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Novel prognostic biomarkers, 
METTL14 and YTHDF2, associated 
with RNA methylation in Ewing’s 
sarcoma
Jie Jiang1,3, Qie Fan2,3, Haishun Qu2, Chong Liu1, Tuo Liang1, Liyi Chen1, Shengsheng Huang1, 
Xuhua Sun1, Jiarui Chen1, Tianyou Chen1, Hao Li1, Yuanlin Yao1 & Xinli Zhan1*

Ewing’s sarcoma has a poor prognosis and high metastasis rate; thus, it is critical to explore prognostic 
biomarkers of m6A-related genes. Two datasets were downloaded from the Gene Expression Omnibus 
database, m6A-related genes were extracted, and prognostic models were constructed using the 
least absolute shrinkage and selection operator and multivariate COX regression analyses. Immune 
cell composition and drug sensitivity analyses were performed, and our analysis was validated 
using laboratory methods of immunohistochemical specific staining and qRT-PCR. Ewing’s sarcoma 
prognostic model demonstrated that the survival rate of cases in the high-risk group was much lower 
than that of the low-risk group. Naïve B cells, macrophages M0, macrophages M1, and resting mast 
cells are closely associated with Ewing’s sarcoma. METTL14 and YTHDF2 are strongly associated with 
multiple drug sensitivity. Immunohistochemical specific staining revealed higher expression of both 
METTL14 and YTHDF2 in Ewing’s sarcoma than in the paraneoplastic tissues. The results of qRT-PCR 
showed that METTL14 expression was significantly higher in both ES cell lines than in the control 
cell line. The prognostic model constructed using m6A-related genes METTL14 and TYHDF2, can be 
a potential prognostic biomarker for Ewing’s sarcoma, with the survival rate of cases in the high-risk 
group being much lower than that of the low-risk group.

Ewing’s sarcoma (ES) represent a newly emerging subgroup of small round cell sarcomas. They share several 
morphological, immunohistochemical, molecular, and clinical features and have recently become the second 
most common type of skeletal tumor1. This disease originates from mesenchymal stem cells, and it is the second 
most common sarcoma of the skeleton in young individuals and children. Further, this is also a highly aggres-
sive type of mesenchymal tumor showing a very high metastatic rate2–4. The epigenetic tumor mechanisms have 
implications in mesenchymal tumors, chondroblastoma, epithelial sarcoma, and ES, with a higher prevalence 
of these diseases in young individuals5. Thus, possible disease prognostic biomarkers should be determined due 
to the high metastasis rate and poor prognosis.

The modifications in RNA methylation account for more than 60% of all RNA modifications, with those in 
N-6 methylation being the most prevalent among all higher biological lncRNAs and mRNAs. Previous studies 
have demonstrated that the complexity of cancer development can be determined by m6A methylation modifica-
tions by regulating cancer-related biological functions. The m6A modifications of the noncoding RNAs modulates 
the stability, cleavage, transport, and degradation of noncoding RNAs; and also monitors cancer cell prolifera-
tion, metastasis, homeostasis, and stem cell differentiation by altering the biological functions in cancer6–8. RNA 
m6A modifications regulate RNA splicing, allosterism, stability, and protein translation. The m6A is primarily 
catalyzed by RNA transferases METTL3, METTL14, and METTL16 (writers), cleared by demethylases FTO and 
ALKBH5 (scavengers), and interacts with m6A binding proteins such as YTHDF1 and IGF2BP1 (readers). RNA 
demethylases, methylesterases, and m6A binding proteins are also upregulated in various human cancer tissues. 
This increased the expression of cancer cell proliferation, survival, and metastatic tumor proteins9.

Immune cell infiltration indicates the modification of the immune cell microenvironment, which possesses 
the tumorigenesis site. Most tumor cells express antigens mediating recognition by host CD8 + T cells. Based on 

OPEN

1The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning  530021, People’s Republic of 
China. 2Department of Traditional Chinese Medicine, The People’s Hospital of Guangxi Zhuang Autonmous Region, 
Nanning 530000, People’s Republic of China. 3These authors contributed equally: Jie Jiang and Qie Fan. *email: 
zhanxinli_215@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-06744-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7041  | https://doi.org/10.1038/s41598-022-06744-0

www.nature.com/scientificreports/

the molecular features and cells of the tumor microenvironment, tumor escape is classified into two main types. 
The first type, including the infiltrating T cells, is characterized by most inflammatory chemokines and innate 
immune activation of type I interferons. In contrast, the second is phenotyped as lacking this T cell inflammatory 
phenotype, possibly through rejection by the immune system to resist immune attack10. Moreover, in recent years, 
an increasing number of studies have shown that tumor immune cell infiltration plays a critical role in cancer11–15.

