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Abstract
Genomic medicine aims to improve health using the individual genomic data of people to inform care. While clinical util-
ity of genomic medicine in many monogenic, Mendelian disorders is amply demonstrated, clinical utility is less evident in 
polygenic traits, e.g., coronary artery disease or breast cancer. Polygenic risk scores (PRS) are subsets of individual genotypes 
designed to capture heritability of common traits, and hence to allow the stratification of risk of the trait in a population. 
We systematically reviewed the PubMed database for unequivocal evidence of clinical utility of polygenic risk scores, using 
stringent inclusion and exclusion criteria. While we identified studies demonstrating clinical validity in conditions where 
medical intervention based on a PRS is likely to benefit patient outcome, we did not identify a single study demonstrating 
unequivocally such a benefit, i.e. clinical utility. We conclude that while the routine use of PRSs hold great promise, trans-
lational research is still needed before they should enter mainstream clinical practice.
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Introduction

Genomic medicine aims to improve health using an indi-
vidual’s genomic information, e.g. a SNP genotype or DNA 
sequence, to inform care. Genomic medicine is defined by 
the National Human Genome Research Institute as a rapidly 
growing field involving the application of genomic informa-
tion in clinical care (NHGRI website 2021). While many 
successful examples of genomic medicine involve imple-
mentation of programs to identify and manage monogenic 
disease, i.e. disease with Mendelian inheritance, it is not 
clear to what extent genomic medicine is being successful 
regarding disease with complex inheritance. Examples of 
such diseases are coronary artery disease, type 2 diabetes, 
and cancer. Complexity in such genetic traits with intricate 
inheritance is twofold. Firstly, the role of the environment in 
disease expression is usually significant, decreasing the con-
tribution of the genome typically to around 50% (Polderman 

et al. 2015), which ultimately limits the predictability of 
the trait based on genome analysis alone. Secondly, many 
complex traits result from the interaction of several inde-
pendent loci. Thus, complex traits can be seen as polygenic 
predispositions from multiple quantitative trait loci, that 
eventually produced disease under the influence of a par-
ticular environmental or epigenetic modifier. Progress in 
Genome-wide association studies (GWAS) have identified 
many such quantitative trait loci, but more remain to be dis-
covered. GWAS are research methods utilized to detect the 
association between genetic variants and traits in population 
samples. These studies are designed to improve the under-
standing of the biology of disease, under the assumption 
that a better understanding will lead to better prevention or 
better treatment. The GWAS data generated from human 
studies proved to be useful in creating genetic predictors 
for complex traits by estimating the effect size at multiple 
loci in a discovery sample and using those estimated SNP 
effects in independent samples to generate a polygenic risk 
score (PRS). (Visscher et al. 2017). Different PRS meth-
ods model the polygenic associations to the phenotype or 
traits in different ways, and often make distinct or similar 
modeling assumptions on the effect size distribution. These 
assumptions can frequently help in the understanding of the 
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performance of PRS methods across phenotype with distinct 
genetic architectures. While most PRSs have been developed 
from defined populations, e.g., FinnGen (Mars et al. 2020), 
they seem at least partially valid in other populations as well 
(Dikilitas et al. 2020; Ho et al. 2020). Nonetheless, geneti-
cally diverse studies are mandatory to cover different world 
populations to ensure equitable clinical utilization of PRSs 
(Martin et al. 2019).

The generation of PRSs is a relatively novel statistical 
method that associates the collectively weighted risk alleles 
at many of a person’s SNP loci to a trait. Thus, PRS is a 
quantifiable genetic risk score, determined by the cumula-
tive impact of genome-wide variants, aimed to improve risk 
prediction for common chronic diseases such as coronary 
artery disease. (Khera et al. 2018).

With empirical improvements over time, PRSs have been 
widely applied in many research studies of common chronic 
diseases, confirming their ability to predict disease risk or 
status, i.e., demonstrating clinical validity. According to 
the CDC ACCE model (Analytical validity, Clinical valid-
ity, Clinical utility and Ethical, legal & Social implication) 
refers to the power of a test to predict a particular clinical 
outcome or phenotype (CDC website: https://​www.​cdc.​gov/​
genom​ics/​gtest​ing/​acce/​index.​htm). Clinical utility, on the 
other hand, is focused on the effect of the use of a given 
test on patient health outcomes. (Haddow and Palomaki 
2003). The ability to predict disease occurrence using a PRS 
should eventually translate into clinical utility if these are 
to be implemented in clinical care. PRSs for some diseases 
were able to identify subgroups of patients with high relative 
risks, and absolute relative risks that approach risk values 
conveyed by highly penetrant, single-gene mutations (Khera 
et al. 2018), considered clinically actionable. PRSs have 
been shown to provide additional risk stratification when 
combined with single-gene mutation testing for monogenic 
disorders with incomplete penetrance, e.g., hereditary breast 
and ovarian cancer or familial hypercholesterolemia (Fahed 
et al. 2020). Stratifying the risks of common cancers, or 
of coronary artery disease, should presumably help tailor 
screening intervals, or drug regimens, respectively, and 
hence mitigate the disease associated with the genetic risks. 
Evidence for such clinical utility has however been lagging. 
This is because the complexity of genetic architecture and 
multidimensionality of genetic and environmental contri-
butions to disease phenotypes continue to pose significant 
challenges for the clinical utility as well as broad-scale use 
of PRSs.

