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Abstract

The stepped wedge cluster randomized trial (SW-CRT) is an increasingly popular design for 

evaluating health service delivery or policy interventions. An essential consideration of this design 

is the need to account for both within-period and between-period correlations in sample size 

calculations. Especially when embedded in health care delivery systems, many SW-CRTs may 

have subclusters nested in clusters, within which outcomes are collected longitudinally. However, 

existing sample size methods that account for between-period correlations have not allowed 

for multiple levels of clustering. We present computationally efficient sample size procedures 

that properly differentiate within-period and between-period intracluster correlation coefficients 

in SW-CRTs in the presence of subclusters. We introduce an extended block exchangeable 

correlation matrix to characterize the complex dependencies of outcomes within clusters. For 

Gaussian outcomes, we derive a closed-form sample size expression that depends on the 

correlation structure only through two eigenvalues of the extended block exchangeable correlation 

structure. For non-Gaussian outcomes, we present a generic sample size algorithm based on 

linearization and elucidate simplifications under canonical link functions. For example, we show 

that the approximate sample size formula under a logistic linear mixed model depends on three 

eigenvalues of the extended block exchangeable correlation matrix. We provide an extension to 

accommodate unequal cluster sizes and validate the proposed methods via simulations. Finally, we 

illustrate our methods in two real SW-CRTs with subclusters.
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1 | INTRODUCTION

Stepped wedge cluster randomized trials (SW-CRTs) are an increasingly popular trial design 

for a variety of reasons including their potential benefits of increased power and statistical 

efficiency (Hemming and Taljaard, 2020). In an SW-CRT, one or more randomly allocated 

clusters are scheduled to transition from control to intervention at prespecified time points 

until all clusters are exposed to the intervention. Figure 1 provides a schematic of a typical 

SW-CRT in which eight clusters are allocated to four sequences and outcomes are observed 

within each of five time periods. SW-CRTs can employ either a cross-sectional or closed-

cohort design, depending on whether repeated measurements are taken from the same or 

different individuals in each period.

A comprehensive methodological review of available statistical methods for SW-CRTs is 

presented in Li et al. (2021). While almost all current methods for designing SW-CRTs have 

assumed a two-level structure within periods (e.g., patients nested in practices), several 

recent trials have utilized data from patients nested within subclusters, giving rise to 

three-level structures within periods. For example, the Lumbar Imaging with Reporting 

of Epidemiology (LIRE) trial was an SW-CRT that evaluated the impact of inserting 

benchmark prevalence data in spinal imaging reports on subsequent health care utilization, 

and cross-sectionally sampled patients nested in primary care providers, who are nested in 

practices (Jarvik et al., 2015). As another example, the Washington State Expedited Partner 

Therapy (EPT) SW-CRT randomized local health jurisdictions (LHJ) consisting of clinics 

and cross-sectionally measured chlamydia infection in patients (Golden et al., 2015). In 

this paper, we present new methods for designing SW-CRTs that explicitly account for the 

three-level structure within each period while additionally accounting for the between-period 

correlation parameters.

For the standard parallel-arm CRT design (without repeated measures), Heo and Leon 

(2008) and Teerenstra et al. (2010) developed the design effect (DE) for three-level data with 

a Gaussian outcome. The DE is expressed as 1 + (N − 1)α0 + N(K − 1)ρ0, where α0 and ρ0 

are the within-subcluster and between-subcluster intracluster correlation coefficients (ICCs), 

K and N are the number of subclusters and subcluster size, respectively. This DE represents 

the amount by which the sample size required for an individually randomized trial needs to 

be multiplied to obtain the sample size required for a three-level CRT and coincides with 

the leading eigenvalue of the nested exchangeable correlation structure (Li et al., 2019). The 

same DE expression also applies to three-level CRTs with a binary outcome (Teerenstra et 
al., 2010; Liu and Colditz, 2020). Frequently, it is assumed that the between-subcluster ICC 

does not exceed the within-subcluster ICC (Teerenstra et al., 2010), which suggests, based 

on the DE, that ρ0 = α0 would lead to conservative sample size estimates under parallel 

randomization.
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The design and analysis of SW-CRTs have been conventionally based on linear mixed 

models (Li et al., 2021). Assuming a Gaussian outcome, Hemming et al. (2015) proposed 

a generic framework for designing cross-sectional SW-CRTs and extended the Hussey and 

Hughes (2007) linear mixed model by including an additional random intercept at the 

subcluster level. The variance of the intervention effect estimator was obtained using the 

covariance matrix of the generalized least squares estimator, but no analytical formulas 

were provided. Teerenstra et al. (2019) extended the Hemming et al. (2015) approach 

to accommodate closed-cohort SW-CRTs and developed closed-form DE expressions. 

However, these approaches implicitly assume that the between-period ICC equals the 

within-period ICC, both within and between subclusters. Under this strong assumption, we 

show in Section 3.1 that the variance of the intervention effect vanishes as the subcluster 

size grows indefinitely, which may lead to an underestimated sample size when the between-

period ICCs differ from the within-period ICCs. To the best of our knowledge, explicit 

sample size formulas that differentiate between-period and within-period ICCs in SW-CRTs 

with multiple levels of clustering have not been previously derived. Furthermore, with a 

binary outcome, Teerenstra et al. (2019) considered an approximation based on a linear 

mixed model, which in the case of a single level of clustering has already been shown to be 

inaccurate (Zhou et al., 2020). To this end, it is necessary to develop more accurate sample 

size procedures that acknowledge the mean-variance relationship with a non-Gaussian 

outcome for multilevel SW-CRTs.