In the present study, we analyzed gene expression and survival data downloaded from the Gene Expression 
Omnibus (GEO) data using a combination of bioinformatics and laboratory validation to determine the role of 
m6A-related genes in ES. Furthermore, we aimed to provide new evidence by constructing prognostic models 
and analyzing immune cell composition and drug sensitivity to assist in clinical diagnosis and treatment.

Materials and methods
Data download and preliminary processing.  The gene expression and clinical information data used 
for the present study were downloaded from the GEO (https://​www.​ncbi.​nlm.​nih.​gov/​gds/) database. Our selec-
tion criteria for datasets: 1. unique datasets with available clinical data and 2. all solid tumor specimens derived 
from Ewing’s sarcoma. We downloaded two different datasets to make the analysis more logical and rigorous. We 
used GSE17674 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc = GSE17674)16, and GSE63157 (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi) as the experimental and validation datasets, respectively17. We have 
corrected for batch effects using the sva_combat method. We used Perl 5 (v5.30.2) for all text processing. Com-
pared to previous studies, we have constructed a prognostic model of Ewing’s sarcoma using more sophisticated 
and accurate bioinformatics techniques for predicting prognosis. The turning language R was used for process-
ing and graphing the data. All downloaded and completed data were normalized and log2 processed.

Extraction of m6A‑related genes, differential expression analysis, and correlation analy-
sis.  To analyze the differential expression of these genes, we used the “limma” packages to perform differen-
tial gene expression analysis. We compared the gene expression of Ewing’s sarcoma samples with controls and 
set P < 0.05 as a significant differentially expressed gene. This was then visualized using the ’ggplot’ package, the 
’pheatmap’ package and the ’ggpubr’ package. The differential expression genes were visualized as heat maps and 
volcano plots. The differential expression of all m6A-related genes can be found in Table 1. Subsequently, the 
gene expression of m6A-related genes was extracted from 21,655 genes using the “limma” package. The “pheat-
map” package was utilized to visualize them. The “ggpubr” and “reshape2” packages were utilized to obtain the 
m6A-related gene expression in ES and paraneoplastic tissues and visualized them as violin maps. Details of all 
m6A-related differentially expressed genes can be found in Table 1. Subsequently, the correlation of m6A-related 
differential genes was analyzed using the “corrplot” and “circlize” packages and visualized as correlation circle 
plots.

Construction of a prognostic model for Ewing’s sarcoma.  Several techniques were used to analyze 
the relationship between m6A differentially expressed genes and ES prognosis to determine those closely associ-
ated with prognosis. First, the least absolute shrinkage and selection operator (LASSO) regression analysis18,19 
method was used for maximum model refinement. This advanced, streamlined modeling approach compresses 
the coefficients of insignificant variables to zero; thus, fulfilling the variable selection effect. Subsequently, a 
multivariate COX regression analysis of survival status and time was used along with gene expression to obtain 
a more accurate prognostic model. After these two precise screening steps, we constructed a logistic regression 
model for m6A-related Ewing’s sarcoma. Finally, a risk score was assigned to each Ewing’s sarcoma case and, 
based on its median value, cases greater than or equal to the median value were classified as high risk and those 
less than the median value as low risk.

Table 1.   Differential expression of m6A-related genes. Table shows the differential expression of all m6A-
related genes in Ewing’s sarcoma.