The aim of this study was to perform a systematic 
review of the existing evidence of clinical utility of PRS 
for genomic medicine applications. We focused our search 
on studies which demonstrated a benefit on patient clinical 
outcome, be it process outcome, intermediate outcome, or 
health outcome. In the case of hypercholesterolemia-related 

vascular disease, these would correspond for example to: the 
effective adoption of a healthy diet; a lowered blood LDL-
cholesterol; and a decreased rate of myocardial infarction, 
respectively.

Methods

Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines were followed (Moher et al. 
2009; Parums 2021). This review was not registered in a sys-
tematic review register. Search terms were selected by con-
vening a group of expert researchers in the field to consider 
PubMed’s Medical Subject Headings (MeSH) terms associ-
ated with the inclusion criteria. Searches combined sets of 
terms for genomic medicine, clinical utility and multifac-
torial inheritance. Terms were iteratively refined through 
review of results for relevance by the expert panel until con-
sensus on these terms was reached. The full search strategy 
is shown in Table 1. The literature search was conducted in 
PubMed on articles published on or before December 16, 
2020. The search was limited to publications in English. 
Articles retrieved were downloaded into an Excel spread-
sheet, where duplicates were removed. Title and abstract 
screening were undertaken by five pairs of researchers (JK, 
LF, AB, TW, TK, CC, MT, EM, GE, HM) who each worked 
independently on 20% of the retrieved articles to determine 
if the article should be included or excluded. An identical 
search was conducted in PubMed on November 03, 2021 by 
JK, MA, FA, to ensure any recent publications were included 
in this review.

Included articles presented evidence of clinical utility of 
genomic medicine for conditions stemming from a polygenic 
risk where PRSs were used to inform intervention. Articles 
were excluded if the research findings were specific to mono-
genic disease, pharmacogenomics, microbial/metagenomics, 
expression profiling, somatic genome or methodology only. 
Articles were also excluded if they did not contain genomic 
data or health outcomes or if the articles were reviews, or 
association/observation studies. Studies that fulfilled all 
inclusion criteria and passed all exclusion criteria but failed 
to unequivocally demonstrate an effect on patient health 
outcome were additionally assigned the label of “near evi-
dence.” These articles included evidence of clinical validity 
and were suggestive of utility but lacked clinical outcome 
data. Upon completion of the independent review of the arti-
cles, researchers compared screening results and resolved 
discordance with a third researcher. The final set of articles 
were agreed on by the entire research team (Fig. 1a). Inclu-
sion/exclusion criteria are shown in Table 2 and additionally 
assigned a label of “near evidence” (see Table S1).

https://www.cdc.gov/genomics/gtesting/acce/index.htm
https://www.cdc.gov/genomics/gtesting/acce/index.htm


1699Human Genetics (2022) 141:1697–1704	

1 3

Results

The initial PubMed query run on December 16, 2020, 
retrieved 530 articles. Ten investigators manually curated 
105 articles each, and each article was curated in duplicate. 
Duplicate curations agreed on classifying 522 and disagreed 
on 8. These 8 articles were reviewed by a third investiga-
tor and discussed with the two initial investigators to reach 
a final consensus. This process was repeated on a second 

PubMed query run on November 03, 2021, and retrieved 61 
additional items. The same paired review process was fol-
lowed, and the results were 100% in agreement with having 
no clinical utility (Fig. 1b).

No study was found that showed unequivocal demonstra-
tion of clinical utility of any PRS. The study team therefore 
excluded the studies that were categorized as “Near-Evi-
dence” in analysis (Fig. 1b).

Table 1   Search terms
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Fig. 1   Study design and results. a Overview of the literature review process. b Outcome of the systematic review process of peer-reviewed litera-
ture following PRISMA guidelines
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22/591 studies showed robust evidence of clinical valid-
ity, i.e. some PRSs accurately stratified individual disease 
susceptibility, e.g., breast cancer (Mavaddat et al. 2019) or 
atrial fibrillation (Mars 2020). One example was PRS for 
breast cancer, where enhanced screens (mammograms) were 
likely, but not proven, to benefit women with highest risk 
scores, by analogy with BRCA1&2 (Kramer et al. 2020).