To address these issues, we consider a generalized linear mixed model (GLMM) that 

characterizes five possible sources of random variation in SW-CRTs with subclusters, 

while differentiating within-period and between-period ICCs. With a Gaussian outcome, 

we describe an extended block exchangeable correlation structure parameterized by at most 

five ICC parameters, depending on whether a cross-sectional or closed-cohort design is 

assumed at each level. We show in Section 3 that the variance of the intervention effect 

estimator depends on the ICCs only through two distinct eigenvalues of the extended 

block exchangeable correlation matrix. Although a scalar closed-form variance expression is 

unavailable for other exponential family outcomes, we propose a computationally efficient 

generic sample size algorithm based on cluster period averages. Under the canonical link 

functions, new strategies are provided to circumvent complex numerical integration. In 

addition, we also extend our approach to accommodate unequal cluster sizes. Our simulation 

studies to validate the proposed sample size methodology are presented in Section 4 and 

applications to two SW-CRTs with subclusters are presented in Section 5. Section 6 provides 

concluding remarks.

2 | MODELS AND GENERIC SAMPLE SIZE CONSIDERATIONS

2.1 | Three design variants

We consider a multilevel SW-CRT with I clusters and T periods, with subclusters nested 

in clusters and subjects nested in subclusters. We consider three possible variations of 

this multilevel stepped wedge design (Figure 2): (A) a closed-cohort design at both the 

subcluster and subject levels, in which case repeated measurements are taken on the same 

subjects in each subcluster over time; (B) a closed-cohort design on the subcluster level 
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but a cross-sectional design at the subject level, in which case different subjects in the 

same subcluster are sampled at each time period; (C) a cross-sectional design at both the 

subcluster and subject level, in which case different subjects within different subclusters are 

sampled in each cluster during each period. Our development will include all three variants.

2.2 | Statistical model

We consider a GLMM to represent the average secular trend, intervention effect, as well 

as the three-level structure within each period. Let Yijkl be the outcome of interest for 

individual l = 1, … , Nijk nested in subcluster k = 1, … , Kij nested in cluster i = 1, … , I 
during period j = 1, … , T. For generality, we assume design (A), where a closed-cohort of 

subjects in the same set of subclusters are measured in the study during each period. Designs 

(B) and (C) will be cast as two special cases. For design (A), the conditional mean model for 

μijkl = E Y ijkl ∣ bi, cik, sij, πijk, γikl  is given by

g μijkl = βj + δXij + bi + cik + sij + πijk + γikl, (1)

where g is a link function, βj represents the categorical secular trend, Xij is the intervention 

status for cluster i at period j (equal to 1 if exposed under intervention and 0 otherwise), 

and δ is the intervention effect of interest on the link function scale. We also write θ = 

(β1, … , βT, δ)⊤. Model (1) includes five random effects to reflect the multilevel structure 

of the data: bi N 0, σb
2  is the random cluster effect, cik N 0, σc

2  is the random subcluster 

effect, sij N 0, σS
2  is the random cluster-by-period interaction, and πijk N 0, σπ

2  is the random 

subcluster-by-period interaction. Furthermore, since design (A) involves a closed-cohort of 

subjects, γikl N 0, σγ
2  is the random subject-level effect arising from the repeated outcome 

measurements for each same subject. In particular, the random interactions, sij and πijk, can 

represent variations within each cluster and subcluster due to time-varying characteristics of 

the cluster and each subcluster. The inclusion of these random interactions further allows the 

within-period ICCs to differ from the between-period ICCs at each level of clustering, which 

is considered critical for accurate power calculation even in SW-CRTs without subclusters 

(Taljaard et al., 2016). Following convention in modeling for SW-CRTs (Li et al., 2021), we 

assume all random effects are mutually independent and Yijkl is a random realization from 

a parametric distribution with mean μijkl and higher order moments as potential functions 

of μijkl. Model (1) includes several existing models for SW-CRTs as special cases. For 

example, when σs
2 = σπ

2 = σγ
2 = 0, model (1) coincides with the model in Hemming et al. 

(2015) for cross-sectional SW-CRTs; when σs
2 = σπ

2 = 0, model (1) becomes the model in 

Teerenstra et al. (2019) without cluster- or subcluster-by-time interactions; when σc
2 = σπ

2 = 0, 

model (1) reduces to the model in Hooper et al. (2016) for closed-cohort SW-CRTs without 

subclusters. Finally, models for design (B) or (C) can be obtained by setting σγ
2 = 0 or 

σγ
2 = σc

2 = 0 in model (1), due to the absence of repeated assessments for the same subjects or 

the same subclusters.

2.3 | Generic sample size requirement

In the design phase, the power to detect an effect size δ ≠ 0 with a two-sided α-level Wald 

test is approximately (Harrison and Brady, 2004)
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power ≈ 1 − Φt tα/2, DoF; DoF, δ / var(δ ) , (2)

where tα/2,DoF is the upper α/2th quantile of the central t-distribution with specified degrees 

of freedom (DoF) and Φt(t; DoF, Λ) is the cumulative t-distribution function with DoF and 

noncentrality parameter Λ. The variance of the intervention effect, var(δ ), is an implicit 

function of the number of clusters (I) and other design parameters. While power expression 

(2) is asymptotically equivalent to its counterpart with a standard normal distribution as the 

DoF approach infinity, we consider the t-distribution with DoF = I − 2 since it has been 

found to maintain a valid empirical type I error rate with a limited number of clusters in 

SW-CRTs (Ford and Westgate, 2020; Li et al., 2021). By Equation (2), the sample size 

requirement for the multilevel SW-CRT requires us to characterize an expression of var(δ ) at 

the design phase. To do so, we first assume equal cluster and subcluster sizes such that Kij = 

K and Nijk = N. We relax this assumption in Section 3.3.

3 | VARIANCE OF THE INTERVENTION EFFECT ESTIMATOR

3.1 | Gaussian outcomes

With a Gaussian outcome, we consider g in model (1) to be the identity function, and 

assume Yijkl = μijkl + ϵijkl, where ϵijkl N 0, σϵ
2  is an independent residual error. In this 

linear mixed model, we define σ2 = σb
2 + σc

2 + σs
2 + σπ

2 + σγ
2 + σϵ

2 as the total variance. Under 

design (A), this linear mixed model induces five different ICCs: (i) the within-period within-

subcluster ICC, α0; (ii) the between-period within-subcluster ICC, α1; (iii) the within-period 

between-subcluster ICC, ρ0; (iv) the between-period between-subcluster ICC, ρ1; and (v) the 

within-subject autocorrelation, α2. We explicitly define the ICCs as functions of variance 

components under each design variant in Table 1.

