Skip to main content
. 2020 May 27;10(34):19852–19860. doi: 10.1039/d0ra00061b

Feature selection and independent prediction accuracy of SVR model.

Methods Feature number Dataset 1 Feature number Dataset 2 Feature number Dataset 3
MSE R 2 MSE R 2 MSE R 2
All 1219 0.1066 0.7793 1323 0.1740 0.8389 1360 0.1709 0.7468
R a 19 0.0626 0.8686 65 0.0489 0.9658 91 0.3431 0.4541
R b 20 0.0994 0.8121 18 0.0477 0.9503 37 0.3655 0.4445
dCora 49 0.0948 0.7873 88 0.0283 0.9733 100 0.2358 0.6212
dCorb 15 0.0701 0.8368 42 0.0229 0.9767 25 0.1640 0.7518
Chi-MICa 86 0.0985 0.7842 61 0.0561 0.9467 82 0.2488 0.5975
Chi-MICb 27 0.1387 0.7029 34 0.0791 0.9716 15 0.4184 0.3631
mRMRa 15 0.1339 0.7180 98 0.1088 0.8876 70 0.1686 0.7503
mRMRb 13 0.1291 0.7188 26 0.1139 0.8578 11 0.2968 0.5607
Chi-MIC-share 15 0.0280 0.9590 27 0.0226 0.9750 22 0.0454 0.9367
a

Forward selection method without culling feature.

b

Forward selection method with culling feature.