Skip to main content
. 2022 May 2;77:103778. doi: 10.1016/j.bspc.2022.103778

Table 3.

represents the 3-Class Fold wise analysis.

FOLD METHOD Precision Recall F-score Accuracy
Fold 1 MobileNetV2 0.9525 0.9502 0.9512 0.9484
VGG16 0.9527 0.9522 0.9523 0.9509
Fusion 0.9677 0.9663 0.9668 0.9656
Fold 2 MobileNetV2 0.9476 0.9501 0.9487 0.9476
VGG16 0.9579 0.957 0.9572 0.9558
Fusion 0.9658 0.9676 0.9666 0.9656
Fold 3 MobileNetV2 0.9461 0.9454 0.9458 0.9443
VGG16 0.9445 0.9412 0.9427 0.9410
Fusion 0.9611 0.959 0.96 0.9590
Fold 4 MobileNetV2 0.9379 0.9388 0.9383 0.9369
VGG16 0.9537 0.9534 0.9535 0.9525
Fusion 0.969 0.9699 0.9694 0.9689
AVERAGE MobileNetV2 0.9460 0.9461 0.9460 0.9443
VGG16 0.9522 0.95095 0.9514 0.9500
Fusion 0.9659 0.9657 0.9657 0.9648