the traditional atlas-

based approach as the baseline method. Here, we use the Pandora atlas,16 which is a 4D 

collection population-based atlases. The Pandora atlas used the same cohorts and diffusion 

tractography algorithms to generate each corresponding WM bundle same as we learn in this 

study. All volumes of the Pandora atlas are on the same MNI template as we use here. Each 

volume of the 4D atlas is in the form of a probability map indicating a probability of a pixel 

being in a specific WM bundle. To make a fair comparison, we transfer label from atlas to 

affine-reoriented MNI template as final probability map for each target scan.
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In addition to atlas-based method, we use multi-atlas segmentation (MAS) as another 

baseline method. We selected 20 subjects whose tracts all passed human review as single 

atlas. There are nine subjects from HCP, nine subjects from BLSA, and two subjects from 

VU among 20 subjects. To make sure output is in the same template as other comparison 

methods, all 20 atlas and target images are affine reoriented to MNI template as well as the 

corresponding WM tracts. All 20 atlases are registered to target image through non-rigid 

registration.37 Then, the new labels are obtained through joint label fusion38 methods. The 

whole pipeline of MAS is implemented by ANTs39 python package and performed for all 

216 bundles for each target scan.

2.7 | Metrics

To evaluate the accuracy of our proposed method, we compare the segmentation results 

against the ground truth provided by diffusion tractography. Additionally, we compare the 

accuracy of the proposed method against the accuracy achieved by Pandora atlas and MAS. 

To quantify the agreement between segmentation and truth, we use four measures: Dice 

score coefficient (DSC), average symmetry surface distance, bundle overlap, and bundle 

overreach.

We use DSC as the main evaluation measurement for different bundle segmentation 

algorithms by comparing binary WM bundle prediction against the ground truth voxel-by-

voxel:

DSC = 2 R ∩ T
R + T = 2 TP

2 TP + FP + FN (3)

where TP is true FP false positive, FN is false negative, R represents the segmentation 

result generated by the proposed method or atlas-based method, and T represents the 

corresponding ground-truth.

Average symmetry surface distance40 is given in millimeters and based on surface vertices 

between the proposed or atlas-based segmentation, R, and the ground-truth segmentation, T. 

For each vertex on the surface of R, (S(R)), the Euclidean distance to closest surface vertices 

of truth (S(T)) can be defined in d(SR, S(T)):

d SR, S(T) = min
SR ∈ S(R)

∥ SR − S(T) ∥ ASSD = 1
S(R) + S(T)

× ∑
sR ∈ S(R)

d sR, S(T) + ∑
sT ∈ S(T)

d sT , S(R)
(4)

where |S(R)| represents the number of vertices of the resulting surface, and |S(T)| represents 

the number of vertices on the ground-truth surface. SR represents a vertex from the atlas-

based or proposed segmentation. ST represents a vertex from the ground-truth.

Bundle overlap41 is the proportion of voxels that contain the ground truth region that is also 

overlapped by the results of the learning- or atlas-based methods.
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OL = R ∩ T
T (5)

Bundle overreach41 is the number of voxels containing results from proposed or atlas-based 

methods that are outside of the ground truth volume divided by the total number of voxels 

within the ground truth.

OR = R\T
T (6)

where operator \ denotes the relative complement operation.

The nonparametric Wilcoxon signed-rank test42 for paired distributions was used to 

calculate test significance when comparing learning-based results with corresponding atlas-

based results.

3 | RESULTS

3.1 | Fine-tune binary threshold

The outputs of the MAS, atlas-based and proposed methods have been mapped to (0, 

1) and represent a probability that a given voxel is included in the WM pathway. The 

binary threshold to convert the probability to a yes or no is important and influences the 

performance of both the atlas-based and proposed methods. Starting from 0, we sweep 

thresholds until 1 with a step size of 0.01, using the validation datasets to calculate 

mean DSC across all WM pathways of all scans. The optimal threshold and the curve 

of relationships between mean DSC and binary threshold for the MAS, atlas-, and learning-

based methods are shown in Figure 3. The optimal thresholds are the values where the mean 

DSCs across all pathways from all scans are highest for MAS, atlas- and learning-based 

methods.

3.2 | Qualitative results

We select one scan from the HCP test cohort to visualize the left corticospinal tract (CST) 

across all six bundle segmentation algorithms to see an intra-subject variance of bundle 

segmentation algorithms and visualize the difference between results derived from T1w 

images and ground truths from dMRI. We use the optimal threshold values calculated in 

Figure 3. to binarize each output, using marching cube43 to extract and render the CST 

surface. 3D visualization is shown in Figure 4.