Gene conMean treatMean logFC p-value

METTL3 5.699018 7.14749 0.326723 1.50E-13

METTL14 4.58475 5.824376 0.34526 1.08E-15

WTAP 5.598477 6.282423 0.166287 1.05E-13

KIAA1429 4.444641 5.170975 0.21837 4.87E-14

RBM15 5.27808 6.091391 0.206758 1.08E-15

ZC3H13 6.066223 7.29778 0.266659 1.57E-11

YTHDC1 4.593895 5.222197 0.184939 1.08E-15

YTHDC2 4.840991 5.124283 0.082048 0.009839

YTHDF1 7.71216 8.424596 0.127472 1.22E-09

YTHDF2 7.580526 8.96268 0.241632 1.08E-15

HNRNPC 6.54433 7.751271 0.244187 1.08E-15

FTO 7.779931 7.944228 0.03015 0.068138

ALKBH5 7.533025 6.182872 -0.28495 2.16E-15

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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The three‑dimensional (3D)‑principal component analysis, gene expression analysis, and risk 
scoring.  3D-Principal Component Analysis is a commonly used tool for data analysis. For a set of data that 
may be linearly correlated between different dimensions, PCA is able to transform this set of data into data that 
is linearly uncorrelated between the dimensions by means of an orthogonal transformation20–22. After an ES 
prognostic model was constructed, a 3D-principal component analysis was performed to analyze whether the 
two could be distinguished based on high and low-risk groupings. The “scatterplot3d” package was utilized to 
analyze and visualize it. Subsequently, based on the constructed prognostic model, the “ggpubr” package was 
used to analyze gene expression in-depth. All cases were ranked serially from low to high risk, and the corre-
sponding survival status for each patient was plotted. Moreover, the expression of the genes used to construct the 
prognostic model in the high-and low-risk groups was analyzed (Fig. 1A–C).

Figure 1.   Workflow diagram. From the diagram, we can see the flow of our work clearly and briefly.
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Survival analysis.  Survival analysis was conducted for all cases to analyze the role of m6A-related genes 
in of sarcomas prognosis. These were analyzed using two different methods. First, based on the high and low 
expression values of each m6A-related gene, all patients were divided into high and low expression groups, and 
Kaplan–Meier survival curves were plotted. Subsequently, based on the constructed prognostic model, these 
curves were analyzed for all cases by dividing them into high-and low-risk groups. To verify the accuracy of the 
constructed prognosis, the same approach was utilized for GSE63157 to construct a prognostic model, yielding 
a Kaplan–Meier survival curve for the validated gene set.

Examination of the prognostic model of Ewing’s sarcoma.  The accuracy of our constructed prog-
nostic model of ES was tested using the receiver operating characteristic (ROC) diagnostic and calibration 
curves as well as the column line graph method for testing the model. First, the ROC diagnostic curves were 
plotted for the model using the “survival”, “survminer”, and “timeROC” packages. Second, the ROC diagnostic 
curves of clinical information were prepared using these three R package pairs. Finally, the “rms” package was 
utilized for the calibration curves and column plots.

Immune cell composition analysis and correlation analysis.  In this study, all cases of ES were 
quantified to assess the relationship between the samples and immune cell composition using CIBERSORTs 
software23–25. The immune cells of each sample of ES were set to 100%, and the composition of a total of 22 
immune cells was analyzed and visualized as a composition map. Subsequently, the relationship between these 
immune cells was assessed, and a correlation analysis was performed using the “corrplot” package. In contrast, 
we performed an in-depth analysis of m6A-related gene expression and immune cell content in ES to analyze the 
role of immune cells at multiple levels and perspectives.

Drug sensitivity analysis.  CellMiner software is based on 60 cancer cells listed by the National Cancer 
Institute’s Center for Cancer Research (NCI). The NCI-60 cell line is currently the most widely used cancer 
cell sample population for anti-cancer drug testing26,27. It allows researchers to query data on the 22,379 genes 
identified in the NCI-60 cell line, as well as the 20,503 compounds analyzed (including 102 drugs approved by 
the US Food and Drug Administration). Here, a drug sensitivity analysis was conducted to investigate the rela-
tionship between two m6A genes and drug sensitivity for better guidance of clinical drug use. All data related 
to drug sensitivity was downloaded from the CellMiner database (version: 2021.1, database: 2.6). Subsequently, 
the programming language R (× 64, version 4.0.2) was used to assess the relationship between m6A-related gene 
expression information and drug sensitivity using the “impute,” “limma,” “ggplot2,” and “ggpubr” packages.

