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Machine learning reveals distinct gene signature 
profiles in lesional and nonlesional regions 
of inflammatory skin diseases
Brittany A. Martínez*†, Sneha Shrotri†, Kathryn M. Kingsmore†, Prathyusha Bachali, 
Amrie C. Grammer, Peter E. Lipsky*

Analysis of gene expression from cutaneous lupus erythematosus, psoriasis, atopic dermatitis, and systemic sclerosis 
using gene set variation analysis (GSVA) revealed that lesional samples from each condition had unique features, 
but all four diseases displayed common enrichment in multiple inflammatory signatures. These findings were 
confirmed by both classification and regression tree analysis and machine learning (ML) models. Nonlesional 
samples from each disease also differed from normal samples and each other by ML. Notably, the features used in 
classification of nonlesional disease were more distinct than their lesional counterparts, and GSVA confirmed 
unique features of nonlesional disease. These data show that lesional and nonlesional skin samples from inflam-
matory skin diseases have unique profiles of gene expression abnormalities, especially in nonlesional skin, and 
suggest a model in which disease-specific abnormalities in “prelesional” skin may permit environmental stimuli to 
trigger inflammatory responses leading to both the unique and shared manifestations of each disease.

INTRODUCTION
Autoimmune and inflammatory diseases, such as systemic lupus 
erythematosus (SLE), can affect many organs, including the skin. 
Skin manifestations of lupus, known as cutaneous lupus erythema-
tosus (CLE), are common and occur in 70 to 85% of lupus patients 
(1–3). Historically, CLE is classified into three subtypes based on 
clinical and serological features: acute CLE (ACLE), subacute CLE 
(SCLE), and chronic CLE (CCLE) (4). Of these subtypes, discoid 
lupus erythematosus (DLE) is a chronic form of CLE; DLE is also 
the most common form of CLE and is characterized by circum-
scribed regions of inflammation and scarring affecting the skin on 
the face, head, and below the neck (4). The heterogeneity of CLE 
makes it difficult to determine particular cytokines or inflammatory 
pathways to target therapeutically, and as a result, no therapies are 
specifically approved for CLE (5). Both an innate immune response, 
coordinated through Toll-like receptor activation, and multiple 
adaptive immune responses have been reported in the initiation 
and propagation of CLE (2). Targeting B cells with belimumab (6) 
and type 1 interferon (IFN) with anifrolumab (7) shows some benefit 
in decreasing cutaneous manifestations of SLE. In contrast, other 
inflammatory skin diseases, such as psoriasis (PSO), have numerous 
approved therapies (8), and dupilumab, an inhibitor of interleukin-4 
(IL-4) receptor signaling, is an effective therapy for both atopic der-
matitis (AD) and PSO (9). This overlap of central, nonredundant 
pathways between PSO and AD illustrates that diseases with mark-
edly different clinical phenotypes may have similar immunopatho-
genic underpinnings.

Although independent transcriptomic analyses have provided 
insight into the molecular landscape of CLE, a complete molecular 
characterization of the disease is limited by small patient cohorts 
(10–17). Previous bulk gene expression studies focused on specific 

aspects of lupus skin disease, such as the presence of T helper (TH) 
17 cells (10) or specific macrophage populations (11), the correla-
tion between inflammatory cell populations and fibroblast marker 
expression (12), cytokine expression (13), inflammasome signaling 
(14), or IFN signaling (15–17). However, there remains a need to 
examine the interplay of inflammatory cells, nonhematopoietic cells, 
and pathway perturbations to understand the molecular events in 
CLE pathogenesis in further detail.

Whereas the dissimilarities in clinical manifestations of CLE and 
other inflammatory skin diseases have been well documented, the 
molecular differences between CLE and other inflammatory skin 
diseases are less completely studied. For instance, keratinocytes, 
one of the predominant nonhematopoietic cell populations in the 
skin, have been implicated in PSO pathogenesis (18) and shown to 
be hypersensitive to IFN signaling in CLE (15), yet understanding 
of their role in CLE is limited. Moreover, systemic sclerosis (SSc), 
another inflammatory skin disease, is characterized by fibrosis and 
vascular damage due to excessive deposits of extracellular matrix 
and differentiation of fibroblasts to myofibroblasts (19), but little is 
known about the role of fibrosis in the pathogenesis of CLE. Last, 
AD is characterized by an allergic reaction owing to a loss in skin 
barrier function, fibrosis, and TH2 cell signaling (20), but these 
functions in CLE have not been explored. Detailed comparison 
among the molecular signatures of CLE, PSO, AD, and SSc could 
achieve better understanding of the primary pathogenic mecha-
nisms and provide direction for previously unidentified therapeutic 
avenues in these conditions.

In this study, we compared the gene expression signatures of four 
inflammatory skin diseases: CLE, PSO, AD, and SSc. To achieve a 
read depth sufficient to maintain the in vivo proportions of cellular 
signals in the biopsies without technical distortion and to capture 
the majority of molecular pathways, we analyzed bulk RNA. In ad-
dition, we used analytic tools to deconvolute transcriptomic data 
and determine cellular and pathway signals enriched across hetero-
geneous cohorts of patients from each of the diseases. Using gene 
set variation analysis (GSVA), we determined that lesional skin of 
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the four skin diseases expressed both shared and unique molecular 
signatures. Machine learning (ML) demonstrated that both lesional 
and nonlesional samples of each disease could be classified as dis-
tinct from control samples as well as from each other. Notably, non-
lesional skin of each disease was more distinct than lesional skin, as 
there were more common features in ML classification of lesional 
skin among the four diseases. GSVA confirmed the molecular dif-
ferences between uninvolved skin of the various conditions. These 
results suggest a model in which the nonlesional skin of patients 
with inflammatory skin diseases harbors unique abnormalities that 
potentially make the skin differentially sensitive to specific environ-
mental stimuli. Inciting stimuli appear to induce responses with 
many overlapping inflammatory molecular features shared by the 
diseases. Together, this suggests that therapeutics used in the treat-
ment of one inflammatory skin disease may be useful in the treatment 
of additional diseases and confirms the utility of gene expression 
analysis in understanding the immunopathogenesis of clinical and 
preclinical skin disease.