From Figure 4, we find the learning-based method per bundle segmentation algorithm has 

a higher overlap compared with the atlas-based method and MAS according to the areas of 

magenta overlap for this subject. Although the pathway of all six tractography algorithms 

has varied shape, the learning method still can make good prediction for the largest pathway 

of TractSeg and smallest pathway of AFQclipped.
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3.3 | Quantitative results

We used the optimal threshold values fine-tuned from the validation datasets to binarize 

the output on the testing and external datasets. To examine their overall performance, we 

evaluated all 216 bundles using the DSC and average symmetry surface distance (Figure 5).

From Figure 5a, the blue bar plot represents the percentage of pathways that successfully 

passed the human reviewing process across the whole test cohort. All learning-based 

methods perform statistically better than the atlas-based methods and MAS. When using 

ground truths derived from TractSeg, the MAS, atlas- and learning-based methods achieve 

the highest median DSC of 0.72, 0.78, and 0.87 and smallest average symmetry surface 

distance 2.04 mm, 1.62 mm, and 0.92 mm, respectively. Compared with the atlas method, 

the learning method shows the largest improvement in median DSC for AFQ from 0.48 to 

0.62 and reduces median average symmetry surface distance from 4.08 mm to 2.40 mm. The 

same pathway for different subjects may have varied shape and localization. The proposed 

method can adapt to these differences more robustly than atlas-based methods.

In Figure 5b, the blue bar plot represents the percentage of pathways that successfully 

passed the human reviewing process across the external dataset. All learning-based methods 

perform statistically better compared to atlas-based methods except for XTRACT. However, 

the difference between the atlas- and learning-based methods is less pronounced. The 

median DSC of the learning-based method on XTRACT is 0.522, lower than 0.527 of 

the atlas-based method. Compare Figure 5a,b, variations in MRI contrast across scanners 

decreases the performance.

We perform bundle overlap and bundle overreach on left CST pathway of all six bundle 

segmentation algorithms to analyze the relationship between spatial overlap of proposed 

method and threshold (Figure 6).

From Figure 6, all MAS, atlas- and learning-based methods for all six diffusion tractography 

algorithms identified WM bundles with a high overlap but suffer from high overreach 

except for Tracula and TractSeg. As for AFQ, when the overreach is about five times the 

actual ground truth volume, the MAS method has overlap values of 0.75 and 0.8 with the 

atlas-based method. The proposed method has an overlap value about 0.9 higher compared 

with the MAS and atlas-based method.

We calculated the overall binary thresholds from the validation cohort. Thus, we want to 

investigate whether the optimal thresholds calculated from validation datasets can generalize 

to external datasets. We show the curve of relationship between DSC and binary threshold 

on the external datasets in Figure 7. Comparing Figure 7 to Figure 3 the biggest difference 

between thresholds estimated from the validation dataset and the external datasets is in 

XTRACT. The binary threshold for MAS is shifted from 0.18 to 0.34. The binary threshold 

for atlas-based method in XTRACT is shifted from 0.30 to 0.56. The binary threshold for 

the proposed method in XTRACT is shifted from 0.39 to 0.77. We can learn that the optimal 

threshold shifts when fed different MRI contrast.
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4 | DISCUSSION

In this study, we aim to propose a spatial localized patch-wise framework to segment 

WM structure with six different definition schemes only from anatomical images. We 

envision this framework as a tool to estimate a coarse WM region of interest rather than 

segmentation with more details derived from dMRI. We provide probability map of six 

different tractography algorithms for users to adjust binary threshold and choose their 

preference scheme.

4.1 | Generalize to external dataset

Deep learning model is sensitive to intensity distributions of T1w MRI, which are not 

seen in the training cohort. The different scale settings of the raw T1w images bring the 

shift of the optimal threshold, which is shown in the external dataset. Apart from varied 

intensity distribution, the external dataset itself also deteriorates the performance of deep 

neural network. 394 IXI images domain the whole dataset. The acquisition of IXI requires 

15 DWIs, which is smaller compared to the original training cohort. Thus, generated ground 

truth by six algorithms does not have high quality (they might have less streamlines or 

streamlines stop in advance during the tracking process).

4.2 | Limitations

Currently, the variance of performance of learning-based method is obvious. Inherent 

definition and way of extracting WM tracts by bundle segmentation methods bring 

challenges to the proposed learning framework. One possible solution is developing robust 

labels by merging common labels belonging to same WM bundle across from all six 

tractography algorithms. By doing this way, each WM bundle label will include six bundle 

definition schemes, having common parts and specific parts for each tractography algorithm. 

The robust label may make full use of complementary information among six tractography 

algorithms.

WM pathways usually are in the form of streamlines, which can provide connection at the 

sub-pixel level. However, information is lost when converting streamlines into mask, even 

with their own built-in function, which bring the noise to the label.

5 | CONCLUSION

We propose a spatial localized patch-wise framework to delineate WM structure based 

on structural T1w images. We use this framework to learn WM regions under six bundle 

segmentation algorithms and compare the result of the framework to atlas-based methods 

and MAS. When optimal threshold is utilized to evaluate scans that have the same 

acquisition as the training datasets, the learning-based methods are statistically superior 

to the atlas-based methods and MAS.

