Feature selection and independent prediction accuracy of SVR model.
Methods | Feature number | Dataset 1 | Feature number | Dataset 2 | Feature number | Dataset 3 | |||
---|---|---|---|---|---|---|---|---|---|
MSE | R 2 | MSE | R 2 | MSE | R 2 | ||||
All | 1219 | 0.1066 | 0.7793 | 1323 | 0.1740 | 0.8389 | 1360 | 0.1709 | 0.7468 |
R a | 19 | 0.0626 | 0.8686 | 65 | 0.0489 | 0.9658 | 91 | 0.3431 | 0.4541 |
R b | 20 | 0.0994 | 0.8121 | 18 | 0.0477 | 0.9503 | 37 | 0.3655 | 0.4445 |
dCora | 49 | 0.0948 | 0.7873 | 88 | 0.0283 | 0.9733 | 100 | 0.2358 | 0.6212 |
dCorb | 15 | 0.0701 | 0.8368 | 42 | 0.0229 | 0.9767 | 25 | 0.1640 | 0.7518 |
Chi-MICa | 86 | 0.0985 | 0.7842 | 61 | 0.0561 | 0.9467 | 82 | 0.2488 | 0.5975 |
Chi-MICb | 27 | 0.1387 | 0.7029 | 34 | 0.0791 | 0.9716 | 15 | 0.4184 | 0.3631 |
mRMRa | 15 | 0.1339 | 0.7180 | 98 | 0.1088 | 0.8876 | 70 | 0.1686 | 0.7503 |
mRMRb | 13 | 0.1291 | 0.7188 | 26 | 0.1139 | 0.8578 | 11 | 0.2968 | 0.5607 |
Chi-MIC-share | 15 | 0.0280 | 0.9590 | 27 | 0.0226 | 0.9750 | 22 | 0.0454 | 0.9367 |
Forward selection method without culling feature.
Forward selection method with culling feature.