As the variance components are nonnegative, we implicitly have α0 ≥ α1 ≥ ρ1, α0 ≥ ρ0 ≥ 

ρ1, and α2 ≥ α1 ≥ ρ1 without further restrictions. To aid in the interpretation of ICCs, an 

investigator could also parameterize the between-period ICCs based on the within-period 

ICCs by assuming a particular cluster autocorrelation coefficient (CAC), defined as the 

ratio of between-period to within-period ICCs (Hooper et al., 2016; Martin et al., 2016). 

Because ICCs are conventionally used in designing CRTs and intuitive to understand, we 

will characterize the variance of the intervention effect with these five ICC parameters 

and obtain the variances for design (B) or (C) by setting α2 = α1, or α2 = α1 = ρ1. In 

addition, the variance components or ICCs should ensure a positive definite correlation 

structure for all outcomes within each cluster. Specifically, if we define Y i = Y i1
⊤, … . Y iT

⊤ ⊤, 

where Y ij = Y ij1
⊤ , …, Y ijK

⊤ ⊤, and Y ijk = Y ijk1, …, Y ijkN
⊤, then the induced correlation structure, Ri 

= corr(Yi), follows an extended block exchangeable structure and can be written as a linear 

combination of six basis matrices,

Ri = 1 − α0 − α2 + α1 ITKN + α0 − ρ0 − α1 + ρ1 ITK
⊗ JN + ρ0 − ρ1 IT ⊗ JKN
+ α2 − α1 JT ⊗ IKN + α1 − ρ1 JT
⊗ IK ⊗ JN + ρ1JTKN,

(3)
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where Iu is a u × u identity matrix and Ju = 1u1u
⊤ is a u × u matrix of ones. Evidently, 

the diagonal and off-diagonal KN × KN blocks of Ri are block exchangeable given by 

IK ⊗ 1 − α0 IN + α0 − ρ0 JN + ρ0JKN and IK ⊗ α2 − α1 IN + α1 − ρ1 JN + ρ1JKN, respectively, 

and, therefore, the structure (3) resembles the block exchangeable structure studied in Li et 
al. (2018). For deriving the variance of the intervention effect, we first provide the two key 

intermediate results on the induced correlation structure.

Lemma 1. The induced extended block exchangeable correlation matrix has at most six 
unique eigenvalues, which can be expressed as linear functions of the five ICC parameters:

λ1 = 1 − α0 − α2 + α1
λ2 = 1 − α0 − α2 + α1 + N α0 − α1 − ρ0 + ρ1
λ3 = 1 − α0 − α2 + α1 + N α0 − α1 + (K − 1) ρ0 − ρ1
λ4 = 1 − α0 + (T − 1) α2 − α1
λ5 = 1 − α0 + (T − 1) α2 − α1
+ N α0 − ρ0 + (T − 1) α1 − ρ1
λ6 = 1 − α0 + (T − 1) α2 − α1
+ N α0 + (T − 1)α1 + (K − 1) ρ0 + (T − 1)ρ1

(4)

with algebraic multiplicities (T − 1)K(N − 1), (T − 1)(K − 1), T − 1, K(N − 1), K − 1, and 1, 
respectively. The set of ICC parameters {α0, α1, α2, ρ0, ρ1} for which Ri is positive definite 
corresponds to the convex open subset characterized by min{λ1, λ2, λ3, λ4, λ5, λ6} > 0.

Lemma 2. The extended block exchangeable correlation matrix has a closed-form inverse, 
which shares the same set of basis matrices with Ri, with coefficients determined by the set 
of eigenvalues. The inverse is represented as

Ri
−1 = 1

λ1
ITKN − λ2 − λ1

Nλ1λ2
ITK ⊗ JN + λ2 − λ3

KNλ2λ3
IT ⊗ JKN

+ 1
T

1
λ4

− 1
λ1

JT ⊗ IKN

+ 1
T

λ2 − λ1
Nλ1λ2

− λ5 − λ4
Nλ4λ5

JT ⊗ IK ⊗ JN

+ 1
TK

λ5 − λ6
Nλ5λ6

− λ2 − λ3
Nλ2λ3

JTKN .

Lemmas 1 and 2 derive the eigenvalues as well as an explicit inverse of the extended block 

exchangeable correlation structure (derivation details and eigenvalue expressions under each 

design variant are provided in Web Appendix A and Web Table 1). By parameterizing Ri
−1

as a function of the unique eigenvalues, the cumbersome expressions on individual ICCs are 

avoided in deriving an explicit variance expression of the intervention effect.

Assuming the variance components are known, the feasible generalized least squares 

estimator for θ is given by θ = ∑i = 1
I Zi

⊤Ri
−1Zi

−1 ∑i = 1
I Zi

⊤Ri
−1Y i , where Zi = (IT, Xi) ⊗ 1KN 

is the design matrix for fixed effects and Xi = (Xi1, … , XiT)⊤ is the vector of cluster-level 

intervention indicators. As the number of clusters becomes large, θ follows a multivariate 

normal distribution with mean θ and covariance matrix σ2 ∑i = 1
I Zi

⊤Ri
−1Zi

−1
, whose (T + 1, 

T + 1)th element corresponds to the variance of the intervention effect estimator. Based on 

Lemma 2, we show in Web Appendix A that a closed-form expression of var(δ ) exists, which 
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reveals the impact of various ICC parameters on sample size and power. We summarize the 

results in Theorem 1.