Immunohistochemical analysis.  The accuracy of the bioinformatics analysis was determined by per-
forming immunohistochemical analysis on the two genes that were used for model construction. The pathologi-
cal sections for immunohistochemistry were excised specimens obtained for pathological testing during surgery 
at the First Clinical Affiliated Hospital of Guangxi Medical University. The study followed the Declaration of 
Helsinki and was approved by the ethics department of the First Clinical Affiliated Hospital of Guangxi Medi-
cal University, and immunohistochemical staining analysis was performed on anonymous tissue specimens. 
Therefore, this study needs for the patient’s written informed consent is waived. The immunohistochemical 
analysis was performed for a total of 12 pathological sections for each gene in three pairs (three each of cancer 
and para cancer tissue sections). Antibodies for immunohistochemical specific staining were purchased from 
Proteintech (https://​www.​ptgcn.​com/) (under item numbers 26158–1-AP and 24744–1-AP). All sections were 
dewaxed and hydrated by cutting 3 µm thick paraffin sections, baking them overnight at 64 °C, dewaxing in 
water, and immersing in distilled water. Subsequently, antigen repair was performed, endogenous peroxidase 
was blocked, water was shaken off the sections, and sections were circled at 3 mm from the tissue using an 
immunohistochemical grease pencil. The peroxidase blocker was added dropwise to the sections for 10 min at 
room temperature and washed thrice for 3 min each in phosphate-buffered saline and 95%, 100%, and 100% 
alcohols. The slices were then sealed using neutral environmental protection resin. All stained pathological tis-
sue sections were placed under an inverted microscope for observation and image acquisition. Subsequently, 
a statistical analysis of the positive regions of specific staining was performed for each gene. The positive rates 
for all immunohistochemically stained images were calculated using Image J software. Moreover, the data were 
imported into IBM SPSS Statistics 25, where they were analyzed using a t-test of two-paired sample means. 
Finally, the results of the statistics were visualized using GraphPad Prism 8.

Quantitative reverse transcription PCR (qRT‑PCR).  The normal human 293 T cells used in this study 
were purchased from Shenzhen Aowei Biotechnology, human Ewing’s sarcoma cells A673 were purchased from 
SHANGHAI WHELAB BIOSCIENCE LIMITED and human Ewing’s sarcoma cells RD-ES were purchased from 
Zhejiang Meisen Cell Technology Ltd., Co. 293 T cells and A673 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) containing 10% FBS, 100 U/mL penicillin, and 100 mg streptomycin at 37 °C and 5% 
CO2 atmosphere. A673 cells were cultured in RPMI medium 1640 containing 10% FBS, 100 U/mL penicillin, 
and 100 mg streptomycin at 37 °C and 5% CO2 atmosphere. RNA extraction using Hipure Total RNA Mini 
kit (Magen, China) followed by quantitative real-time PCR (qRT-PCR) was used to purify the total intracel-
lular RNA from the induced samples. Subsequently, 1000 ng of the extracted RNA was reverse transcribed into 
cDNA using a cDNA synthesis kit (Takara, China). qRT-PCR was used to detect the gene expression using the 
LightCycler 480 Sequence Detention System (Roche, Germany) and PCR Green Master Mix (Roche, Germany). 
The activation cycle of the polymerase included 10 min at 95 °C and15 s at 95 °C, and 45 cycles such cycles were 

https://www.ptgcn.com/
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performed. Glyceraldehyde 3-phosphate dehydrogenase (GADPH, Abcam, USA) was used as the internal con-
trol, and the data analysis was performed using the 2-ΔΔCT method. The analysis for each gene was performed 
in triplicate. The primer sequences of the target genes are presented in Table 2.
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authors of this study. The authors have no relevant affiliations or financial involvement with any organization 
or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the 
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grants or patents received or pending, or royalties. No writing assistance was utilized in the production of this 
manuscript.
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Data sharing statement.  The datasets supporting the conclusions of this article are available in the GEO 
database (GSE21257:https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​257, and GSE63157: https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE63​157).

Results
Data download and preliminary processing.  We downloaded two datasets from the GEO database, 
GSE17674 as the experimental set for constructing the prognostic model for ES and GSE63157 as the validation 
set for the prognostic model. Among them, GSE17674 comprised 44 ES and 18 normal samples. A total of 85 ES 
samples were included in GSE63157 as the validation set. We analyzed a total of 147 samples from 129 ES and 
18 normal control samples. All gene expression data were normalized using R to remove inter-batch differential 
processing. The flow chart is illustrated in Fig. 2.

