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Abstract

Aim: This investigation aims to advance the understanding of neural dynamics that underlies live and natural
interactions during spoken dialogue between two individuals.
Introduction: The underlying hypothesis is that functional connectivity between canonical speech areas in the
human brain will be modulated by social interaction.
Methods: Granger causality was applied to compare directional connectivity across Broca’s and Wernicke’s
areas during verbal conditions consisting of interactive and noninteractive communication. Thirty-three pairs
of healthy adult participants alternately talked and listened to each other while performing an object naming
and description task that was either interactive or not during hyperscanning with functional near-infrared spec-
troscopy (fNIRS). In the noninteractive condition, the speaker named and described a picture-object without ref-
erence to the partner’s description. In the interactive condition, the speaker performed the same task but included
an interactive response about the preceding comments of the partner. Causality measures of hemodynamic re-
sponses from Broca’s and Wernicke’s areas were compared between real, surrogate, and shuffled trials within
dyads.
Results: The interactive communication was characterized by bidirectional connectivity between Wernicke’s
and Broca’s areas of the listener’s brain. Whereas this connectivity was unidirectional in the speaker’s brain.
In the case of the noninteractive condition, both speaker’s and listener’s brains showed unidirectional top-
down (Broca’s area to Wernicke’s area) connectivity.
Conclusion: Together, directional connectivity as determined by Granger analysis reveals bidirectional flow of
neuronal information during dynamic two-person verbal interaction for processes that are active during listening
(reception) and not during talking (production). Findings are consistent with prior contrast findings (general lin-
ear model) showing neural modulation of the receptive language system associated with Wernicke’s area during
a two-person live interaction.

Keywords: effective connectivity; functional near-infrared spectroscopy; Granger causality; human language in-
teractions; hyperscanning; two-person neuroscience; verbal dialogue

Impact Statement

The neural dynamics that underlies real-life social interactions is an emergent topic of interest. Dynamically coupled cross-
brain neural mechanisms between interacting partners during verbal dialogue have been shown within Wernicke’s area. How-
ever, it is not known how within-brain long-range neural mechanisms operate during these live social functions. Using
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Granger causality analysis, we show bidirectional neural activity between Broca’s and Wernicke’s areas during interactive
dialogue compared with a noninteractive control task showing only unidirectional activity. Findings are consistent with an
Interactive Brain Model where long-range neural mechanisms process interactive processes associated with rapid and spon-
taneous spoken social cues.

Introduction

Natural and purposeful verbal interaction is
generally considered a foundation of human social and

cultural activities, and has been an active topic of investiga-
tion for over a century (Hickok and Poeppel, 2007; Keenan
et al., 1977). However, the neural dynamics necessary to un-
derstand the interactive process of talking and listening be-
tween dyads has emerged as a central question in the new
‘‘neuroscience of two.’’

We have previously demonstrated that neural responses
during talking and listening with and without interaction
revealed increased activity during listening (Wernicke’s
area), but not talking (Broca’s area), during the interactive
condition (Hirsch et al., 2018). A canonical human language
model includes specialized units for transmission of speech
in the left inferior prefrontal region (Broca’s area) and for
reception/comprehension of auditory signals in the left tem-
poroparietal region (Wernicke’s area; Price, 2012).

These frontal and temporoparietal regions constitute es-
sential speech-processing networks interfacing the articula-
tory motor and phonological sensory functions (Hickok and
Poeppel, 2007). It is assumed that the natural flow of live
and interactive verbal communication includes the sending
and receiving of information in rapid succession that includes
simultaneous functions such as motor planning, articulation,
auditory perception, and comprehension of the spoken words.

However, it is not known if these pathways are uni- or bi-
directional such as might occur in top-down or bottom-up
pathways or if these processes occur in parallel. In the former
case, a directional connectivity analysis would determine the
information flow between the canonical language areas and
distinguish between neural processes during interactive and
noninteractive communication.

We applied Granger causal measures (Barnett and Seth,
2014; Seth et al., 2015) to investigate the signature of direc-
tional connectivity structures across Broca’s and Wernicke’s
language systems during interactive and noninteractive ver-
bal communication. Granger causality determines the effec-
tive or causal relationship between pairs of signals. Since its
first application to local-field potentials (Bernasconi and
KoÈnig, 1999), Granger causality analysis has been utilized
to determine the leader/follower relationship in pairs of func-
tional brain signals such as functional magnetic resonance
imaging (fMRI), electrophysiological data sets (Seth et al.,
2015), and functional near-infrared spectroscopy (fNIRS;
Zhang et al., 2014; Im et al., 2010).