Theorem 1. Assuming known variance components, the closed-form variance of the 
intervention effect estimator based on a linear mixed model with a Gaussian outcome is

var(δ ) = σ2

IKNtr(Ω) × Tλ6λ3

Tλ6 − 1 + (T − 1)τX λ6 − λ3
, (5)

where

Ω = I−1 ∑
i = 1

I
XiXi

⊤ − I−1 ∑
i = 1

I
Xi I−1 ∑

i = 1

I
Xi

⊤

is the covariance matrix of the intervention vector under a specific design and 
τX = (T − 1)tr(Ω) −1 1T

⊤Ω1T − tr(Ω) ∈ [ − 1, 1] is the generalized ICC of the intervention, 

which is the ratio of average covariance over the average variance and measures the 
similarity between the intervention status for each cluster in different periods (Kistner and 

Muller, 2004). With all other design parameters fixed, larger values of the within-period 
ICCs, {α0, ρ0}, are always associated with larger required sample size, whereas larger 
values of the between-period ICCs, {α1, ρ1, α2}, are associated with smaller required 
sample size when τX < λ6

2 − λ3
2 / λ6

2 + (T − 1)λ3
2 .

Theorem 1 reveals that the variance of the intervention effect in a linear mixed model 

is free of the secular trend, as long as it is adjusted for in the model. The variance 

(5) also depends on the five ICCs only through two eigenvalues of the extended block 

exchangeable correlation matrix, λ3 and λ6. Our results also confirm the different roles 

of the within-period ICCs and the between-period ICCs. Specifically in the design phase, 

assuming larger values of α0 and ρ0 will only lead to a conservative sample size estimate. 

Likewise, assuming smaller values of between-period ICCs or even ignoring them by 

considering α2 = α1 = ρ1 = 0 will lead to a conservative sample size estimate if the 

constraint on τX holds. These directional results can guide decisions on design parameters 

to avoid an underpowered trial in the absence of accurate ICC estimates for an SW-CRT 

with subclusters. Finally, while we assume design (A), variance expressions for design (B) 

or (C) can be easily obtained by enforcing α2 = α1, or α2 = α1 = ρ1 in computing the two 

eigenvalues.

As expected from the generality of model (1), our variance expression (5) includes a number 

of variances previously derived as special cases. First, we observe that the variance (5) can 

be alternatively represented by

var(δ ) = σ2/KN ITλ6λ3

U2 + ITU − TW − IV λ6 − U2 − IV λ3
, (6)

where
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U = ∑
i = 1

I
∑

j = 1

T
Xij, V = ∑

i = 1

I
∑

j = 1

T
Xij

2

,

and

W = ∑
j = 1

T
∑

i = 1

I
Xij

2

are typical design constants that only depend on the sequence of treatment indicators for 

each cluster. The connection between the two variance expressions is made clear through 

the observance that 1T
⊤Ω1T = I−2 IV −U2  and t(Ω) = I−2(IU − W). Using this equivalent 

variance expression (6), we see that in the absence of subclusters, the variance derived in 

Li et al. (2018) under a closed-cohort SW-CRT is obtained by setting ρ0 = α0 and ρ1 = 

α1; the variance of the Hooper et al. (2016) linear mixed model under a cross-sectional 

SW-CRT can be obtained by additionally requiring α2 = α1; whereas the basic Hussey and 

Hughes (2007) linear mixed model is obtained by equating all five ICCs. In the presence 

of subclusters, our variance expression also includes that derived in Teerenstra et al. (2019) 

as a special case when we assume ρ1 = ρ0 and α1 = α0. However, we caution against this 

simplification assumption, because based on (6), we observe that limN→∞(λ3/N) = (α0 − 

α1) + (K − 1)(ρ0 − ρ1), and limN→∞(λ6/N) = α0 + (T − 1)α1 + (K − 1){ρ0 + (T − 1)ρ1} = 

κ(α0, α1, ρ0, ρ1), which leads to a limiting variance

lim
N ∞

var(δ )    = σ2/K α0 − α1 + (K − 1) ρ0 − ρ1 Iκ α0, α1, ρ0, ρ1

(IU − W )κ α0, α1, ρ0, ρ1 + U2 − IV α1 + (K − 1)ρ1
.

Therefore, assuming the between-period ICCs are equal to the within-period ICCs, the 

limiting variance approaches zero and the required number of clusters approaches one as 

the subcluster size increases indefinitely, similar to the discussion in Taljaard et al. (2016) 

without subclusters. From this perspective, it is reasonable to differentiate the between-

period ICCs from the within-period ICCs and avoid the risks associated with too few 

clusters in the design phase. Furthermore, based on the proposed analytical variance (6), we 

show in Web Appendix B that the most efficient SW-CRT with subclusters allocates more 

clusters to the intervention during the second and last period.

Finally, while we have thus far focused on stepped wedge designs with a staggered 

allocation of intervention to clusters, the derivations of Theorem 1 do not involve restrictions 

on Xi, and therefore expression (5) applies more generally to any multiperiod CRT, including 

the longitudinal parallel-arm and repeated crossover designs. Clearly, variance (5) reveals 

that higher efficiency is achieved with a larger total variance of the intervention status, 

tr(Ω), and a smaller generalized ICC of the intervention, τX, both of which a specific 

design will implicitly characterize. For example, with T = 5 periods and I as a multiple 

of (T − 1), a standard stepped wedge design corresponds to t(Ω) = 0.625 and τX = 0.25, 

a parallel longitudinal design corresponds to tr(Ω) = 1.25 and τX = 1, whereas a repeated 
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crossover design engenders tr(Ω) = 1.25 and τX = −0.2. In Web Table 2, we show that a 

repeated crossover design and a parallel longitudinal design have the same values of t(Ω), 

which is generally larger than that under a standard stepped wedge design. Furthermore, the 

generalized ICC of the intervention indicator is maximal under a longitudinal parallel-arm 

design, whereas τX ∈ (0, 1) in a standard stepped wedge design. However, the generalized 

ICC, τX, is often negative under a repeated crossover design. Such insights could facilitate 

the comparison of relative efficiency for alternative designs with subclusters.