RESULTS
Comprehensive gene expression analysis of DLE reveals 
similarities and differences with other inflammatory 
skin diseases
We carried out a comprehensive transcriptomic analysis of five 
independent datasets of samples biopsied from both patients with 
DLE and healthy controls (table S1). DLE was chosen for primary 
analysis of lupus skin because it is the most frequent subset of CLE 
(4), and it comprised the largest number of available cutaneous 
lupus samples. To examine cellular and pathway signaling on an 
individual patient level, we carried out GSVA using a total of 48 in-
formative gene signatures (table S2, A and B). Hierarchical clustering 
of GSVA enrichment scores demonstrated that DLE was molecularly 
separable from healthy skin (Fig. 1A). Despite some interpatient 
heterogeneity in each dataset, signatures for plasmacytoid dendritic 
cells (pDCs), monocytes, monocyte/myeloid cells, natural killer (NK) 
cells, T cells, B cells, and plasma cells were consistently enriched in 
patients with DLE as compared to healthy skin (Fig. 1B, left). Con-
versely, signatures representative of granulocytes, Langerhans cells, 
and melanocytes were consistently down-regulated in lupus-affected 
skin. As previously shown, the IFN gene signature (IGS) was in-
creased in all DLE datasets, as were the IL-12 and tumor necrosis 
factor (TNF) gene signatures (Fig. 1B, right) (14, 17). There was also 
enrichment of gene expression of other inflammatory pathways, 
such as IL-21 and IL-23, complement, and the immunoproteasome. 
In addition, genes reflective of most metabolic processes were de-
creased in DLE samples, whereas signatures representing glycolysis 
and the pentose phosphate pathway remained mostly unchanged.

To understand the molecular landscape of cutaneous lupus in 
the context of other inflammatory skin diseases, we examined gene 
expression data derived from skin biopsies of patients with PSO, 
AD, or SSc. Overall, there was enrichment of most myeloid and 
lymphoid-derived cell signatures across all four diseases as com-
pared to control, whereas expression of skin-specific dendritic cells 
(DCs) differed among the diseases (Fig. 2A, left, and figs. S1 to S4). 
Monocyte gene signatures were consistently enriched in DLE, AD, 
and SSc. In contrast, the endothelial cell gene signature was en-
riched in SSc only. Inflammatory cytokine gene expression was 
largely enriched in all four diseases, especially pathways involving 

IFN, IL-12, IL-23, and TNF. DLE and SSc exhibited gene expression 
enrichment in the complement signature, whereas PSO and AD did 
not (Fig. 2A, right, and figs. S1 to S4). We noted heterogeneity among 
datasets of each disease; for example, the IL-17 complex signature 
was up-regulated in two of three PSO datasets and the Langerhans 
cell signature was down-regulated in four of five DLE datasets.

Next, we used classification and regression tree (CART) analysis 
using GSVA enrichment scores of 48 cellular and pathway gene sig-
natures to discern the gene expression variables that best classified the 
inflammatory skin diseases (Fig. 2, B to E). CART analyses demon-
strated that the IGS was the most important feature in disease clas-
sification for three of four diseases (DLE, PSO, and SSc). The IGS, 
unfolded protein, and granulocyte gene signatures were the most 
important signatures for classifying control or DLE (Fig. 2B), whereas 
the IGS and glycolysis signatures together classified 83% of PSO 
samples (Fig. 2C). In contrast, the IL-12 complex, IGS, and apopto-
sis signatures classified AD or control (Fig. 2D), and the IGS, trans-
forming growth factor  (TGF) fibroblast, IL-12 complex, amino 
acid metabolism, and IL-1 cytokine signatures were the most im-
portant features in classifying SSc or control (Fig. 2E). These data 
show that both common and disease-specific molecular pathway 
signatures classify the involved skin of the different inflammatory 
skin diseases.

ML classification of lesional inflammatory skin samples 
confirms unique and common molecular pathways
To distinguish inflammatory skin diseases more precisely and con-
firm the major transcriptomic contributors, we used several ML al-
gorithms. First, we examined distinct binary classification of pooled 
lesional DLE, PSO, AD, and SSc compared to pooled control sam-
ples using the ensemble decision tree, random forest (RF), with the 
48 cellular and pathway signature GSVA scores as input features. 
The areas under the receiver operating characteristic (AuROC) 
curves and precision-recall (AuPR) curves for each binary classifi-
cation were greater than 0.96 in all cases, indicating excellent per-
formance and appropriate binary classification for each disease 
compared to control samples (Fig. 3, A and B). For each binary 
comparison, we determined the top 15 most important features in 
separating disease from control samples using RF Gini feature im-
portance. To classify DLE from control samples, the IGS, TNF, and 
IL-23 complex signatures were the most important features (Fig. 3C), 
whereas to classify PSO from control samples, the cell cycle, TNF, 
and IL-12 complex signatures were the most important features 
(Fig. 3D). To classify AD from control samples, the IL-12 complex 
and TNF signatures as well as the IGS were the most important fea-
tures (Fig. 3E), and the plasma cell signature, IGS, and TNF signa-
ture were the most important features to classify SSc (Fig. 3F). ML 
analysis elucidated seven features in common among the 15 most 
important features for classifying each inflammatory skin disease 
from control, including the IGS and the TNF, IL-23 complex, plas-
ma cell, IL-12 complex, anti-inflammation, and T cell IL-23 signa-
tures (Fig. 3G). It is notable that the 15 most important features 
performed comparably to the full ensemble of 48 features in binary 
classification of inflammatory skin disease samples (Fig. 3H). In ad-
dition, a number of other ML algorithms were similarly effective at 
binary classification of these samples (fig. S5).