Differential expression analysis, extraction of m6A‑related genes, and correlation analy-
sis.  We first performed differential expression analysis on all genes and obtained a total of 3947 differentially 
expressed genes according to the set cut-off values. Heat map and volcano plots are shown in Fig. 3A, B. Subse-
quently, we extracted these genes from all gene expression matrices for subsequent analysis to analyze the role 
of m6A genes in ES. We performed differential expression analysis of these m6A-related genes (Fig. 4A) and 
observed that the differences in 12 of these 13 genes were statistically significant (P < 0.05). We analyzed the 
expression of m6A-related memory in tumor and normal samples and found that the expression of all 12 genes 
was higher in tumor samples than in normal samples except for ALKBH5 (Fig. 4B). We found that there was 
a correlation between both these m6A-related genes, with some showing synergistic high expression (Fig. 4C) 
and some showing low synergistic expression. We have placed details of the m6A-related differentially expressed 
genes in Table 1.

Construction of a prognostic model for Ewing’s sarcoma.  We first performed LASSO regression 
analysis on these 13 m6A-related genes to maximize the number of genes in the prognostic model and obtain 
the most accurate and streamlined prognostic model. As observed from the results of the LASSO regression 
analysis (Fig. 5A and B), the most streamlined results can be achieved when the number of genes is four. From 
the multivariate COX regression analysis (Fig. 5C), we found that after analysis, only two genes, METTL14 and 
YTHDF2, were closely associated with the presence of survival. Details of the results of the multivariate COX 
regression analysis can be found in Table 3. We constructed a prognostic model for ES based on these two genes, 
and each case was rated for risk. The cases with risk scores greater than or equal to the mean were classified into 
the high-risk group and those less than the mean into the low-risk group.

3D‑principal component analysis, gene expression analysis, and risk scoring.  From the con-
structed 3D-principal component analysis plot, we observed (Fig.  5D) that the cases in the high-risk group 
were distributed in the positive axis direction of the PC3 axis, while most of the cases in the low-risk group 
were distributed in the negative axis direction of the PC3 axis. Moreover, we found that the gene expression 
value of METTL14 was lower in the high-risk group than that in the low-risk group (Fig. 5E), with a statistically 
significant difference. The gene expression value of YTHDF2 was higher in the high-risk group than that in the 

Table 2.   Primer sequences for GAPDH and METTL14. Table shows the primer sequences for GAPDH and 
METTL14 during the primer design phase.

Primer Sequence (5’–3’)

METTL14-F GGC​TAT​GAC​TCC​TAA​TCA​CGC​TTC​C

METTL14-R ATC​CAA​GTT​CAA​GTC​CAC​ACC​ACA​G

GAPDH -F CCA​CTC​CTC​CAC​CTT​TGA​C

GAPDH -R ACC​CTG​TTG​CTG​TAG​CCA​

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63157
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63157
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Figure 2.   Heat map and volcano plots of differentially expressed genes. (A) shows a heat map of the 
differentially expressed genes. (B) shows the volcano map of differentially expressed genes.
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low-risk group (Fig. 5F), with a statistically significant difference. Each case was ranked consecutively based on 
the risk score from the lowest to the highest to obtain the risk graph (Fig. 1A–C).

Survival analysis.  We first divided all cases into the high and low expression groups of this gene for Kaplan–
Meier survival curves based on the mean expression of each m6A gene to utilize the survival data of ES com-
pletely. We observed that except for METTL14, YTHDC1, and YTHDF2 (Fig. 6A–M), the differences between 
the other ten genes in these two groups were not statistically significant (P > 0.05). Moreover, the results of our 
constructed prognostic model for m6A-associated ES showed that cases in the high-risk group possessed a worse 
survival rate than those in the low-risk group (Fig. 6N), with a statistically significant difference (P < 0.05). Also, 
we constructed a prognostic model using the same method for GSE63157, yielding similar results (Fig. 6O), with 
cases in the high-risk group having worse survival than those in the low-risk group (P < 0.05).