3.2 | Non-Gaussian exponential family outcomes

When the outcome is binary or count, Theorem 1 is not directly applicable because the 

residual variance function of the outcome is no longer a constant. Specifically, with a link 

function g, we can rewrite the conditional mean of the outcome Yijkl from (1) as

μijkl = g−1 ηijkl = g−1 βj + δXij + bi + cik + sij + πijk + γikl , (7)

where the fixed and random effects are defined in Section 2.2. We further define the 

conditional variance of the outcome as ϕζ(μijkl), where ϕ is a common dispersion. Without 

loss of generality, we assume ϕ = 1 but the following procedure applies to arbitrary ϕ > 0. 

For example, the variance function of a binary outcome is parameterized as ζ(μijkl) = μijkl(1 

− μijkl). To approximate the large-sample variance of the maximum likelihood estimator for 

δ , we linearize model (7) by a first-order Taylor expansion about the estimated fixed- and 

random-effects (Breslow and Clayton, 1993; Amatya and Bhaumik, 2018) such that

Y ij = μij + ΔijZij(θ − θ) + Δij1KN bi − b i

+ Δij IK ⊗ 1N cij − c ij + Δij1KN sij − s ij

+ Δij IK ⊗ 1N πij − πij + Δij γij − γ ij + ϵij,
(8)

where Δij = diag Δij11, …, ΔijKN = ∂g−1 ηij / ∂ηij
⊤ −1 is a diagonal matrix of derivatives, ηij = 

(ηij11, … , ηijKN)⊤, μij = (μij11, … , μijKN)⊤, Zij = (ej, Xij) ⊗ 1KN (ej is the jth row of 

IT), cij = (ci1, … , ciK)⊤, πij = (πij1, … , πijK)⊤, γij = (γi11, … , γiKN)⊤, ϵij = (ϵij11, … , 

ϵijKN)⊤, and var(ϵijkl) = ζ(μijkl). Therefore, if we define the vector of pseudo-outcomes 

as Y ij
* = Δij

−1 Y ij − μij + ηij and rearrange the terms in (8), we obtain an approximate linear 

mixed model with Y ij
* = ηij + ϵij

*, with a modified random residual error ϵij
* = Δij

−1ϵij. Define 

the collection of all pseudo-outcomes in cluster i as Y i
* = Y i1

* ⊤ , …, Y iT
* ⊤ ⊤, we show in Web 

Appendix C that

V i = cov Y i
* ≈ E Δi

−1ζ μi Δi
−1

+ σπ
2 ITK ⊗ JN + σS

2 IT ⊗ JKN + σγ
2 JT ⊗ IKN

+ σc
2 JT ⊗ IK ⊗ JN + σb

2JTKN,
(9)

with Δi = ⊕j = 1
T Δij where “⊕” is a block diagonal operator with nonzero matrices along the 

diagonal and zero values elsewhere, and the expectation is taken over the distribution of all 

the random effects. In general, E Δi
−1ζ μi Δi

−1  can be computed via numerical integration and 

depends on the conditional mean of outcomes through the secular trend and intervention 

status, thus Vi will be cluster specific. The approximate covariance matrix of the estimator 
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for fixed-effects parameters based on the pseudo-outcomes is then ∑i = 1
I Zi

⊤V i
−1Zi

−1
, whose 

(T + 1, T + 1)th element is

var(δ )

= ∑
i = 1

I
Xi

⊤ ⊗ 1KN
⊤ V i

−1 Xi ⊗ 1KN − ∑
i = 1

I
Xi

⊤ ⊗ 1KN
⊤ V i

−1 IT ⊗ 1KN × ∑
i = 1

I
IT

⊤ ⊗ 1KN
⊤ V i

−1 IT ⊗ 1KN

−1

× IT
⊤ ⊗ 1KN

⊤ ∑
i = 1

I
V i

−1 Xi ⊗ 1KN

−1

.

In the design stage, computation of the above variance requires us to invert the TKN × 

TKN variance matrix, Vi, for each cluster, which could require substantial computational 

time as the subcluster size or the number of subclusters become large. However, because 

the fixed effects in (7) only depends on each cluster period, we provide an equivalent but 

computationally more efficient variance expression in the following lemma.

Lemma 3. The variance of the intervention effect estimator in the GLMM (7) is equivalently 
written as

var(δ ) = ∑
i = 1

I
Xi

⊤V i
−1Xi − ∑

i = 1

I
Xi

⊤V i
−1       × ∑

i = 1

I
V i

−1
−1

∑
i = 1

I
V i

−1Xi

−1

, (10)

where V i = (KN)−1Ei + K−1σπ
2 + σs

2 IT + σb
2 + K−1σc

2 + (KN)−1σγ
2 JT is the T × T matrix 

characterizing the covariance of the cluster period means of the pseudo-outcomes 

Y i
* = (KN)−1 IT ⊗ 1KN

⊤ Y i
* , and Ei = diag E Δi111

−1 ζ μi111 Δi111
−1 , …, E ΔiT11

−1 ζ μiT11 ΔiT11
−1 .

By providing an equivalent variance expression, Lemma 3 indicates that one only needs 

to invert a set of T × T matrices to obtain the variance for power calculation for general 

exponential family outcomes with a certain mean-variance structure and alleviates the 

computational burden associated with inverting a series of TKN × TKN matrices. While 

Lemma 3 is easy to verify when Vi has a closed-form inverse (as when the variance function 

ζ(μijkl) ∝ 1), it is not trivial for general variance functions and requires us to exploit 

the block structure of E Δi
−1ζ μi Δi

−1  under a stepped wedge design; the detailed proof is 

provided in Web Appendix C. Finally, Lemma 3 implies that var(δ ) can be equivalently 

considered as that obtained from a linear mixed model for the cluster period mean pseudo-

outcomes Y i
* and is therefore an extension of the results in Li et al. (2021) to more complex 

correlation structures, under equal subcluster sizes.

