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Abstract

Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses 

transcribed by radiologists which include clinical facts and negated and/or uncertain statements. 

Extracting pathologic findings and diagnoses from radiology reports is important for quality 

control, population health, and monitoring of disease progress. Existing works, primarily rely 

either on rule-based systems or transformer-based pre-trained model fine-tuning, but could not 

take the factual and uncertain information into consideration, and therefore generate false positive 

outputs. In this work, we introduce three sedulous augmentation techniques which retain factual 

and critical information while generating augmentations for contrastive learning. We introduce 

RadBERT-CL, which fuses these information into BlueBert via a self-supervised contrastive loss. 

Our experiments on MIMIC-CXR show superior performance of RadBERT-CL on fine-tuning for 

multi-class, multi-label report classification. We illustrate that when few labeled data are available, 

RadBERT-CL outperforms conventional SOTA transformers (BERT/BlueBert) by significantly 

larger margins (6–11%). We also show that the representations learned by RadBERT-CL can 

capture critical medical information in the latent space.
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1. Introduction

Chest radiography is a critical medical imaging technique used for diagnosis, screening, 

and treatment of many perilous diseases. Radiology reports are documented by radiologists 

after examining a patient’s medical history and diagnostic imaging, and represent complex 

anatomical and medical terms written for healthcare providers, along with indications of 

the presence or absence of any disease. Classifying radiology reports according to their 

description of abnormal findings is important for quality assurance and can mitigate 

the risks of diagnostic radiation exposure in children [24]. Additionally, the Precision 

Medicine Initiative (PMI) initiated by NIH and multiple research centers has highlighted 
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the importance of text mining techniques to enable cohort pheno-typing of patients for 

population health (Shin et al., 2017). Classifying radiology reports can help to identify 

patient cohorts and enable precision medicine on a large scale. Labeling radiology reports 

with disease types can also assist in the development of deep learning applications for 

automated-diagnosis (Rajpurkar et al., 2017; Han et al., 2020; Yao et al., 2018).

ChestX-ray14 (Wang et al., 2017), MIMIC-CXR (Johnson et al., 2019), and OpenI 

(Demner-Fushman et al., 2016) are some of the largest radiology datasets available, and 

many classification algorithms have been developed based on the training sets provided by 

these datasets to classify reports into diseases. CheXpert (Irvin et al., 2019) is an automated 

rule-based labeler consisting of three stages: mention extraction, mention classification, and 

mention aggregation, to extract observations from the free text radiology reports to be used 

as structured labels for the images. CheXBert (Smit et al., 2020) uses the labels extracted 

by CheXpert to fine-tune BERT transformer along with ~ 1000 manually annotated reports 

to classify radiology reports. While these methods have shown great advancements, they 

cannot capture many critical and factual information (especially negated statements). 

Negated statements in a radiology report can lead to false positive classifications and 

therefore should be treated with caution. Also negated statements provide rich information 

that should be captured and integrated into the classification algorithms.

Motivated by the success of contrastive learning in computer vision (Chen et al., 2020a; He 

et al., 2020; Chen et al., 2020b; Grill et al., 2020; Robinson et al., 2020) to improve on 

the learning of feature representation in latent space, we propose to pre-train transformers 

using contrastive learning before the end-to-end fine-tuning for classification of radiology 

reports. Medical reports contain many critical and factual information such as the presence/

absence of a disease (see Table 1 for more details). This information is central for making 

a classification decision, and many other downstream tasks such as Report Generation 

(Zhang et al., 2020a), Report Summarization (Zhang et al., 2020c), etc. Most existing 

approaches do not handle uncertainty/negation information explicitly, and depend on the 

deep learning models to capture them. We identified that the SOTA transformers such as 

Bert (Devlin et al., 2019), BlueBert (Peng et al., 2019), do not perform well at capturing 

uncertainity/negation information in latent space. Considering the significance of these 

critical information for both interpretability and performance improvement of deep learning 

models, we introduce RadBERT-CL, a pre-trained model using contrastive learning which 

can capture critical medical and factual nuances of radiology reports. It trains BlueBert 

(Peng et al., 2019) with the radiology report dataset and captures its fine-grained properties, 

in order to improve performance of report classification task at the fine-tuning stage. We 

introduce three novel data augmentation techniques at the sentence and document level, 

which can retain the critical medical concepts and factual information present in radiology 

reports while generating positive and negative pairs for contrastive learning.