Next, we directly compared gene expression signatures of DLE 
samples with those of other inflammatory skin diseases. Distinc-
tions in cellular and pathway signature enrichment among DLE and 
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Fig. 1. DLE is characterized by enrichment of inflammatory cell and cytokine signatures, including the IFN, IL-12, and TNF signatures. (A) Hierarchical clustering 
(k = 4 clusters) of DLE and healthy control samples from five lupus datasets using GSVA enrichment scores of cellular and pathway gene signatures. (B) Hedges’ g effect 
sizes of cellular (left) and pathway (right) gene signatures for DLE compared to healthy control samples in five lupus datasets. Heatmap visualization uses red (enriched 
signature, >0) and blue (decreased signature, <0). Welch’s t test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. AA, amino acid; FAAO, fatty acid  oxidation; FABO, fatty 
acid  oxidation; LDG, low-density granulocyte; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TCA, tricarboxylic acid.
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Fig. 2. Enrichment of myeloid, lymphoid, IFN, IL-12, IL-23, and TNF signatures is shared among lesional DLE, PSO, AD, and SSc. (A) Hedges’ g effect sizes of cellular 
(left) and pathway (right) gene signatures for disease samples compared to their respective control samples in five DLE, three PSO, two AD, and three SSc datasets. Heatmap 
visualization uses red (enriched signature, >0) and blue (decreased signature, <0). Welch’s t test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. CART analysis for disease 
or control classification using GSVA enrichment scores in (B) DLE, (C) PSO, (D) AD, and (E) SSc. Sample numbers below bottom leaves represent the number of samples of 
each group classified into that leaf.
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Fig. 3. ML effectively classifies lesional skin samples from DLE, PSO, AD, and SSc. (A) ROC curve and (B) PR curve of lesional DLE, lesional PSO, lesional AD, and lesional 
SSc samples compared to pooled control samples using all cellular and pathway gene signatures. Top 15 features important in classifying (C) lesional DLE, (D) lesional PSO, 
(E) lesional AD, and (F) lesional SSc from pooled control samples using Gini feature importance. (G) Comparison of the top 15 features for classifying each lesional disease 
compared to control using Gini feature importance. (H) Classification metrics to properly separate lesional DLE, lesional PSO, lesional AD, or lesional SSc and control samples 
using all 48 (top) or the top 15 (bottom) cellular and pathway gene signatures. Refer to table S3 (A and B) for ML details. Collinear features were removed (fig. S6).
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PSO samples were observed using hierarchical clustering of GSVA 
scores in two datasets with samples from these inflammatory skin con-
ditions (fig. S7A). Notably, transcriptomic signatures that differed be-
tween DLE and PSO included the IGS as well as the Langerhans cell and 
T cell IL-12 gene signatures (fig. S7B). Since we lacked datasets in which 
DLE samples were analyzed concurrently with AD and SSc, we used ML 
algorithms to classify samples from these conditions using the 48 GSVA 
enrichment scores as features. Performance characteristics and AuROC 
and AuPR curves demonstrated less effective classification of DLE from 
other diseases than the classification of each disease versus control 
(Fig. 4, A and B). In the binary classification of DLE and PSO samples, 
the most important features included the amino acid metabolism, 

fibroblast, and keratinocyte gene signatures (Fig. 4C), whereas classifi-
cation of DLE and AD samples involved the glycolysis, TGF fibroblast, 
and Langerhans cell gene signatures (Fig. 4D). The TH17, TGF fibro-
blast, and IL-12 signatures were most important in separating DLE and 
SSc samples (Fig. 4E). Classification using only the top 15 most import-
ant features was as effective as when all 48 features were used (Fig. 4F). 
Last, other ML classifiers performed similarly to RF (fig. S8).

Transcriptomic profiles of nonlesional skin samples 
distinguish inflammatory skin diseases from each other
Although the molecular characteristics of lesional skin in each inde-
pendent disease have been well studied, less is known about the 

Fig. 4. ML classification of DLE versus PSO, AD, and SSc confirms distinct disease-specific gene signatures. (A) ROC curve and (B) PR curve of lesional DLE samples 
compared to lesional PSO (purple) samples and lesional DLE samples compared to lesional AD samples (orange) using all cellular and pathway gene signatures. Top 15 
features important in classifying (C) lesional DLE and lesional PSO, (D) lesional DLE and lesional AD, and (E) lesional DLE and lesional SSc using Gini feature importance. 
(F) Classification metrics to properly separate lesional DLE samples and lesional PSO or lesional AD samples using all 48 (top) or the top 15 (bottom) cellular and pathway 
gene signatures. Refer to table S3 (A and B) for ML details. Collinear features were removed (fig. S9).
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transcriptomic profiles of uninvolved skin. To determine whether 
there are underlying immunological abnormalities contributing to 
disease, we examined gene expression profiles in nonlesional skin 
samples from patients with DLE, PSO, and AD to assess the extent 
to which they differed from either control or lesional skin; nonle-
sional SSc data were not available for analysis. Analysis of GSVA 
enrichment scores demonstrated that nonlesional samples were 
transcriptionally different from lesional samples (fig. S10). The 
up-regulation of inflammatory pathways including IFN, IL-12, 
IL-23, and TNF gene signatures in lesional versus nonlesional skin 
mirrored the up-regulation of these same pathways observed in 
comparison of lesional versus control skin in DLE, PSO, and AD 
(Fig. 2A). We next carried out ML classification using GSVA scores 
to determine whether nonlesional samples were different than con-
trol. To overcome class imbalance issues, we used undersampling 
and synthetic minority oversampling technique (SMOTE) to bal-
ance the number of samples in each class to optimize each binary 
classification. ML was able to classify nonlesional disease and 
healthy control samples reliably (Fig. 5, A and B). Classification of 
nonlesional DLE and control showed that the unfolded protein, 
Langerhans cell, and NK cell signatures were the most important 
features (Fig. 5C), whereas the amino acid metabolism, cell cycle, 
and IL-17 complex signatures were the most important features to 
classify nonlesional PSO and control (Fig. 5D). By contrast, the ox-
idative phosphorylation, anti-inflammation, and granulocyte signa-
tures were the most important features in classifying nonlesional 
AD from control (Fig. 5E). Notably, comparison of the top 15 fea-
tures of each binary classification showed that there was minimal 
overlap of important features among nonlesional skin diseases, with 
only one feature, apoptosis, shared among nonlesional DLE, PSO, 
and AD (Fig. 5F). The binary classifications performed accurately 
when only the top 15 features of each binary classification were used 
(Fig. 5G). Moreover, other ML classifiers performed similarly to RF 
(fig. S11). These data indicate that nonlesional skin in each of the 
three diseases evaluated is uniquely different from control skin.