This analysis was performed on data acquired to test the
hypothesis that neural activity during interactive dialogue
would be greater than (and possibly different from) neural
activity during the same task but performed without interac-
tion (De Jaegher et al., 2016; Di Paolo and De Jaegher, 2012;
Hirsch et al., 2018).

The present study used a two-person hyperscanning para-
digm utilizing fNIRS as the neuroimaging technology to ac-

quire brain signals from naturally interacting pairs of
individuals (dyads). This neuroimaging method is based on
changes in spectral absorbance of both oxyhemoglobin
(OxyHb) and deoxyhemoglobin (deOxyHb) detected by
surface-mounted optodes (Cui et al., 2011; Ferrari and Quar-
esima, 2012; Scholkmann et al., 2014; Strangman et al.,
2002; Villringer and Chance, 1997).

These hemodynamic signals serve as a proxy for neural
activity similar to fMRI blood-oxygenation level-dependent
signals (Boas et al., 2014; Ferrari and Quaresima, 2012;
Noah et al., 2015; Ogawa et al., 1990). One advantage of
fNIRS is the tolerance to limited head movement as the optical
probes are tightly fixed on the surface of the head (Ono et al.,
2014; Zhang et al., 2017). This experimental setup enables an
open and naturalistic experimental environment that approxi-
mates the actual situation of interpersonal verbal interaction.

Although understanding the underlying neural circuitry
associated with human speech production and perception
has been an intense focus of neuroscience research, progress
has been challenged by the absence of a neural imaging tech-
nology that enabled neural observations during speaking
tasks. For example, conventional fMRI neuroimaging limits
investigations to single subjects who perform proxies of
speaking tasks using ‘‘silent’’ or ‘‘internal’’ speech while
lying in the bore of a loud and confining scanner. In addition
to the contraindication for actual speaking due to head move-
ments, the opportunities for natural dyadic interaction are
vanishingly small from within a single MRI bore. However,
adaptations of fNIRS for dyadic interactions have partially
resolved these conventional technical obstacles, and partici-
pants are able to face each other in upright and natural con-
ditions and to converse in a typical dialogue.

Recent investigations of the underlying neural systems
engaged during live and natural verbal exchanges between
dyads confirm the impact of this breakthrough technology.
Not only do these ‘‘real-life’’ two-person verbal interactions
confirm prior findings of canonical language areas and their
basic functions, the models have also been expanded to em-
brace constructionist approaches that integrate the language
systems with social, perceptual, and cognitive systems
(Descorbeth et al., 2020; Hirsch et al., 2021).

These naturalistic language investigations are guided by
theoretical frameworks that include the functional neural
anatomy of language during dynamic and interactive tasks
and the functional neural anatomy of live social interactions
(Hasson and Frith 2016; Hasson et al., 2012; Redcay and
Schilbach, 2019; Schilbach et al., 2013). The emerging fused
theoretical frameworks for interactive functions and langu-
age functions have focused on temporal/parietal mechanisms
showing specializations for interactive functions such as real
face viewing (Kelley et al., 2021; Noah et al., 2020) and real
interactive language exchanges (Hirsch et al., 2018; Jiang
et al., 2012). However, beyond the receptive and compre-
hensive components of language and interaction, frontal
mechanisms are thought to underlie productive functions.
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One prominent model of the cortical organization of
speech processing proposes a ‘‘dual stream’’ that segments
processing of comprehension and acoustic signals (Hickok
and Poeppel, 2007). Using Granger causality within this
context of an interactive and live language task, we expand
a limited version of the ‘‘dual-stream’’ model between the
canonical language regions. The hypothesis is that the inter-
active condition will be associated with bidirectional infor-
mation streams reflecting the increased functional load of
dynamic and unscripted talking and listening.

Participants were seated across a table from each other
during the experiment with an occluder between the partici-
pants that prevented viewing the face of their partner to ex-
clude confounds of face processing. Talking and listening
turns were structured and cued as 15-sec epochs for two con-
ditions: object naming and description with interaction and
without. See the Materials and Methods section below and
the previous study (Hirsch et al., 2018).