RadBERT-CL outperforms the previous best reported CheXbert labeler (Smit et al., 2020) 

with 0.5% improvement on F1-score without any need for hight quality manual annotation 

during training (note that the baseline (Smit et al., 2020) has claimed their results very 

close to human-level performance). We evaluated our system using 687 expert-annotated 

reports, same as CheXbert (Smit et al., 2020). We find that representations learned 
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by RadBERT-CL are more informative, can capture and distinguish critical information 

present in the radiology reports. The improvements on F1-measure are more significant if 

few manually annotated data are available. This is particularly important since obtaining 

manually annotated data in medicine is extremely difficult and costly. In this case, our 

algorithm can achieve 6–11% improvements on disease classification. The highlights of our 

contributions are:

• We propose two novel data augmentation techniques which retain factual and 

critical medical concepts, identified by our semi-rule based Info-Preservation 

Module, while generating positive and negative keys for contrastive learning.

• We show that our model RadBERT-CL is able to learn and distinguish fine-

grained medical concepts in latent space, which cannot be captured by SOTA 

pre-trained models like BERT, and BlueBert.

• We apply contrastive learning for radiology report classification task and show 

improvements on the state-of-the-art methods. We use weakly-labeled data 

during our training and evaluate our system using 687 high-quality reports 

manually labelled by radiologists.

• Lastly, we evaluate our model performance when a few data labels are available 

for training and show that our model outperforms significantly by 6–11% 

improvements in disease classification task.

2. Related Work

Contrastive Learning:

Contrastive learning (CL) seeks to learn effective representations by maximizing the 

agreement between two augmentations from one example and minimizing the agreement 

of augmentations from different instances. CL has been recently explored in computer 

vision and graph Neural Network due to its success in self-supervised representation 

learning. However, CL still receives limited interest in the NLP domain. The main reason 

is the discrete nature of text and it is hard to define and construct effective positive 

pairs. Several works have explored ways to perform augmentations. (Fang and Xie, 2020) 

back-translated source sentences to create sentence-level positive augmentations, which 

maintain semantic meaning of the source sentence. (Wu et al., 2020a) integrated four 

sentence-level augmentation techniques, namely word and span deletion, reordering and 

synonym substitution, to increase models’ robustness.

Factual Correctness and Consistency:

Factual correctness and factual consistency are key requirements for medical reports. 

Keeping factual information and avoiding hallucinations could support medical decision-

making process. These requirements have been recently explored in NLP tasks, especially in 

abstractive text summarization. (Zhang et al., 2020b) directly took factual correctness as a 

training objective in their system via reinforcement learning. On the other hand, (Falke et al., 

2019) and, (Goyal and Durrett, 2020) used textual entailment to detect factual inconsistency 

based on the assumption that summary should be entailed by the source document. (Zhu et 
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al., 2021) built a knowledge graph containing all the facts in the text, and then fused it into 

the summarization process.

3. Methods

3.1. Problem Formulation

Radiology report classification is a multi-class multi-label classification problem, which 

classifies radiology reports into different disease observations (e.g., cardiomegaly, effusion, 

mass, edema). Following (Smit et al., 2020), we label each report rk in MIMIC-CXR dataset 

with a 14-dim vector y = [y1, y2, y3, …, y14] of observations, where observations y1 − y13 

can take any value from the following 4 classes : blank, positive, negative, and uncertain. 

For y14, which corresponds to No Finding (no pathology is found in the scope of any of 13 

disease observations), the classifier takes value from only 2 classes: blank, and uncertain.

3.2. Data Augmentation

In computer vision, it has been verified that contrastive learning benefits from strong data 

augmentation techniques like random cropping, rotation, blurring, color distortion, etc. 

However, in NLP, generating data augmentation is comparatively difficult due to the discrete 

representation of words, and it is unknown what kind of augmentation will benefit noise-

invariant representational learning. (Fang et al., 2020) used back-translation to perform 

sentence augmentation while (Wu et al., 2020b) explored four different basic augmentation 

techniques: word and span deletion, reordering, and substitution. While these methods have 

shown improvements on some SentEval and GLUE benchmarks, they cannot be directly 

applied to generating augmentations for radiology reports. Radiology reports contain critical 

and factual information and that need to be preserved while generate augmentations. Table 1 

presents an example of radiology report in which we have highlighted the information such 

as chest, left hilum, pulmonary vascularity, clear of, no evidence, pneumonia, etc.