Given that nonlesional skin of each disease was distinct from 
control skin and appeared to be distinct from other diseases, we 
next compared our binary classification of nonlesional DLE com-
pared to nonlesional PSO or nonlesional AD using balance strate-
gies described above (Fig. 6, A and B). We found that nonlesional 
DLE and nonlesional PSO are easily separable, with the NK cell, 
amino acid metabolism, and plasma cell signatures being the top 
features used in classification (Fig. 6C). In the binary classification 
of nonlesional DLE compared to nonlesional AD, the top features 
included the inflammasome, NK cell, and unfolded protein signa-
tures (Fig.  6D). Comparable classification was observed with the 
top 15 features only (Fig. 6E), and other ML classifiers gave similar 
results (fig. S13). Last, binary classification of nonlesional PSO and 
nonlesional AD exhibited less effective classifier performance, but 
classification based on signatures including amino acid metabo-
lism, IL-23 complex, and cell cycle was achieved (fig. S14). These 
results indicate that transcriptomic profiles of nonlesional skin are 
sufficiently unique to distinguish different inflammatory skin diseases. 
Moreover, the differences among nonlesional skin of the three dis-
eases appear to be greater than the differences among lesional skin 
of the same three diseases.

ML used specific gene signatures for the classification of nonle-
sional skin samples as compared to control. To probe the disease-
specific differences in nonlesional skin in greater detail, we carried 

out an additional analysis using GSVA. For this analysis, we pooled 
the control samples and nonlesional samples from all datasets and 
used z-score normalization to scale expression data from samples 
obtained from different datasets. We found that nonlesional DLE 
samples compared to control samples show up-regulation of B cells, 
melanocytes, and complement protein gene signatures (Fig. 7A and 
fig. S16). Nonlesional PSO samples showed up-regulation of T cell 
and TH17 gene signatures, whereas nonlesional AD samples com-
pared to control samples showed up-regulation of skin-specific DC, 
IL-12, and anti-inflammation gene signatures as compared to con-
trol samples (Fig. 7A and figs. S17 and S18).

To confirm these GSVA results, we also used a mean of z-score 
calculation for enrichment of signatures and found similar results 
(figs. S19 to S21 and table S4). Notably, comparison of significantly 
enriched signatures determined by the z-score GSVA approach and 
the topmost important features for ML classification of nonlesional 
skin demonstrated considerable overlap (Fig. 7B). Of the 40 features 
used in both approaches, the majority of discriminatory features were 
similar. For example, in nonlesional DLE, there were 11 shared fea-
tures between ML and z-score GSVA methods including the plasma 
cell, TNF, Langerhans cell, and B cell signatures. In nonlesional PSO, 
there were 12 shared features between the two methods including 
the skin-specific DC, IL-17 complex, and TH17 signatures. In non-
lesional AD, there were eight shared features between the two 
methods including neutrophil, plasma cell, and anti-inflammation 
signatures.