From variance expression (10), it is critical to compute the nonzero diagonal elements of 

Ei, where the expectation involves integration over all the random effects. While numerical 

or Monte Carlo integration can be used as a general solution, the computation of these 

terms can be considerably simplified under canonical link functions. For example, with a 

binary outcome and a canonical logit link, we can use the property of the Gaussian moment 

generating function to obtain the jth diagonal element of Ei as
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E Δij11
−1 ζ μij11 Δij11

−1

= 2 + 2 exp σb
2 + σc

2 + σs
2 + σπ

2 + σγ
2

2
× cosh βj + Xijδ ,

where cosh(t) = (et + e−t)/2 is the hyperbolic cosine function. In cases when the 

ICCs are more intuitive parameters than variance components to consider in the design 

phase, we could use the latent response formulation and define the total variance 

as σ2 = σb
2 + σc

2 + σs
2 + σπ

2 + σγ
2 + π2/3, where π2/3 is the variance of the standard logistic 

distribution (Eldridge et al., 2009). This formulation allows us to reparameterize var(δ ) with 

σ2 and the five ICCs (Table 1). Specifically, using Lemma 3 the variance matrix under a 

binary outcome with a logit link can be represented by

V i = 1
KN Ei + λ3 − λ1 σ2

KN IT + λ6 − λ3 σ2

TKN JT, (11)

with

Ei = 2IT + 2 exp 1 − λ1 σ2

2 diag cosh β1 + Xi1δ , …, cosh βT + XiTδ , (12)

and λ1, λ3, and λ6 are three eigenvalues of the extended block exchangeable correlation 

matrix defined in Lemma 1. Unlike Theorem 1, Equations (11) and (12) suggest the variance 

of the intervention effect in a logistic linear mixed model depends on the ICCs through an 

additional eigenvalue λ1. In Web Figure 1, we study the relationship between the five ICCs 

and var(δ ) and confirm that the observations in Theorem 1 remain valid under a logistic 

linear mixed model with the exception of the within-subject autocorrelation, α2, for which 

larger values will lead to more conservative sample size estimates. In Web Appendix D, 

we provide the expression of Ei for a count outcome with canonical log link and gamma 

outcome with a canonical inverse link which can be easily computed without complex 

numerical integration.

3.3 | Extension to unequal cluster sizes

In multilevel SW-CRTs, it may not always be realistic to assume equal cluster sizes for 

power calculation. To extend our procedure to unequal cluster sizes, we assume the number 

of subclusters and the subcluster size only vary across clusters but remain constant within 

each cluster over time; namely, Kij = Ki and Nijk = Ni. A similar assumption was made 

in previous studies incorporating unequal cluster sizes in sample size calculations for SW-

CRTs (Harrison et al., 2019; Matthews, 2020). This assumption is considered appropriate 

because the efficiency of SW-CRTs is primarily driven by the between-cluster imbalance 

rather than the within-cluster imbalance over time (Tian et al., 2021). For given I and T and 

assuming Ki fK Ki; K, CVK  and Ni fN Ni; N, CVN , where f(•; a, b) represents a valid density 

or mass function with mean a and coefficient of variation (CV) b, the expected variance of δ
can be used for sample size determination and is given by
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var δ = ∫ …∫ var(δ ∣ O) ∏
i = 1

I

× fK Ki; K, CVK fN Ni; N, CVN dKidNi ,
(13)

where O = Ki, Ni , i = 1, …, I  represents a specific design with unequal cluster sizes and 

var(δ ∣ O) can be efficiently computed based on a modified version of Lemma 3 provided 

in Web Appendix E. To obtain var(δ ), one can impose any sensible parametric distributions 

for fK and fN and approximate (13) via Monte Carlo integration. For example, one can 

assume fK and fN as gamma distributions with specified mean and CV. A total of R sets 

of cluster size configurations, O(r), r = 1, …, R , are then drawn from the specified gamma 

distributions (rounded to nearest integer) to obtain var(δ ) ≈ R−1∑r = 1
R var δ ∣ O(r) . By averaging 

over R designs (e.g., R = 1000), var(δ ) accounts for the anticipated variations in cluster sizes 

and can be used in (2) for power calculation. Finally, when CVK = CVN = 0, the above 

procedure coincides with that in Sections 3.1 and 3.2 as both fK and fN degenerate to a point 

mass. Additional details are provided in Web Appendix E.

4 | SIMULATION STUDY

We conducted a simulation study to assess the accuracy of our sample size procedures for 

a Gaussian outcome and a binary outcome. For illustration, we focused on a closed-cohort 

design at the subcluster level and a cross-sectional design at the subject level (design (B)). 

We generated correlated Gaussian outcomes based on the linear mixed model, Yijkl = βj + 

δXij + bi + cik + sij + πijk + ϵijkl, by constraining the total variance components σ2 = 1. 

Given σ2, we consider three sets of ICCs (recall that α2 = α1 under design (B)), (α0, α1, 

ρ0, ρ1) = {(0.1, 0.05, 0.025, 0.0125), (0.03, 0.015, 0.0075, 0.00375), (0.01, 0.005, 0.0025, 

0.00125)}, which determines the value of each variance component. The within-period 

ICCs were chosen to mimic commonly reported values in parallel-arm CRTs, and the 

between-period ICCs correspond to a CAC of 0.5. By Theorem 1, var(δ ) is invariant to the 

period effects, and therefore we only considered a gently increasing secular trend with β1 = 

0 and βj+1 − βj = 0.1 × (0.5)j−1 for j ≥ 1. On the other hand, we generated correlated binary 

outcomes from a Bernoulli distribution with Yijkl ~ Bern(μijkl), with μijkl = 1/{1 + exp(−βj 

− δXij − bi − cik − sij − πijk)}. Following Li et al. (2018), we assumed a slightly decreasing 

secular trend on the logit scale with a baseline prevalence of 0.7 such that β1 = 1/{1 + 

exp(−0.7)} and βj − βj+1 = 0.1 × (0.5)j−1 for j ≥ 1. To specify the variance components, 

we employ the latent response formulation in Section 3.2 by setting the residual variance as 

π2/3 and mapping the three sets of ICCs considered for Gaussian outcomes to the variance 

components on the logit scale (Web Appendix F).