Through augmentation, it is likely that (Wu et al., 2020b) dropped critical words or phrases 

which can lead to a completely different diagnosis. For example, dropping negation words, 

such as No, can lead to a diagnosis suggesting the presence of pleural effusion, and it can 

have negative consequences during our downstream task of disease classification. Also, as 

suggested by (Fang et al., 2020), back-translation cannot provide satisfactory results for the 

medical data because back-translation models have limited the cross-language translation 

ability for domain specific texts.

In order to ensure that critical and factual information is preserved while generating 

augmentations, we define an Info-Preservation module, which identifies and preserves 

facts during augmentation generation. We propose sentence-level and document-level 

augmentation techniques, to effectively pre-train our RadBERT-CL architecture.

3.2.1. Info-Preservation Module—Radiology reports consist of many important 

radiology concepts such as diseases, body parts, etc. In order to preserve them during 

augmentation, we develop a rule-based tool similar to Dynamic-LCS (Raj et al., 2020) 

to greedily match concepts in RadLex ontology (Langlotz, 2006) on sequences of the 

lemmatized tokens in the reports (longer matches are returned when possible). For capturing 
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the presence of negation of any concept, we manually create a dictionary of 30 negation 

indicator keywords such as: not, without, clear of, ruled out, free of, disappearance of, 
without evidence of, no evidence of, absent, miss. Following (Chen et al., 2018), we create a 

dictionary of uncertainty keywords with a wide range of uncertain types, from speculations 

to inconsistencies present in the reports. We design a set of pattern matching rules following 

(Wang et al., 2017) for identifying sentences containing negation or uncertainty. Appendix 

Table 10 presents some examples of our rules and the matched sentences from the radiology 

reports. While generating augmentations, we make sure that any identified radiology concept 

or word from our negation and uncertainty list is not dropped.

3.2.2. Sentence-Level Augmentation—Sentence-level augmentations are generated 

by first splitting radiology reports into sentences and then applying random word and phrase 

dropping (Wu et al., 2020b), while preserving critical and factual information identified 

in Info - Preservation module. We propose two different augmentation techniques by 

associating each sentence with a disease concept from Radlex and a boolean variable 

indicating presence/absence of any negation or uncertainty phrase. Sentences without any 

mention of disease concepts are discarded.

• Disease-based augmentation: In this technique, we discard all sentences which 

consist of any mention from our negation or uncertainty dictionary. For a 

given anchor sentence with disease concept d, any other sentence from any 

report mentioning d can be taken as positive example. Negative samples can be 

sentences which mention any disease concept except d. Refer Table 3 for the 

example.
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• Disease + Factuality based augmentation: In this technique, we consider any 

mention from our negation or uncertainty dictionary along with disease concept 

while generating augmentation pairs. For a given anchor sentence with disease 

concept d and negation or uncertainty present, any other sentence from any 

report mentioning d and negation or uncertainty present can be taken as positive 

example. Negative samples can be sentences which mention same disease d, but 

negation or uncertainty absent. Refer Table 3 for the example.
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3.2.3. Document-Level Augmentation—Document-level augmentations are 

generated at the report-level, where each report is first pre-processed with removing extra 

spaces, newlines, and unwanted tokens. For a given report rk, we apply four types of 

augmentations (word deletion, span deletion, sentence reordering, and synonym substitution 

with probability 0.2) mentioned in (Wu et al., 2020b) while preserving critical and factual 

information identified in Info-Preservation module, to generate positive key. Negative keys 

can be any report not from the same patient.

3.3. Model Architecture

Our proposed model RadBERT-CL is a two-staged training process: pre-training and fine-

tuning (Figure 1(a) and (b)). For pre-training, we follow Sim-CLR (Chen et al., 2020a) 

framework closely, and use BlueBert architecture as the encoder. Radiology reports are 

processed by Info-Preservation module and augmentations are generated using techniques 

proposed in Section 3.2. The augmentations are passed through the encoder f(.) and we 

take the CLS output of encoder and further pass it through the projection head g(.). Our 

projection heads consist of two MLP layers of size 768, along with non-linearity RELU and 

BatchNorm Layer. After pre-training we discard the projection head and use our pre-trained 

encoder for fine-tuning.