ML successfully classifies different subtypes of CLE
Because the ML approach was able to determine specific signatures 
that separated related diseases, we sought to determine whether this 
same approach could distinguish subtypes of CLE based on their 
gene expression profiles. By hierarchical clustering, we observed 
that patients among the three CLE subtypes (DLE, SCLE, and 
ACLE) did not separate cleanly from control samples (fig. S22A). 
To interrogate molecular differences in CLE subtypes in greater 
detail, we examined individual gene signature enrichment among 
DLE and SCLE samples as compared to control, as they comprised 
sufficient sample numbers for further analysis. We previously 
observed a robust up-regulation of immune cell gene signatures, 
including the pDC, monocyte, T cell, and B cell signatures, by 
GSVA comparison of DLE and control samples (refer to Fig. 1B). 
The monocyte, T cell, and B cell signatures were up-regulated and 
the Langerhans cell signature was down-regulated in patients with 
SCLE as compared to healthy skin in a similar pattern to DLE (fig. 
S22B). In contrast, comparison of DLE and SCLE revealed minimal 
signatures with significant differences between the two CLE sub-
types (fig. S22C). By hierarchical clustering, samples from patients 
with SCLE did not form distinct clusters but rather were inter-
spersed with DLE, suggesting that subtypes of lupus are not molec-
ularly separable (fig. S23A). However, when we applied ML to 
determine whether DLE could be distinguished from SCLE (fig. S23B), 
classification with good performance characteristics was achieved 
(fig. S23, C and D). The top 15 features important in distinguishing 
DLE from SCLE included plasma cell, unfolded protein, and TNF 
signatures (fig. S23E). It is notable that the pattern of gene enrich-
ment signatures is similar in DLE and SCLE, but the magnitude of 
enrichment of gene signatures was greater in DLE. These quantita-
tive differences are sufficient for ML to classify the two subtypes of 
CLE effectively (fig. S23F).
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Fig. 5. ML classification reveals that nonlesional skin of DLE, PSO, and AD is distinct from control skin. (A) ROC curve and (B) PR curve of nonlesional DLE, nonle-
sional PSO, and nonlesional AD samples compared to pooled control samples using all cellular and pathway gene signatures. The top 15 features important in classifying 
(C) nonlesional DLE, (D) nonlesional PSO, and (E) nonlesional AD and control samples using Gini feature importance. (F) Comparison of the top 15 features for classifying 
each nonlesional disease compared to control using Gini feature importance. (G) Classification metrics to properly separate nonlesional DLE and control samples, nonle-
sional PSO, and control samples, as well as nonlesional AD and control samples using all 48 (top) or the top 15 (bottom) cellular and pathway gene signatures. Refer to 
table S3 (A and B) for ML details. Collinear features were removed (fig. S12).
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Cytokine-stimulated keratinocyte signatures and T cell 
signatures differ among inflammatory skin diseases
Keratinocyte and T cell signatures are often up-regulated in in-
flammatory skin diseases. Because the ML analyses to this point 
have focused on gene signatures previously implicated in lupus 
(17, 21, 22), with less emphasis on those implicated in other in-
flammatory skin diseases (23, 24), we also examined enrichment 
of previously published PSO- or AD-specific gene signatures in the 
four lesional inflammatory skin diseases as compared to healthy 
controls. To accomplish this, we first evaluated gene sets derived 
from keratinocytes stimulated with various cytokines (table S2C). 
We found, in all diseases, that many of the keratinocyte gene sig-
natures were highly enriched (fig. S24). DLE was highly enriched 
for the IFN-stimulated keratinocyte gene signatures, whereas PSO 
was highly enriched in IL-1– and IL-17–stimulated keratinocyte 
gene signatures. Keratinocyte gene signatures were up-regulated 
equally in AD, including IFN- and IL-17–stimulated keratinocyte gene 

signatures. SSc showed more modest increases to the keratinocyte 
gene signatures, with IL-1–, IL-17–, and TNF-stimulated kerati-
nocyte signatures decreased in some datasets. These data indicate 
a possible role for cytokine-stimulated keratinocytes in the patho-
genesis of each disease, with a less prominent effect in SSc. Collin-
earity analysis revealed that the keratinocyte signatures were highly 
correlated and, therefore, not appropriate for use in ML (fig. S25). 
Second, we examined the role of more nuanced T cell populations. 
For example, TH17 cells and IL-17 are targets of successful thera-
peutic intervention in PSO (25, 26); in addition, the TH2 T cell 
subset is implicated in AD pathogenesis (20). GSVA analysis of the 
T cell gene signatures demonstrated heterogeneity across the PSO, 
AD, and SSc datasets. T follicular helper (TFH) cell, TH1 cell, and 
TH17 cell signatures were enriched in most DLE datasets; PSO had 
variable enrichment of TH1 cell, TH2 cell, and TH17 cell signatures, 
as did AD, while SSc exhibited less robust T cell enrichment 
(fig. S26).

Fig. 6. Nonlesional DLE is distinct from PSO and AD. (A) ROC curve and (B) PR curve of nonlesional DLE samples compared to nonlesional PSO (purple) samples and 
nonlesional DLE samples compared to nonlesional AD samples (orange) using all cellular and pathway gene signatures. Top 15 features important in classifying (C) non-
lesional DLE and nonlesional PSO and (D) nonlesional DLE and nonlesional AD using Gini feature importance. (E) Classification metrics to properly separate nonlesional 
DLE samples and nonlesional PSO or nonlesional AD samples using all 48 (top) or the top 15 (bottom) cellular and pathway gene signatures. Refer to table S3 (A and B) 
for ML details. Collinear features were removed (fig. S15).
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DISCUSSION
Here, we used a comprehensive analysis of gene expression profiles to 
characterize the molecular features of four inflammatory skin diseases. 
Although considerable inter- and intra-dataset heterogeneity was ob-
served, we documented molecular gene signatures that define both 
lesional and nonlesional skin of the various conditions. Notable among 
the findings were the shared and unique features of lesional skin among 

the four diseases and the unique features of nonlesional uninvolved 
skin. Together, this analysis demonstrates the informative power of 
transcriptomics to determine pathological characteristics of clinically 
abnormal (lesional) skin as well as unique features of clinically un-
involved (nonlesional) skin of each inflammatory skin disease.

Our analyses involved multiple bioinformatic and statistical ap-
proaches that allowed us to understand the molecular pathways un-
derlying the preclinical and clinical stages of inflammatory skin 
diseases. First, we assessed numerous datasets for each disease so 
that we could capture the transcriptional landscape of each condi-
tion and overcome the heterogeneity among patients and datasets. 
Second, each dataset was independently evaluated by GSVA using 
informative gene signatures we previously used in the analysis of 
lupus (17, 21, 22, 27), gene signatures derived from interrogation of 
other inflammatory skin diseases (23, 24), and additional signatures 
we generated because of their relevance to skin pathogenesis. This 
analysis allowed us to observe unique patterns in the enrichment of 
inflammatory pathway signatures among and between the diseases 
and document that the diseases were molecularly separable. We 
used ML models, including CART and RF, to determine that effec-
tive classification between disease and control or between diseases 
was achievable and to identify the most important features labeling 
the conditions. The ML models not only permitted the effective 
classification of samples but also allowed dimensionality reduction, 
scaling the original 48 input gene signatures down to 15 features 
most important in each classification.