Examination of the prognostic model of Ewing’s sarcoma.  The ROC diagnostic curve indicated 
(Fig. 7A) that the constructed prognostic model predicts the 1-year, 3-year, and 5-year survival rates with an 
accuracy above 50%. Also, as depicted in Fig. 7B, the area under the curve of the ROC curve for the diagnosis 
of risk, survival status, age, and sex with clinical information is greater than 0.5. The calibration plot depicts 
(Fig. 7C) that the starting point and focus of the predicted survival largely overlap, which further illustrates the 
accuracy of our constructed prognostic model. In contrast, we constructed a line graph (Fig. 7D) and were able 
to predict the survival rate of patients more accurately using the line graph.

Figure 3.   Heat map, violin map and correlation circle map of m6A-related genes. (A) shows a heat map of 
differential expression of m6A-related genes, with red indicating highly expressed genes and green indicating 
lowly expressed genes. (B) represents the expression of m6A-related genes in paraneoplastic tissues and in 
Ewing’s sarcoma. Figure C represents the correlation plot between m6A-related genes, with the linkage between 
quantitative genes in red for synergistic high expression and in green for synergistic low expression.
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Figure 4.   Survival analysis. (A–L) and (M) represent the results of survival analysis based on high and low 
expression of genes in Ewing’s sarcoma. (N) represents the results of the constructed prognostic model. (O) 
represents the prognostic model validation of the validation set.
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Figure 5.   Diagram of the construction process of the prognostic model. (A) and (B) represent the results of the 
LASSO regression analysis. (C) represents a plot of the results of the multivariate COX regression analysis. (D) 
shows the 3D-principal component analysis plot, with red points indicating high-risk cases and green points 
indicating low-risk cases. (E) and (F) indicate the expression of METTL14 and YTHDF2 in the high-risk group 
and in the low-risk group, respectively.
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Immune cell composition analysis and correlation analysis.  We used CIBERSORT software to 
quantify the composition of immune cells in both ES and normal cases. This is illustrated in Fig. 8A, with each 
sample comprising 22 types of immune cells. Moreover, there is a correlation between the expression of these 
22 immune cells (Fig. 8B), with the red line synergizing high expression and green synergizing low expression. 
We performed a differential analysis of immune cell components in all cases (Fig. 9A) and found significant 
differences in the expression of naïve B cells, macrophages M0, macrophages M1, and resting mast cells in 
ES and normal controls (p < 0.05). Also, we analyzed the relationship between METTL14 and YTHDF2 with 
these immune cells (Fig.  9B–E) and found that METTL14 showed a negative correlation with naïve B cells, 
macrophages M1, and resting mast cells, and a positive correlation with macrophages M0 (P < 0.05). In contrast 
(Fig. 9F–I), YTHDF2 showed a negative correlation with naïve B cells and macrophages M1 and a positive cor-
relation with macrophages M0 and resting mast cells (P < 0.05).

Drug sensitivity analysis.  To better explore the relationship between Ewing’s sarcoma and drug sensitiv-
ity, a drug sensitivity analysis was performed. Using drug sensitivity analysis, we found that METTL14 and 
YTHDF2 were quite closely related to the drug sensitivity of multiple drugs (Fig. 10). Among these, METTL14 
showed a positive correlation with the drug sensitivity of several drugs, including Nelarabine, Hydroxyurea, 
and Clofarabine, and a negative correlation with the Mithramycin, Depsipeptide, and Actinomycin. In contrast, 
YTHDF2 was closely associated with the sensitivity of several drugs such as Dasatinib, Vorinostat, and Brig-
atinib. A positive correlation indicates that the sensitivity of the corresponding drug increases with the increase 
in the gene expression value. A negative correlation indicates that the sensitivity of the corresponding drug is 
weakened with the increase in the gene expression value.

Immunohistochemical analysis.  We performed laboratory analysis of six (three cases of ES and three 
cases of paraneoplastic tissue) of each gene for a total of 12 immunohistochemical specific stains. After labora-
tory manipulation, we obtained all the specific stained sections, which we placed in the same inverted micro-
scope for observation. We found that the specific expression of both METTL14 and YTHDF2 was higher in ES 
than in the paraneoplastic tissues (Fig. 11A1–D2). We were able to find from the pictures of the specific staining 
by immunohistochemistry that the specific expression of both METTL14 and YTHDF2 in Ewing’s sarcoma was 
higher than their respective expression in the control group. This is consistent with our previous analysis and 
further enhances the credibility of the prognostic model we have constructed. We again performed statistical 
analysis of the slices using Image J software for positive rate statistics, using the IBM SPSS Statistics 25 t-test for 
two-paired sample means. The positive rates of both METTL14 and YTHDF2 (Fig. 11E, F) were observed to be 
higher in ES than in the paraneoplastic tissues (P < 0.05).