3.4. Dataset

For the disease labelling task, we use MIMIC-CXR dataset (Johnson et al., 2019) which 

consists of 377, 110 chest-Xray images of 227, 827 patients along with their corresponding 
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de-identified radiology reports. The dataset is pseudo-labeled using automatic labeler (Irvin 

et al., 2019) for the intended set of 14 observations using the entire body of the report.

In our study, we apply the contrastive pre-training by using the radiology reports from 

the entire MIMIC-CXR dataset for generating positive and negative augmentations. We 

divide our dataset into two parts for the fine-tuning stage after removing the duplicate 

reports of same patient: 80% for training, 20% for validation. Note that there is no patient 

overlap between the training and validation split. Additionally, we have a set of 687 reports 

belonging to 687 unique patients, similar to (Smit et al., 2020), which has been manually 

annotated by radiologists for the same 14 observations, and we evaluate our RadBERT-CL 

on this dataset.

3.5. Contrastive Pre-training

RadBERT-CL uses a transformer architecture similar to (Peng et al., 2019) and pre-trains it 

using contrastive self-supervised learning similar to (Chen et al., 2020a) on MIMIC-CXR 

dataset. Note that RadBERT-CL can be used on top of other language representation models 

and is not specific to (Peng et al., 2019). We propose three novel contrastive learning 

algorithms 1,2,3 with the help of augmentation techniques proposed in 3.2, which help 

RadBERT-CL to learn discriminative features across different medical concepts as well as 

factual cues. As shown in Figure 1(a), the augmentation views generated using techniques 

in 3.2, are passed through the our encoder RadBERT-CL f(.) and non-linear projection 

head g(.) to generate two 768-dimensional vectors zi = g(f(view1)) and zj = g(f(view2)). 

RadBERT-CL is pre-trained by maximizing the agreement between zi and zj using the 

contrastive loss similar to normalized temperature scaled cross-entropy loss (NT-Xent) 

(Chen et al., 2020a) defined as:

L(i, j) = − log exp sim zi, zj /τ
∑k = 1, k ≠ i

num exp sim zi, zk /τ
, (1)

LContrastive = ∑
k = 1

batcℎ−size
L(i, j) (2)

where τ is a temperature parameter, and num is the number of negative views. We calculate 

the loss for each sample in our mini-batch and sum them to estimate LContrastive. We 

calculate the gradient ∇Lcontrastive and back-propagate it to update our encoder f(.) and g(.). 

Contrastive learning benefits from training for larger epochs (He et al., 2020; Chen et al., 

2020a; Grill et al., 2020), so we trained RadBERT-CL for 100 epochs using SGD optimizer. 

Note that after pre-training, we discard the project head g(.) and only use our encoder f(.) for 

fine-tuing on downstream task.

3.6. Supervised Fine-Tuning

In order to use the pre-trained RadBERT-CL model for our downstream task of report 

classification, we further fine-tune f(.) on the pseudo-labels of radiology report classification 
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task as shown in Figure 1(b). Our disease is multi-class classification problem and We use 

cross-entropy loss as our supervised classification loss, defined as:

Ll, k
i = ∑

l
∑

k
yl, k

i × log yl, k
i

(3)

LClassification = ∑
i = 1

batcℎ−size
Ll, k

i
(4)

where, i denotes i − th training example, l denotes class label (Edema, Cardiomegaly, etc.), 

k ∈ {Positive, Negative, Uncertain, Blank}. We calculate the gradient ∇Lclassification and 

back-propagate it to update our encoder f(.).

4. Evaluation and Results

4.1. Evaluation

Following (Smit et al., 2020), we evaluate our system based on its average performance 

on three retrieval tasks: positive extraction, negative extraction, and uncertainty extraction. 

For each of the 14 observations, we compute a weighted average of the F1 scores on each 

of the above three tasks, weighted by the support for each class of interest, which we call 

the weighted-F1 metric. Table 4 presents the weighted-F1 score of RadBERT-CL using our 

three different variants of contrastive learning and their comparisons with SOTA methods. 

We have also presented the detailed evaluation score of our best RadBERT-CL variant 

(Algorithm 3) for all three retrieval tasks in Appendix Table 9.