In applying Granger causality analysis to the fNIRS sig-
nals recorded in the real-world settings, we performed realis-
tic simulations to confirm the detectability of directional
interactions. The region-wise, intrinsic variation in hemody-
namic delay has been raised as a potential confound that may
alter the estimated temporal relationship between remote he-
modynamic signals measured with fMRI (Deshpande et al.,
2010; Schippers et al., 2011; Smith et al., 2012). We com-
pared the causal structures estimated from simulated hemo-
dynamic signals that were sampled with a range of time
resolutions, a major factor determining the detection accu-
racy of Granger causal relationship (Deshpande et al., 2010),
to investigate whether the superior time resolution of fNIRS
could improve the detectability of directional connectivity.

In the present study, we hypothesize that interactive verbal
communication will alter the directional connectivity of ca-
nonical language areas in the listener’s brain as suggested
by previous contrast findings that showed interactive effects
during listening and not talking (Hirsch et al., 2018). This
hypothesis also takes into account the active effort of the lis-
tener during interaction as simultaneous functions of inter-
pretation, coding, and response planning are components of
live interaction. Neurophysiological evidence supporting
this specific hypothesis would further contribute to the
more general Interactive Brain Hypothesis that proposes a
broad theoretical framework for two-person social neurosci-
ence (De Jaegher et al., 2016; Di Paolo and De Jaegher,
2012). This hypothesis predicts that interpersonal social be-
havior and cognitive processes involve specific neural mech-
anisms of two-way interactions within dyads.

Materials and Methods

Participants

All participants provided written consent according to the
guidelines established by the Yale Institutional Review
Board, as specified in protocol number 1501015178. The
fNIRS data used in this study were taken from our compan-
ion study (Hirsch et al., 2018), which focused on intensity
changes of neural activity and two-brain synchronizations
during verbal social interactions, but not on the directional
connectivity within-brains. Thirty-four pairs of healthy
adult participants were included and no individual partici-
pated in more than one dyad.

Since fNIRS signal quality could be easily affected by in-
dividual anatomical characteristics such as skull thickness
and fat deposits (Cui et al., 2011; Okada and Delpy, 2003;
Owen-Reece et al., 1999), participants were initially screened
before the experiment for signal quality using a right-hand
finger-thumb-tapping task and passive viewing of a reversing
checkerboard visual stimulus. Participants who demonstrated
expected fiducial response patterns in the left sensorimotor
area and occipital visual area, respectively, were eligible to
participate. One dyad was excluded from the analysis as the
fNIRS signals from one partner did not meet the stationarity
criteria required for Granger causality analysis. We therefore
analyzed fNIRS data of 33 dyads (n = 66, mean age: 24.8 –
6.5 years, 56% female, 97% right-handed; Oldfield, 1971).

fNIRS data acquisition

Participants sat in a chair *140 cm across a table from
each other with 42-channel fNIRS probes (Shimadzu LAB-
NIRS, Kyoto, Japan) placed on each of their heads using
an optode cap. Participants were instructed to look at a screen
positioned at eye height and *50 cm in front of each of them
throughout the experiment. Participants did not have a view
of their partner. Video and audio recordings were acquired
on all sessions and confirmed compliance with instructions.
Figure 1 illustrates the distribution of 42 channels over
both hemispheres of the scalp. Channel distances were
based on cap size to fit the head of the subject, and the chan-
nel separations were either 2.75 cm for small heads or 3.0 cm
for large heads (Noah et al., 2015). Relative concentration
changes of OxyHb and deOxyHb were continuously mea-
sured with a sampling frequency of 37 Hz (temporal resolu-
tion of 27 ms) using a standard protocol described elsewhere
(Hirsch et al., 2017, 2018).

The anatomical locations of optodes were determined for
each participant immediately after the experiment. The stan-
dard head landmarks, including inion; nasion; Cz in the
international 10–20 layout; and left and right tragi, were
acquired with optode locations using a Patriot 3D Digitizer
(Polhemus, Colchester, VT). Linear transform techniques
were applied as previously described (Eggebrecht et al.,
2012; Ferradal et al., 2014; Okamoto and Dan, 2005) to ob-
tain Montreal Neurological Institute (MNI) coordinates for
the fNIRS channels and their corresponding anatomical
locations using the statistical parametric mapping for near-
infrared spectroscopy (NIRS-SPM) software (Ye et al., 2009)
with MATLAB (MathWorks, Natick, MA).

Interactive and noninteractive task

The verbal task was based on the well-established Object
Naming and Description task frequently used for clinical ap-
plications using fMRI where mapping of the human language
system is the goal for neurosurgical planning purposes (Hart
Jr et al., 2007; Hirsch et al., 2000). However, unlike in fMRI
applications, the fNIRS paradigm allows participants to ac-
tively speak instead of silently rehearsing the response
(Zhang et al., 2017).