We simulated standard stepped wedge designs such that an equal number of clusters crossed 

over to treatment at a randomly assigned step. Motivated by a recent systematic review of 

SW-CRTs (Grayling et al., 2017) and assuming equal cluster sizes, we varied the number 

of clusters (I) from eight to 30, the number of subclusters per cluster (K) from two to six, 

the number of periods (T) from four to seven, and allowed a maximum of 15 subjects per 

subcluster (N). For Gaussian outcomes, we assumed standardized effect sizes, δ/σ ∈ {0.1, 
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0.2, 0.25, 0.35, 0.4, 0.5}, and for binary outcomes, we considered effect sizes on the odds 

ratio scale, exp(δ) ∈ {0.8, 0.75, 0.7, 0.65, 0.6, 0.5}. Each specific parameter combination 

was selected to ensure the predicted power is at least 80% based on a two-sided 5% level 

Wald test. For a Gaussian outcome, the predicted power is based on Equation (2) and 

Theorem 1; for a binary outcome, the predicted power is based on Equation (2), Lemma 3, 

and Equations (11) and (12). The empirical power of the test is obtained as the proportion 

correctly rejecting H0 over 1000 simulated SW-CRTs, and the agreement between the 

predicted and empirical power was used to confirm the accuracy of the proposed method. 

Finally, we assessed the empirical type I error rate to confirm the validity of the Wald test. 

For this purpose, we simply set δ/σ = 0 with a Gaussian outcome and exp(δ) = 1 with a 

binary outcome. Further, in Web Tables 3 and 4, we compare the predicted power assuming 

correctly CAC = 0.5 with the predicted power assuming equal within- and between-period 

ICCs (incorrectly assuming CAC = 1). Our results show that incorrectly assuming equal 

within- and between-period ICCs typically leads to overly confident power predictions. 

Finally, to assess the accuracy of our approach in Section 3.3 with unequal cluster sizes, we 

chose four typical scenarios and draw Ki and Ni from gamma distributions with CVK ∈ {0, 

0.25, 0.5} and CVN ∈ {0, 0.25, 0.5, 0.75, 1.0}.

4.1 | Simulation results for Gaussian outcomes

We present the empirical type I error rate and empirical and predicted power of the Wald test 

under each scenario with a Gaussian outcome (Table 2). We used the restricted maximum 

likelihood estimator for model fitting, based on which the Wald test is carried out. The 

empirical type I error rate was generally conservative, and the empirical and predicted power 

were in agreement with the largest difference within 3%. Similar results were found when 

the Wald test was computed from (unrestricted) maximum likelihood estimation (Web Table 

5). Lastly, in Web Tables 6 and 7 we present the simulation results under unequal cluster 

sizes. The empirical type I error rate was conservative overall, and differences between 

empirical and predicted power were within −4.4% and 3.5%.

4.2 | Simulation results for binary outcomes

We present the empirical type I error rate, and empirical and predicted power of the 

Wald test under each scenario using the logistic linear mixed model fitted via the Laplace 

approximation (Table 3). Similarly, the empirical type I error rate was well controlled under 

the nominal level, and the empirical power was in agreement with the predicted power, with 

the differences ranging from −0.9% to 5.3%. This suggests that our sample size procedure 

based on first-order Taylor expansion at most results in slightly conservative power 

prediction. Results were similar when penalized quasi-likelihood (which is computationally 

more efficient) was used to fit the model (Web Table 8). Lastly, in Web Tables 9 and 10, 

we present the simulation results under unequal cluster sizes. Overall, the empirical type I 

error rate was adequately controlled and differences between empirical and predicted power 

were within −6.1% and 8.2%. Overall, these results confirm that the procedure in Section 

3.3 sufficiently captures the trend of the empirical power under unequal cluster sizes.

Davis-Plourde et al. Page 13

Biometrics. Author manuscript; available in PMC 2023 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 | APPLICATIONS TO SW-CRTs WITH SUBCLUSTERS

5.1 | Lumbar Imaging with Reporting of Epidemiology trial

The LIRE trial aimed to evaluate the effect of adding prevalence data to spine imaging 

reports on subsequent spine-related health care utilization (Jarvik et al., 2015). The study 

planned to randomize I = 100 practices consisting of a total of 1700 primary care providers 

(PCPs) over T = 6 periods; each practice is a cluster and each PCP represents a subcluster. 

This is a closed-cohort design on the subcluster level but a cross-sectional design at the 

subject level (design (B)). While the number of PCPs per practice varied, we assume K = 17 

PCPs per practice for illustration. The primary outcome was log-transformed spine-related 

relative value units (RVUs), a continuous composite measure of back pain. Assuming the 

median and total variance of RVU is approximately 3.56 and 2.5 (Jarvik et al., 2020), a 5% 

reduction in median due to treatment corresponds to a standardized effect size of around 

−0.1. Based on preliminary data, an overall ICC was estimated to be 0.013 with a 95% 

confidence interval of (0.00, 0.046). We therefore assume the within-period within-PCP 

ICC to be the upper bound of the preliminary estimates, α0 = 0.046, and a slightly smaller 

within-period between-PCP ICC of ρ0 = 0.04. Assuming a CAC of 0.5 further gives us α1 = 

0.023 and ρ1 = 0.02. Based on (2) and our variance expression (5), we found having N = 77 

subjects per PCP leads to 87.5% power for a two-sided 5% test.

To assess the sensitivity of our power calculation to ICC specifications, we looked at power 

trends for α0 ∈ (0, 0.1) with various ratios of ρ0/α0 across varying levels of CAC (0.2, 0.5, 

0.8). In concordance with our findings in Theorem 1, larger within-period ICCs (α0, ρ0) and 

smaller between-period ICCs (α1, ρ1) correspond to more conservative power predictions 

(Figure 3), thus we are confident that our ICC specifications likely produced a conservative 

power estimate. Alternatively, we have also derived a DE based on the closed-form variance 

expression (5) for sample size determination. The details and illustrative calculations that 

reach the same power results in the LIRE trial are provided in Web Appendix G. Further, in 

Web Appendix H we provide sample size determinations for the LIRE trial under alternative 

cluster level designs. Finally, in Web Appendix I we provide an application to the LIRE trial 

assuming unequal cluster sizes using the expected variance expression (13).