To demonstrate the effectiveness of RadBERT-CL performance when only a few labeled 

data is available, we evaluated RadBERT-CL performance in two different training 

scenarios: (a) pre-train RadBERT-CL using Algorithm 3 on 687 high-quality annotated 

dataset (no manually annotated label is used), fine-tune on randomly selected 400 high-

quality annotated dataset, and test it on remaining 287 high-quality annotated dataset. (b) 

pre-train RadBERT-CL using Algorithm 3 on entire MIMIC CXR, fine-tune on randomly 

selected 400 high-quality annotated dataset, and test it on remaining 287 high-quality 

annotated dataset.

4.2. Results

We observe that our RadBERT-CL model pre-trained using Algorithm 3 outperforms 

previous state-of-the-art model CheXbert in 7 out of 14 findings after fine-tuning. Table 

4 presents the weighted F1 scores of RadBERT-CL varients and previous SOTA systems 

CheXpert and CheXbert. Our model variants combined together outperform CheXbert in 

11 out of 14 findings. Note that CheXbert training is calibrated under the supervision of 

~ 1000 manually annotated reports by radiologists while our system is trained using 

weakly labeled reports. With the help of the guided-supervision of expert-level annotated 

data as proposed in CheXbert (Smit et al., 2020), we believe that our system will show more 

significant improvements.
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In our analysis using Algorithm 1,2,3, we found that RadBERT-CL is very successful in 

capturing the factual information present in radiology reports. We calculated the cosine 

similarity between CLS embeddings generated by two factually different report snippets 

as shown in Table 6, by BERT, BlueBert and RadBERT-CL. RadBERT-CL is able to 

distinguish between the factual nuances of medical reports which are not captured in the 

representations generated by BERT and BlueBert.

While deep learning methods often require expert-annotated high-quality data for training, 

getting sufficiently annotated data in the medical domain is very costly due to the limited 

availability of human experts. However, we have enough unlabelled data which can be 

used to improve our DL models with the supervision of few high-quality annotated data. 

Table 5 illustrates our RadBERT-CL performance in such scenario. Clearly, our model 

outperforms conventional fine-tuning using BERT/BlueBert for the classification task, 

by huge margins of 0.06 to 0.11 on weighted F1-metric. Better performance in Linear 

evaluation settings indicates that the representations learned by RadBERT-CL in pre-training 

stage are significantly better than BERT/BlueBert. Our experiments confirm that using 

largely available unsupervised data to pre-train transformers using contrastive learning 

provide significant improvement in fine-tuning tasks when few labelled data is available.

5. Conclusion

In this work, we present novel data augmentation techniques for contrastive learning to 

capture factual nuances of medical domain. Our method involves pre-training transformers 

using abundance of unsupervised data to capture fine-grained domain knowledge before 

fine-tuning it for downstream tasks such as disease classification. We further show that 

such training strategy improves the performance in downstream tasks significantly in limited 

data settings. We hope that this work can draw community attention towards the ability of 

contrastive learning to capture discriminative properties in the medical domain.

6.: Appendix

Table 7:

Training details for RadBERT-CL Pretraining and Finetuning Stages.

Hyperparameter Pretraining Finetuning

batch-size 128 32

learning-rate 0.1 2e-5

optimizer SGD Adam

temperature (CL) 0.4 -

n_epochs 100 10

beta - [0.9, 0.99]

Aug. Probability 0.2 -
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Figure 2: 
t-SNE visualization of BlueBert and RadBERT-CL(Algorithm 3) for radiology reports 

annotated positive for three major diseases (Cardiomegaly, Pneumonia, and Atelectasis). 

Note that the reports used for generating the t-SNE plot are sampled from 687 radiologists 

annotated test set which are not used in RadBERT-CL pre-training. From the figure, 

it is evident that embeddings generated after pre-training RadBERT-CL with contrastive 

learning, is more informative compared to BlueBert on unseen data.

Table 8:

Examples where RadBERT-CL incorrectly assign or misses label while making prediction. 

We include speculative reasoning for the classification errors.

Report Snippet: … apparent new small right pleural edema manifested by posterior blunting of right costophrenic 
sulcus …

Prediction: Pleural Other

Ground Truth: Edema

Reasoning: the presence of pleural keyword along with edema may have confused the model to classify it as Pleural 
Other.