Despite previously noted heterogeneity (28, 29), our analysis re-
vealed that the molecular landscape of DLE was more homoge-
neous across datasets comprising patients from different centers 
and thus was sufficiently similar to permit accurate classification. 
Similarly, datasets including patients with SSc demonstrated con-
sistent gene expression patterns. In contrast, we and others found 
datasets comprising patients with PSO and AD to be more molecu-
larly heterogeneous (30). Nevertheless, we identified definitional 
transcriptional elements for each of the various conditions that in-
cluded both shared and specific molecular perturbations. Compar-
ison of the lesional DLE, PSO, AD, and SSc transcriptomes using 
GSVA demonstrated that these four inflammatory skin diseases 
have numerous inflammatory pathways in common. IFN, TNF, 
IL-12 complex, IL-23 complex, T cell IL-23, anti-inflammation, and 
unfolded protein gene signatures were commonly up-regulated among 
lesional biopsies from the four inflammatory diseases. CART anal-
ysis, which was used as an initial algorithm to detect important dis-
criminators within the data, demonstrated that the IFN and IL-12 
complex gene signatures were the two most important features in 
distinguishing lesional DLE, PSO, AD, and SSc from control sam-
ples. Moreover, ML algorithms documented that, of the 15 features 
necessary for accurate classification of each disease from control, 
7 features are common among all four diseases, including the IGS, 
IL-12 complex, IL-23 complex, TNF, plasma cell, T cell IL-23, and 
anti-inflammation gene signatures. Together, there were six shared 
and up-regulated features between the GSVA and ML methods, 
suggesting that, despite different genetic predispositions and dis-
ease manifestations, lesional DLE, PSO, AD, and SSc have a common 
inflammatory microenvironment that differentiates them from con-
trol skin. This was further supported by the overlapping enrichment 
of numerous signatures among at least two of the four diseases. For 
example, GSVA demonstrated that the neutrophil signature was 
up-regulated in the majority of PSO and SSc patients, whereas the 

Fig. 7. Nonlesional skin is characterized by up-regulation of unique cellular 
and pathway signatures. (A) Hedges’ g effect sizes of cellular (left) and pathway 
(right) gene signatures for pooled nonlesional disease samples compared to pooled 
control samples DLE, PSO, and AD datasets. Heatmap visualization uses red (enriched 
signature, >0) and blue (decreased signature, <0). Welch’s t test: *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001. (B) Comparison of the most important features deter-
mined by ML that are also statistically significant by z-score GSVA of nonlesional skin 
versus controls for nonlesional DLE (left), nonlesional PSO (middle), and nonlesional 
AD (right). Forty signatures were used in the nonlesional z-score GSVA; only these 
features were used in the comparison to nonlesional ML.
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pDC, monocyte, monocyte/myeloid cell, and B cell signatures were 
increased in the majority of DLE and SSc patients; the T cell, IL-21 
complex, inflammasome, and cell cycle signatures were increased in 
all diseases, except SSc.

Despite the similarities among the diseases, however, we detected 
unique characteristics of each inflammatory skin disease. We ob-
served clear molecular distinctions between lesional samples from 
patients with DLE, PSO, AD, and SSc. The GSVA analysis revealed 
that the NK cell signature was only up-regulated in lesional DLE 
compared to control samples, whereas the IL-1 cytokine signature 
was uniquely up-regulated in lesional PSO compared to controls. 
Notably, however, neither signature proved to be of particular im-
portance in ML classification of either disease from controls. Simi-
larly, the proteasome and Langerhans cell signatures were uniquely 
enriched in AD compared to control samples, and the endothelial 
cell and fibroblast signatures were uniquely enriched in lesional SSc 
compared to controls, although these signatures were not of partic-
ular importance in ML classification of either disease. Despite this 
complexity, ML was able to delineate the most important features 
for classification of each condition from normal. For example, al-
though increased in some patients from all diseases, the monocyte, 
T cell, and B cell signatures were more important in the classifica-
tion of DLE. Moreover, the keratinocyte and neutrophil signatures 
were most important in classifying PSO, and not the other diseases, 
a finding that is consistent with the role of keratinocyte prolifera-
tion and neutrophil infiltration in PSO (18, 31, 32). In addition, the 
IL-21 complex signature was up-regulated in all diseases except SSc, 
but was unique to ML classification of AD, consistent with the role 
of IL-21 in allergic skin diseases (33, 34). Last, the TGF fibroblast 
signature was important in classification of SSc, which aligns with 
the central role of fibrosis in this disease (23, 35). Furthermore, ML 
demonstrated that the pDC, fibroblast, and glycolysis signatures are 
important in classifying lesional DLE from the other lesional diseases, 
illustrating that ML can effectively classify diseases through identi-
fication of molecular changes among samples. These findings strongly 
imply that there are unique molecular features in lesional biopsies of 
inflammatory skin disease, along with a panoply of shared features.

Although there are numerous reports of gene expression abnor-
malities in lesional skin, less is known about the architecture of clin-
ically uninvolved nonlesional skin as compared to healthy skin. 
Examination of nonlesional skin in DLE, PSO, and AD provided 
previously unknown insights into the molecular processes operating 
in uninvolved skin and suggested a unique preclinical set of abnormal-
ities in each condition. Application of both ML- and z-score–based 
approaches as orthogonal analytic tools to assess the differences be-
tween nonlesional and normal skin revealed unique patterns of ab-
normalities in each inflammatory skin condition. Notably, only the 
apoptosis signature was among the top 15 features used by ML to 
classify nonlesional DLE, PSO, and AD versus pooled controls. This 
suggests that dysregulated apoptosis may be a key feature in the 
initiation of each of these three diseases; apoptosis is cited in the 
pathogenesis of skin diseases including CLE, PSO, and AD, and 
enhanced apoptosis is a well-recognized feature of SLE (36–39). In 
general, unique molecular features characterize each condition, such 
as the IL-21 pathway in CLE and IL-17 in PSO. Genetic polymor-
phisms may contribute to the abnormalities noted in nonlesional 
skin, as, for example, susceptibility to lupus is in part associated with 
polymorphisms in the IL-21 axis (40) and polymorphisms in IL-17 
are correlated with PSO treatment response (41).