Quantitative reverse transcription PCR (qRT‑PCR).  We performed in vitro qRT-PCR cellular assays 
for cellular level validation of the METTL14 gene in order to verify the reliability of the bioinformatics analysis. 
From Fig. 11G, we can learn that the expression of METTL14 gene in the control cell line 293 T was much lower 
than that in the human Ewing’s sarcoma A673 cell line (P < 0.05); in addition, its expression in the control 293 T 
was also much lower than that in the human Ewing’s sarcoma RD-ES (P < 0.01).

Discussion
N6-RNA methylation modifications appear as a highly abundant dynamic regulation throughout eukaryotic 
transcription. With an increasing number of m6A-related genes observed to be dysregulated in tumors, m6A 
alters the course of cancer cell development28. The m6A regulators have been shown to promote the develop-
ment of various types of cancer possibly, and a study by Anita et al. found that overexpression of YTHDF3 and 
YTHDF1 can lead to poor prognosis in patients with breast cancer29. Moreover, m6A-related genes were not 
only dysregulated in expression in breast cancer but also in gastric cancer. Wang et al. demonstrated that high 
expression of METTL3 promoted glycolysis and tumor angiogenesis in gastric cancer, suggesting METTL3 as a 
potential therapeutic target for human gastric cancer30. However, the role of m6A-related genes in ES is poorly 
reported, and the low prognosis and high metastatic nature of this malignant disease critically require investiga-
tors to explore the role of m6A-related genes in ES.

Methyltransferase Like 14 (METTL14) is a protein-coding gene that is most closely associated with periosteal 
chondrosarcoma and Miyoshi muscular dystrophy 3. The upregulation of METTL14 has been demonstrated 
to lead to the decrease of PERP level through m6A modification which promotes the metastasis and growth 
of pancreatic cancer; thus, METTL14 can be a potential therapeutic target for pancreatic cancer31. METTL14 
has also been reported in leukemia; METTL14 exerts oncogenic effects by regulating its mRNAs (MYB and 
MYC) through m6A modifications32. Liu et al. found that approximately 70% of endometrial tumors exhibit 
reduced m6A methylation, which may be owing to mutations in METTL14 or reduced expression of METTL3 

Table 3.   Results of the multivariate COX regression analysis. Table shows the detailed results of the 
multivariate COX regression analysis.

ID Coef HR HR.95L HR.95H p value

METTL14 −1.6877 0.184944 0.044527 0.768168 0.02018

YTHDF2 1.569026 4.801968 1.685304 13.68234 0.003314
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(another component of the methylation transferase complex), and that these changes lead to a possible increase 
in endometrial tumorigenicity33. Thus, the above study is consistent with our results. Our results show that the 
prognostic models constructed for m6A-related genes, including METTL14, have much lower survival rates in 
their high expression group than in the low-risk group. More importantly, we found that METTL14 showed a 
negative correlation with naïve B cells, macrophages M1, and resting mast cells and a positive correlation with 
macrophages M0 (p < 0.05), and these immune cells are closely related to cancer development34–37. This pro-
vides new evidence for immunotherapy of ES. Moreover, we performed a correlative drug sensitivity analysis 
of METTL14 and found that this gene showed a quite close correlation with the sensitivity of multiple drugs, 
providing new reference evidence for the treatment of ES.

YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), a member of the superfamily containing 
the YTH structural domain, is a typical structural domain of eukaryotes, whose structural domain is generally 
located in the middle of the protein sequence and may have a function similar to that of RNA nodules. It has 
been found that YTHDF2 can regulate m6A methylation of OCT4 mRNA to promote liver phenotype and cancer 
metastasis in cancer stem cells38. Dixit et al. found that the m6A-related gene YTHDF2 is aberrantly expressed in 
glioblastoma compared to normal neural stem cells and could be a therapeutic target for the treatment of MYC 
signaling in glioblastoma39. This is consistent with the results of our study. Our results showed that the prognos-
tic model constructed by m6A-related genes, including YTHDF2, had a much lower survival rate in the high 
expression group than that in the low-risk group. Moreover, we found that this YTHDF2 is particularly closely 
related to naïve B cells, macrophages M0, macrophages M1, and resting mast cells, which are immune cells. This 
may provide a new reference for guiding the immunotherapy of ES. Also, we found a close correlation between 
the sensitivity of YTHDF2 and several drugs such as Dasatinib, Vorinostat, and Brigatinib, which provides new 
reference information for the drug treatment of ES.