Discussion

We followed PRISMA guidelines to systematically review 
the PubMed database for published evidence of clinical util-
ity of using a PRS for improving patient health, and manu-
ally curated the retrieved items to systematically remove 
studies dealing with monogenic disease, pharmacogenom-
ics, microbial/metagenomics, expression profiling, somatic 
genome or methodology only. Our screen did not identify 
a single study demonstrating evidence of clinical utility of 
a PRS, as of November 3rd, 2021. This suggests that PRSs 
are not ready to be implemented in the clinic without fur-
ther research. We did find studies that demonstrated clinical 
validity of PRSs in clinical conditions where medical action 
based on the PRS is likely to produce a benefit to patient 
outcome, which we referred to as ‘near evidence’ of clini-
cal utility. For example, Kramer et al. (2020) demonstrated 
that a PRS was clinically valid in women with breast cancer 
for stratifying the risk of contralateral breast cancer, and 
concluded that this PRS “can be incorporated into contralat-
eral breast cancer risk prediction models to help improve 
stratification and optimize surveillance and treatment strate-
gies”. However, further studies are needed to demonstrate 
the utility of PRS prospectively does improve morbidity and 
mortality.

Our study has several limitations. We screened the Pub-
Med database only, because it is a large repository of regu-
larly updated peer-reviewed medical articles that captures 
a very large portion of medical knowledge. We chose not 
to include “gray” literature in our search, to minimize the 

chance of reporting false positive results, i.e. PRSs with no 
demonstrated clinical utility.

Our search of the PubMed literature was designed to 
minimize alpha and beta-type errors, but was not perfect. 
An additional, non-systematic approach identified a study 
that did demonstrate clinical utility on an intermediate out-
come (blood level of LDL-cholesterol), albeit not on health 
outcome per se (myocardial infarction) (Kullo et al. 2016). It 
remains possible that more studies were not included despite 
demonstrating evidence of clinical utility, but we consider 
this possibility unlikely because our manual curation of the 
PubMed screen was performed in duplicate and reviewed by 
a third expert in case of disagreement.

We believe the main limitation of our review arises from 
the pragmatic decisions made to cope with the massive vol-
ume of literature on this topic. We searched for a single, 
albeit comprehensive source but did not attempt to iden-
tify unpublished studies or gray literature, and we did not 
intend to generate pooled estimates. With the huge number 
of studies being produced and published every year, it is 
very difficult to synthesize the evidence with traditional sys-
tematic review methods. One alternative is to apply artificial 
intelligence and other technologies that automate or semi-
automate the different steps of the systematic review pro-
cess. However, it is important to be very specific about what 
artificial intelligence can provide and where its use might be 
inappropriate. Exemplary reviews combining artificial intel-
ligence with rigorous systematic review methods have been 
produced in the context of COVID-19 (Boutron et al. 2020; 
Pierre et al. 2021; Siemieniuk et al. 2020).

In spite of the current absence of unequivocal evidence 
of clinical utility using stringent criteria, the routine use 
of PRSs hold great promise. They can be assessed at low 
cost (< $30) at any point in time. Further research should 
now aim at comparing the current standard of care with and 
without the use of PRSs in cohorts of patients with complex 
traits to demonstrate a benefit for patient health. Randomized 
controlled studies are the best approach. An example of such 
a study design might consist of implementing the use of a 
PRS in making decisions regarding apparently benign breast 
tumors identified on routine mammogram screens in asymp-
tomatic women, versus non-use of PRS in a random control 
cohort, and assess outcome in terms of invasive breast can-
cer after a defined interval, e.g., one year. It should be noted 
however that randomized controlled studies will be much 
harder to achieve where the relevant health outcomes take 
many years or decades to manifest (e.g. myocardial infarc-
tion). Furthermore, they must cover the diverse ethnicities 
of patients. Hence, some PRSs are likely to be implemented 
empirically for clinical decision-making, by analogy with 
monogenic testing, in extreme strata (both tails) of poly-
genic risk, e.g., for shortening screening intervals in women 
with high breast cancer PRS, with a posteriori, retrospective 

Table 2   Exclusion criteria

● Monogenic disease
● NOT genomic data
● NOT clinical utility, no health outcome
● Pharmacogenomics
● Cancer studies—tumor profiling
● Microbial/metagenomics
● Expression profiling
● Association or observation study
● Methodology only
● Review
● Other: meta-analysis, case report, interview, educational article
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evaluation of clinical outcome. Another line of research 
should continue to improve the technical ability of PRSs 
to capture trait heritability. It is essential that future studies 
of PRSs for both clinical validity and utility engage diverse 
populations to improve their relevance to all population 
groups and avoid exacerbation of health inequities.

In conclusion, although our search could not identify 
published evidence of unequivocal clinical utility of a PRS, 
we found numerous examples of near evidence of clinical 
utility and ample demonstration of clinical validity. As PRS 
continue to improve in their ability to capture heritability 
of polygenic traits, we can expect demonstration of clinical 
utility by appropriate clinical trials in the coming years in a 
variety of disorders like coronary artery disease or common 
cancers, ushering a new era of genomic medicine.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00439-​022-​02452-x.
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