All source code, binaries, and third-party dependencies have been packaged into a container 

Singularity44 at https://github.com/MASILab/WM_learning_release
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FIGURE 1. 
(a) White matter (WM) is largely homogenous when imaged using most sources of MRI 

contrast, for example T1 weighted (T1w) (left).(b) Traditional WM atlas (center) represents 

each voxel with one tissue class. (c) Modern approaches at bundle segmentation identify 

multiple overlapping structures (right). Diffusion tractography offers the ability to capture a 

multi-label description of WM voxels
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FIGURE 2. 
The pipeline of proposed white matter (WM) bundle learning is presented, which integrates 

data processing and registration as well as bundle learning. We extract WM bundles 

from six different tractography methods. Structural images and corresponding tractograms 

are reoriented to the Montreal Neurological Institute (MNI) template. Patch-wise, spatial-

localized neural networks are utilized to learn WM bundle regions from a T1 weighted 

(T1w) MRI image. The output of each U-net is merged as the final step before segmentation. 

Representative samples of WM bundles acquired from six automatic tractography methods, 

and the final learning result is visualized
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FIGURE 3. 
Each curve represents the average DSC of all white matter (WM) bundles of all validation 

dataset scans per diffusion tractography algorithms for multi-atlas segmentation (MAS), 

atlas-, and learning-based methods at different threshold values. The 95% confidence 

interval is within the printed notch due to large sample population size. The legend above the 

each plot includes the optimal threshold for each tractography algorithms
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FIGURE 4. 
3D visualization of multi-atlas segmentation (MAS), atlas-, and learning-based results across 

six diffusion tractography algorithms by reconstruction of the left corticospinal tract (CST) 

surface on an affine-reoriented coronal T1 weighted (T1w) MRI slice. The text below each 

image is quantitative DSC for each case
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FIGURE 5. 
Quantitative results of multi-atlas segmentation (MAS), atlas-based method, and proposed 

learning methods on test cohorts from Human Connectome Project (HCP), Baltimore 

Longitudinal Study of Aging (BLSA), and Vanderbilt University (VU) and external cohort 

from HCP_LS, IXI, and UG. The outlier percentage (top row) of all six algorithms is 

shown in bar plot. Two measures are used to assess the overlap between algorithms deriving 

fiber mask from T1 weighted (T1w) and truth from diffusion-weighted MRI (dMRI): Dice 

(middle row) and surface distance (lower row). Each column presents the result of a different 

bundle segmentation algorithm and shows the proposed method, MAS, and single atlas-
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based method. Each boxplot includes each pathway of the bundle segmentation algorithm 

per every scan. The 95% confidence interval is within the printed notch due to large sample 

size. The difference between methods was significant (p < 0.005, Wilcoxon signed-rank test, 

indicated by *)
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FIGURE 6. 
Plots of overlap versus overreach for the left corticospinal tract (CST) across all bundle 

segmentation algorithms for multi-atlas segmentation (MAS), atlas-, and learning-based 

methods are shown. The markers on each curve to represent the overlap and overreach 

values at specific threshold values. The range of overreach for MAS is (0, 6). The range of 

overreach for atlas-based methods is (0, 9). The range of overreach for the learning-based 

method is (0, 6)
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FIGURE 7. 
Each curve represents average DSC of all white matter (WM) bundles of all external dataset 

scans per diffusion tractography algorithm for atlas- and learning-based methods. The 95% 

confidence interval is within the printed line width due to large sample size. The legend 

above each plot includes the optimal threshold for each tractography algorithms
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TABLE 2

The tractography algorithms and corresponding generated pathways

The algorithm name Number of generated bundles for each algorithm

TractSeg26 72

RecoBundles27 44

XTRACT28 42

Tracula29 18

AFQ30 20

AFQclipped30 20
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TABLE 3

The number of scans for the training, validation, testing cohorts, and external dataset

Scans of train Scans of validation Scans of test Scans of external validation

TractSeg 2803 213 754 431

RecoBundles 2789 211 754 430

XTRACT 2786 211 751 427

Tracula 2538 189 693 428

AFQ 2730 201 726 367

AFQclipped 2730 201 726 367
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TABLE 4

Corner coordinates of pretrained nice models of 125 models, indexed starting at one

Corner coordinate index Corner coordinate (x, y, z)

2, 2, 2 25, 34, 25

2, 4, 2 25, 101, 25

4, 2, 2 101, 25, 25

4, 4, 2 101, 101, 25

3, 3, 3 50, 67, 50

2, 2, 4 25, 34, 74

2, 4, 4 25, 101, 74

4, 2, 4 101, 25, 74

4, 4, 4 101, 101, 74
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