5.2 | Washington State EPT trial

In the Washington State EPT study, investigators were interested in evaluating whether an 

expedited partner therapy, the treatment of sex partners of people with sexually transmitted 

infections without medical evaluation, would decrease the risk of chlamydia reinfection 

(Golden et al., 2015). Since the chlamydia infection status was binary, we illustrate the 

following calculations with a logistic linear mixed model. The study included I = 24 LHJ 

that were randomly assigned to intervention at one of four steps (T = 5). Each LHJ includes 

clinics that provide subject-level outcomes over time. Of the clinics with repeated measures, 

over half were sampled at each period; thus for simplicity, we assume a closed-cohort 

design at the clinic level and a cross-sectional design at the subject level (design (B)). A 

total of 219 clinics participated in chlamydia testing, but to be conservative we assume the 

number of clinics per LHJ is K = 5. In the design of this study, investigators aimed to 

detect a prevalence ratio of 0.7 and assumed a baseline prevalence of 0.05. Because the 
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outcome is rare, we assume the effect size expressed as an odds ratio can be approximated 

by the prevalence ratio and obtain the required number of subjects per clinic (N) to achieve 

at least 80% power for a two-sided 5% test. Without distinguishing between clusters and 

subclusters, Li et al. (2021) estimated the within-period ICC to be 0.007 and the between-

period ICC to be 0.004 based on marginal models. We consider these values to be the 

within-period between-clinic and between-period within-clinic ICCs (defined based on the 

latent response formulation in Section 3.2) such that ρ0 = 0.007 and α1 = 0.004, and set the 

remaining ICCs to be α0 = 0.008 and ρ1 = 0.0035 (corresponding to a CAC of 0.5). We 

assume a slightly decreasing time effect as in our simulations and find based on Equation 

(2), Lemma 3, and Equations (11) and (12) that including N = 42 subjects per clinic gives us 

89.5% power. As a sensitivity analysis, we considered a larger decreasing period effect such 

that βj − βj+1 = 1 × (0.5)j−1 for j ≥ 1, which increased N = 139 to attain 89.5% power. On 

the other hand, using a smaller decreasing period effect, βj − βj+1 = 0.01 × (0.5)j−1 for j ≥ 1, 

reduced our required number of subjects per clinic to N = 37 to achieve 89.3% power.

We assessed the sensitivity of our power calculation to ICC specifications by examining 

the power trends for varying α0 ∈ (0, 0.05) with various ratios of ρ0/α0 across varying 

levels of CAC (0.2, 0.5, 0.8) and time trends (βj − βj+1 = {0.01, 0.1, 1} × (0.5)j−1 for 

j ≥ 1) (Web Figure 2). We found that larger within-period ICCs (α0, ρ0) and smaller 

between-period ICCs (α1, ρ1) correspond to more conservative power predictions, thus our 

current ICC specifications likely produced a conservative power estimate. Furthermore, in 

Web Appendix J we provide sample size determinations for the EPT study under alternative 

cluster level designs. Finally, in Web Appendix K we provide an application to the EPT 

study assuming unequal cluster sizes using the expected variance expression (13).

6 | CONCLUDING REMARKS

In this study, we presented new sample size procedures for SW-CRTs with subclusters. 

With a Gaussian outcome, we characterized an extended block exchangeable correlation 

structure induced by the random-effects assumption of the linear mixed model. The extended 

block exchangeable correlation structure is parameterized by at most five ICC parameters 

and intentionally differentiate between the within-period and between-period ICCs to avoid 

unrealistically small sample size estimates (Taljaard et al., 2016). We derived the variance 

of the intervention effect estimator, which depends on the ICC parameters only through 

two eigenvalues of the extended block exchangeable correlation matrix. Assuming a GLMM 

with non-Gaussian outcomes, we further presented a generic framework for approximating 

the variance of the intervention effect, and specific examples are provided under the 

canonical link functions. Of note, while our primary focus is GLMMs, our methods can 

be extended to accommodate generalized estimating equations; the details are presented in 

Web Appendix L.

While our sample size and variance expressions are derived based on large sample 

approximation, many SW-CRTs may have a limited number of clusters. Our simulation 

results suggest that with as few as eight clusters, a Wald t-test can preserve adequate 

type I error rate and maintain sufficient power, thus validating our methods. To sum up, 

we reiterate two key contributions from this work. First, our variance expressions are 
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computationally convenient, thus obviating the need for simulation-based power calculation; 

the latter approach can quickly become impractical in SW-CRTs with subclusters due to the 

need for searching across many design parameters, as well as the associated computational 

cost for repeatedly fitting complex multilevel models. Second, we have characterized the 

relationship between various ICCs and power in the presence of subclusters and confirmed 

that assuming smaller between-period ICCs typically leads to larger and conservative sample 

sizes. In the presence of limited external data to inform sample size calculations in SW-

CRTs with subclusters, it may therefore be prudent to assume smaller between-period ICC 

values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
A schematic illustration of a SW-CRT with eight clusters and five periods. Each white 

cell indicates a cluster period under the control condition and each gray cell indicates a 

cluster period under the intervention condition. There are in total S = 4 distinct intervention 

sequences
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FIGURE 2. 
Three design variants for a multilevel SW-CRT with T periods, Ki subclusters per cluster, 

and Ni individuals (Indiv.) per subcluster. Colors denote unique subclusters and individuals

Davis-Plourde et al. Page 20

Biometrics. Author manuscript; available in PMC 2023 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Contour plots illustrating the relationship between ICCs and power in our application study 

of the LIRE trial. ICCs include: within-period within-subcluster α0; between-period within-

subcluster α1; within-period between-subcluster ρ0; and between-period between-subcluster 

ρ1. Various α0 specifications are shown on the y-axis and various ρ0 specifications are 

shown on the x-axis as a ratio of α0. Between-period specifications are denoted by the CAC. 

Darker colors correspond to higher values of power
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