Report Snippet: … new area of pleural abnormality has developed in right side of lungs, and the heart and mediastinal 
structures and bony structures remain normal in appearance …

Prediction: Pleural Effusion

Ground Truth: Pleural Other

Reasoning: we found in reports that many pleural disorders share similar context which possibly make it difficult to 
classify them correctly. This can also explain the low F1-score of Pleural Other category.

Report Snippet: … mild interstitial edema and small right pleural effusion are new since ___…

Prediction: Pleural Effusion

Ground Truth: Pleural Effusion, Edema

Reasoning: the model misses to identify edema and only identified Pleural Effusion possibly because majority of times, 
edema is mentioned as Pleural Edema in reports.
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Table 9:

Detailed F1-evaluation of RadBERT-CL variant (Algorithm 3) for the classification tasks 

of positive extraction, negation extraction, uncertainty extraction, and blank for each of our 

14 observations. Note that for ”Blank”, we have f1-scores related to positive extraction and 

blank, while the other two are set to zero.

Category Positive F1 Negation F1 Uncertain F1 Blank F1

Enlarged Cardiomediastinum 0.579 0.786 0.831 0.965

Cardiomegaly 0.870 0.862 0.433 0.978

Lung Opacity 0.820 0.200 0.512 0.910

Lung Lesion 0.777 0.571 0.211 0.983

Edema 0.913 0.901 0.745 0.993

Consolidation 0.909 0.824 0.876 0.997

Pneumonia 0.786 0.916 0.807 0.991

Atelectasis 0.962 0.444 0.874 0.999

Pneumothorax 0.850 0.971 0.526 0.996

Pleural Effuison 0.938 0.957 0.596 0.985

Pleural Other 0.623 0.234 0.114 0.981

Fracture 0.894 0.333 0.667 0.993

Supported Devices 0.902 0.100 0.000 0.942

No Finding 0.592 0.000 0.000 0.978

Table 10:

Examples from the set of rules in our Info-Preservation Module for Negation and 

Uncertainty Detection and their corresponding matching sentences.

a. Negation Detection

RULE: * + clear/free/disappearance + <prep_of> + * + DISEASE_CONCEPT

1. the left lung is free of consolidations or pneumothorax

2. the lungs are clear of any focal consolidation

3. pleural sinuses are free of any fluid accumulation

RULE: * + no/not + evidence/ * + <prep_[of |for] > + * + DISEASE_CONCEPT

1. within the remaining well-ventilated lung, there is no evidence of pneumonia

2. there is not evidence for pulmonary edema

3. there are no evidences of acute pneumothorax

b. Uncertainty Detection

RULE: * + couldbe/maybe/… + * + DISEASE_CONCEPT

1. there are bibasilar opacities which could be due to atelectasis given low lung volumes

2. perihilar opacity could be due to asymmetrical edema

3. left base opacity may be due to atelectasis

RULE: * + suggest/suspect/[−ing| − ed] + * + DISEASE_CONCEPT

1. signs of parenchymal changes suggesting pneumonia

2. the left heart border is silhouetted, with a suspected left basilar opacity
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3. prominence of the central pulmonary vasculature suggesting mild pulmonary edema
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Figure 1: 
(a) Pre-training architecure of RadBERT-CL using contrastive learning. Two separate data 

augmentation views are generated using the augmentation techniques described in Section 

3.2. Both views (query and key) are passed through RadBERT-CL, which is a transformer-

based encoder f(.), and a projection head g(.). RadBERT-CL is trained to maximize 

agreement between the two augmented views using contrastive loss. (b) Fine-tuning Model 

architecture of RadBERT-CL. The model consists of 14 linear heads corresponding to 14 

disease concepts. Among them, 13 linear heads can predict 4 outputs, while linear head 

corresponding to “No Finding” can predict 2 outputs.
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Table 2:

Explanation of class value predicted by RadBERT-CL for disease observations

Blank observation not mentioned in the report

Positive observation mentioned and its presence is confirmed
eg. definite focal consolidation is seen in lungs

Negation observation mentioned and its absence is confirmed
eg. the lungs are clear of any focal consolidation

Uncertain observation mentioned with uncertainty
eg. signs of parenchymal changes suggesting pneumonia
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