Of note, unlike lesional disease, we did not observe a prominent 
role for the IGS in nonlesional skin from DLE, PSO, or AD. This 
contrasts with some previous studies suggesting that nonlesional 
skin from patients with SLE or DLE is influenced by type 1 IFN 
(42–44). However, this contention was based largely on single-cell 
RNA sequencing (RNA-seq) analysis of nonlesional keratinocytes 
and their expression of the IGS (42, 43), whereas our studies have 
evaluated expression of the IGS by deconvolution of bulk tissue 
gene expression. Our data revealed increased IGS in a few DLE 
samples, which may align with the increase of IFN action in only 
select cell clusters from single-cell RNA-seq analysis. Together, this 
suggests that IFN is not a dominant factor of nonlesional disease in 
either CLE or PSO and may instead reflect the concurrent exposure 
to ultraviolet (UV) light or the presence of specific autoantibodies, 
both of which are associated with up-regulation of the IGS (45–47).

Together, the data suggest a model in which patients with inflam-
matory skin disease manifest a specific set of preclinical molecular 
abnormalities that could predispose a patient to the development of 
typical clinical features, perhaps after encountering an environmen-
tal trigger (such as UV light, bacterial products, or allergens). Upon 
development of cutaneous inflammation, common molecular fea-
tures are up-regulated, although the lesional disease concurrently 
maintains a unique gene expression profile (Fig. 8A). This model is 
consistent with reports that nonlesional skin of patients with inflam-
matory skin disease is a pre-inflammatory or “primed” state, and that 
some of the same molecular processes may contribute to maintain-
ing both the pre-inflammatory and inflammatory components of the 
skin conditions (30). Here, we see not only an overlap of gene signa-
tures up-regulated in lesional skin between skin conditions but also 
some overlap between nonlesional and lesional skin within each 
inflammatory skin disease.

Previous reports were not able to separate molecular features of 
DLE from those of SCLE despite the marked differences in clinical 
phenotype (48). Both DLE and SCLE are characterized by interface 
dermatitis, but the differences in clinical manifestations suggest dif-
ferent molecular underpinnings. By GSVA, gene expression profiles 
of these two entities were similar to each other. GSVA analysis showed 
that the same gene signatures were significantly enriched in each sub-
type compared to control. However, the effect size in significantly en-
riched gene signatures was greater in DLE compared to SCLE. The 
quantitative differences were sufficient for ML to classify DLE from 
SCLE by using predominately the plasma cell, neutrophil, pDC, mela-
nocyte, and germinal center (GC) B cell features as well as the TNF, 
IL-12, and IL-1 cytokine inflammatory features to classify CLE sub-
types. This is supported, in part, by previous studies of skin biopsies of 
SCLE patients demonstrating the presence of TNF by immunofluo-
rescence staining in lesional but not nonlesional samples (49).

The results of this analysis lend insight into future treatment 
strategies for DLE, PSO, AD, and SSc based on the observed com-
mon and distinct molecular characteristics (Fig. 8B). For example, 
IL-17 is a well-known target for PSO treatment (50) and has been 
explored in therapy for lupus (51, 52) and AD (53); however, we did not 
observe consistent up-regulation of the IL-17 complex signature 
among the lesional manifestations of DLE, AD, and SSc, suggesting 
that IL-17–neutralizing therapy may be best suited for lesional PSO 
alone. However, we observed up-regulation of IL-17 complex and 
TH17 gene signatures in nonlesional PSO and AD samples, as well 
as up-regulation of the IL-17 complex signature in nonlesional DLE 
as compared to control samples, suggesting that IL-17 targeting 
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might be appropriate to prevent the emergence of typical skin le-
sions in all three diseases as well as to treat established plaques in 
lesional PSO. Of note, two of five lesional DLE datasets demonstrat-
ed significant up-regulation of the IL-17 complex and TH17 signa-
ture, suggesting that a subset of DLE patients might be responsive to 
IL-17 neutralization using therapies such as secukinumab, ixekizumab, 
or brodalumab. A study investigating the role of secukinumab, a 
monoclonal antibody to IL-17a, in DLE was initiated but discontin-
ued because of difficulty recruiting patients (53). In addition, the 
consistent up-regulation of the TNF signature in each lesional in-
flammatory skin disease supports the possibility that TNF-neutralizing 
agents may ameliorate inflammation in all four conditions. To date, 
TNF-neutralizing agents are effective in treating PSO (26) [etanercept 
(54), infliximab (55), adalimumab (56), and certolizumab pegol (57)], 
whereas others report their possible efficacy in SLE (58) and AD 
(59, 60). Notably, a recent phase 2 trial found that intradermal 
injection of a TNF-neutralizing agent, etanercept, as opposed to 

traditional systemic injection, induced remission in DLE (61, 62), 
supporting the conclusion that the local presence of TNF in the skin 
lesion is pathogenic in DLE. In a subset of patients with SCLE, TNF 
blockade has also been a useful treatment option. Nevertheless, it is 
important to note that anti-TNF–induced lupus or lupus-like syn-
dromes have been reported in some autoimmune disease patients 
receiving systemic TNF blockade (58). Although relatively uncom-
mon (58), this finding may caution the use of TNF-neutralizing agents 
in lupus. Moreover, the IL-12 signature was important in classifying 
all four lesional skin diseases, suggesting potential efficacy of the 
IL-12/23 inhibitor, ustekinumab, which is approved for treating 
PSO (63). Recent phase 3 trials in lupus were unsuccessful (64, 65), 
but improvement of skin and mucocutaneous lesions was noted in 
phase 2 trials (66). Last, consistent enrichment of the IGS was ob-
served in lesional skin of all four diseases, suggesting the potential 
for efficacy of IFN inhibitors such as anifrolumab. Treatment with 
anifrolumab, which was recently approved for SLE, resulted in a 