Here, we downloaded two datasets from the GEO database, constructed m6A-related ES, prognostic models 
using LASSO and multivariate COX regression analysis, and analyzed the prognosis of ES by differential expres-
sion analysis, 3D-principal component analysis, gene expression analysis, survival analysis, risk assessment of ES 

Figure 6.   Risk graph for Ewing’s sarcoma cases. (A) represents the risk score chart based on the risk of the cases 
in order from ground to high. (B) represents the graph of survival and death of the cases. (C) represents the 
expression of METTL14 and YTHDF2 in high and low risk groups.
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cases, ROC diagnostic curve, calibration curve analysis, and column line graph prediction analysis. The roles of 
m6A-related genes METTL14 and TYHDF2 in ES were analyzed using precise and sophisticated bioinformat-
ics techniques, such as immune cell composition, immune cell correlation, immune cell-gene correlation, and 
drug sensitivity analyses. METTL14 and TYHDF2 serve as biomarkers of Ewing’s sarcoma, and we can use the 
expression of these two genes in Ewing’s sarcoma to predict the survival risk and prognosis of Ewing’s sarcoma 
patients, providing new and useful information to guide clinical diagnosis and treatment. Finally, we tested our 
results using two different levels of laboratory methods. First, we first performed immunochemical specific stain-
ing of Ewing’s sarcoma specimens derived from human tissue, and our analysis showed that both genes were 
expressed more in Ewing’s sarcoma than in the control group, and the differences were statistically significant 
(P < 0.05). Secondly, we performed cell cultures of Ewing’s sarcoma and control cells and the results of the qRT-
PCR experiments performed showed that METTL14 expression was higher in both Ewing’s sarcoma cell lines 
than in the control cell lines, with statistically significant differences (P < 0.05). All experimental results support 
the results of our bioinformatics analysis. We therefore have reason to believe that METTL14 and YTHDF2 can 
serve as prognostic biomarkers for Ewing’s sarcoma associated with m6A.

Similar to others, our study also had certain limitations. First, the sample size was inadequate. We used a 
total of 147 samples for analysis and validation, which was insufficient. Second, we did not perform an adequate 
analysis of the specific tumor staging of ES.

Figure 7.   A test plot of the prognostic model of Ewing’s sarcoma. (A) represents the accuracy of predicting 
the probability of survival at 1,3 and 5 years. (B) indicates the accuracy of the diagnostic clinical information. 
(C) represents the calibration curve for predicting patient survival. (D) represents the column line plot for 
predicting the probability of patient survival.
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Conclusion
A prognostic model constructed using the m6A-related genes METTL14 and TYHDF2, whose survival rates 
for cases in the high-risk group were much lower than those in the low-risk group, can be a potential prognostic 
biomarker for ES.

Figure 8.   Immune cell composition and correlation analysis. (A) represents the analysis of immune cell 
composition for all cases, with each color indicating one immune cell. (B) represents the correlation analysis 
between immune cells, with red connecting lines indicating synergistic high expression and green links 
indicating synergistic low expression.
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Figure 9.   Expression of immune cells in Ewing’s sarcoma and paraneoplastic tissues. Figure A shows the 
expression of four immune cells in Ewing’s sarcoma and paraneoplastic tissues, "*" indicates P < 0.05, "*" 
indicates P < 0.01. (B–E) represent the correlation analysis obtained between METTL14 and this B cells naive, 
Macrophages M0, Macrophages M1 and Mast cells resting. (F–H) and (G) represent the correlation analysis 
obtained between YTHDF2 and this B cells naive, Macrophages M0, Macrophages M1 and Mast cells resting.
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Figure 10.   Drug sensitivity analysis. The figure shows the relationship between METTL14 and YTHDF2 each 
with different drug sensitivities. If Cor > 0, the high expression of this gene showed a positive correlation with 
drug sensitivity. If Cor < 0, the high expression of this gene showed a negative correlation with drug sensitivity.
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