Fig. 8. Nonlesional skin from patients with inflammatory skin diseases manifests a specific set of preclinical, molecular abnormalities that predispose the de-
velopment of both shared and unique clinical features in lesional DLE, PSO, AD, and SSc after encountering an environmental trigger. (A) Summary graphic de-
tailing features determined by ML and up-regulated in nonlesional skin or lesional skin of DLE, PSO, AD, and SSc versus control as determined by GSVA. Some features are 
up-regulated in both nonlesional and lesional skin. The bottom box shows important ML features up-regulated by GSVA in lesional skin and shared among all four inflam-
matory skin diseases. Refer to table S4 for details about comparison between GSVA and z-score methods. (B) Summary of possible therapies of lesional skin diseases an-
alyzed (left) and possible therapies for both lesional and nonlesional regions of each disease (right) based on molecular characterization. * delineates drugs in development.
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significant reduction in skin involvement in CLE compared to pa-
tients receiving placebo (7). Together, our data suggest that there are 
several available therapeutic targets among the common mecha-
nisms up-regulated in these four lesional inflammatory skin diseas-
es, including the IL-12 complex, TNF, IFN, and the IL-23 complex. 
In addition, there are potential therapeutics noted that are not cur-
rently approved in the specific diseases stated but may prove useful 
based on the shared molecular features of both nonlesional and 
lesional inflammatory skin conditions (Fig. 8B).

We recognize the limitations of this study. First, some of the in-
dividual datasets had small sample numbers; therefore, it was neces-
sary to pool lesional samples from each disease, nonlesional samples 
from each disease, and controls to achieve sufficient sample num-
bers for ML. In addition, some datasets had few or no controls, and 
thereby, nonlesional skin could not be compared to control samples 
by GSVA without the pooling and normalization of samples. Never-
theless, we found a number of changes in nonlesional DLE similar to 
those previously reported by other techniques, for example, the de-
crease in Langerhans cells via immunohistochemistry (67). More-
over, because many of the widely used keratinocyte gene signatures 
were highly correlated with each other, ML analysis with these gene 
signatures previously reported in PSO and AD was not possible 
(30, 68, 69). Despite these caveats and the inter- and intra-dataset 
heterogeneity, we identified gene signatures both similar and dis-
tinct in lesional and nonlesional inflammatory skin diseases.

In summary, this transcriptomic analysis is one of the first com-
prehensive studies to evaluate four inflammatory skin diseases con-
currently and introduce comparative analyses of both lesional and 
nonlesional samples with control samples. We elucidated similarities 
and differences among both lesional and nonlesional DLE, PSO, 
AD, and SSc. Overall, our combined GSVA/ML analysis demon-
strated that although there are seven shared features for classifying 
lesional DLE, PSO, AD, and SSc from pooled controls, molecular 
features of nonlesional skin samples are more distinct. This indi-
cates that nonlesional skin samples are extremely informative about 
the underlying disease process and could be used to subset patients 
for future clinical trials or de-risk clinical trials, as nonlesional skin 
is reported to be an effective marker of treatment response (70). 
Nonlesional skin may be more useful in identifying the driving fea-
tures underlying pathogenesis because the inflammatory milieu 
among diseases becomes more similar during chronic lesional dis-
ease. In addition, although enrichment analysis of all cell types and 
pathways is important in the overall definition of disease pathology 
and is necessary to understand for treatment decisions, determina-
tion of discriminatory features may be more important in molecular 
diagnostics for inflammatory skin diseases or additional patholo-
gies. ML can be used to identify these features, which could aid in 
diagnosis and also help inform potential pathogenic drivers or contrib-
utors. Together, the application of gene signature analysis and the 
multiple computational approaches, similar to those used here, is in-
formative for understanding disease pathogenesis and could be useful 
for investigation of the transcriptomic landscape of many conditions.

MATERIALS AND METHODS
Experimental design
Fifteen publicly available gene expression datasets [accessed from the 
Gene Expression Omnibus (GEO)] were analyzed (table S1), includ-
ing 11 Affymetrix/Illumina microarray datasets (GSE52471, GSE72535, 

GSE81071, GSE109248, GSE100093, GSE120809, GSE117239, 
GSE117468, GSE130588, GSE58095, and GSE95065) and 4 RNA-
seq datasets (GSE121212, GSE137430, GSE157194, and GSE130955). 
GSE81071 was split into two parts based on the submission date on 
GEO (GSE81071 from 2017 referred to in the text as GSE81071_A 
and GSE81071 from 2019 referred to in the text as GSE81071_B). 
All datasets comprise gene expression derived from skin biopsies of 
lesional or nonlesional skin from patients with an inflammatory 
skin disease, including PSO, AD, SSc, and CLE subtypes including 
DLE, SCLE, and ACLE or skin biopsies derived from healthy con-
trol subjects. For GSE117239, GSE117468, GSE130588, GSE137430, 
and GSE157194, only lesional and nonlesional (clinically unin-
volved) samples at baseline without drug treatment were included 
in the analysis.

Statistical analysis
Statistical differences between cohorts were evaluated using un-
paired t test with Welch’s correction for GSVA enrichment scores 
of lesional and nonlesional samples, mean z scores of nonlesional 
samples versus control, and paired t test with Welch’s correction for 
lesional versus nonlesional comparison and were carried out in 
GraphPad Prism. Calculation of mean and SD for each GSVA score 
in each tissue was performed in Microsoft Excel. The number of 
samples for each dataset was detailed in table S3B. Further statisti-
cal details can be found in Supplementary Materials and Methods.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn4776

View/request a protocol for this paper from Bio-protocol.
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