The neural regions observed using this task have been val-
idated by intraoperative recordings of both Broca’s and Wer-
nicke’s regions (Hirsch et al., 2000) and motivate the
application of this task in the novel investigation of live
two-person verbal communication. The well-established
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regions activated by this task are consistent with classical
models of overt speech, including Broca’s and Wernicke’s
regions located in inferior frontal and superior temporal
gyri, respectively (Geschwind, 1974).

The stimulus pictures used for the two-person adaptation
of the Object Naming and Description task were of common
and unrelated objects selected for clarity and familiarity. The
time series is shown in Figure 2a. Participant roles of
‘‘speaker’’ and ‘‘listener’’ switched every 15 s when a new
picture was automatically presented on the two screens. This
exchange between talking and listening continued for 3 min
and was repeated twice. The onset of each block was cued
by the appearance of a new picture viewed by both partici-
pants. See Hirsch and colleagues (2018) for further details.

The present study consisted of noninteractive (monologue)
and interactive (dialogue) person-to-person communication.
In the ‘‘monologue’’ condition, the ‘‘talking participant’’
named and described the picture without intention to commu-
nicate with the partner. The ‘‘listening participant’’ heard the
narrative, but did not respond. The ‘‘dialogue’’ condition was
identical except that each speaker and listener intended to
communicate with the partner. The speaker responded to
the comments of the previous speaker before describing the
new picture, and the listener heard both parts and responded
during the upcoming epoch when he/she was the speaker.

Participants were instructed to change topics from ‘‘your
partner’s comments about the previous picture’’ to ‘‘com-
ments about your new picture’’ near the middle of the
epoch. The exact time of the topic switch was not specified
to assure that communication flowed as naturally as possible.
There was no evidence for a difference in the number of
words spoken during the monologue and dialogue condi-
tions, and auditory recordings confirmed compliance.

fNIRS data preprocessing

Although presented previously, these methods are briefly
described here to provide a self-contained report. Baseline
drift of raw fNIRS data was removed using the wavelet
detrending method with a default setting specified in

NIRS-SPM toolbox provided by Ye and colleagues (2009).
Global systemic effects due to blood pressure changes and
respiration (Kirilina et al., 2012; Tachtsidis and Scholkmann,
2016) were further removed from the baseline-corrected
fNIRS signal using a spatial filter method based on principle
component analysis (Zhang et al., 2016, 2017).

The following fNIRS signal analyses were applied to the
preprocessed data set described as above. Since fiducial
markers previously acquired by fMRI associated with talking
and listening task have also been observed using the fNIRS
deOxyHb signal (Hirsch et al., 2018; Scholkmann et al.,
2013; Zhang et al., 2017), we analyzed deOxyHb signals
with the following general linear model (GLM) analysis for
determining cortical regions showing task-related activation.

Determination of regions of interest using GLM

Group analysis contrasting regional brain activity between
talking and listening tasks was performed with a beta-value
distribution of the preprocessed fNIRS deOxyHb data esti-
mated by a GLM. This analysis was used to localize the
talking and listening related regional brain activity. Briefly,
beta-values were calculated with the GLM approach for
each channel, and the distribution of the beta-values on the
3753 2 · 2 · 2 mm voxels on the cortical surface (depth up
to 1.8 cm) of the standard MNI brain was estimated with
linear interpolation using functions provided by NIRS-SPM.

The voxel-wise approach used computational tools conven-
tionally applied to fMRI, and provided the most precise spatial
locations of activity using fine-grained interpolation between
the channels. Second-level group analysis was performed
using SPM8 with the voxel-wise data sets. Findings based
on this approach are reported at p < 0.01 (uncorrected) for
descriptive representations of anatomical correlates that are
consistent with the findings established for the neurosurgi-
cal planning applications. The relatively liberal statistical
threshold was set to define locations of the regions of interest
(ROIs) that could be collectively applied to most of the partic-
ipants for further effective connectivity analysis described
below.

FIG. 1. fNIRS channel layout. Forty-two fNIRS channels were assigned with each participant over both hemispheres of the
scalp. Channel distances were based on cap size to fit the head of the subject, and the channel separations were either 2.75 cm
for small heads or 3.0 cm for large heads (Dravida et al., 2017). The optode positions were digitized from each participant and
the average channel positions of all participants were projected onto the normalized brain image. fNIRS, functional near-
infrared spectroscopy.
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Effective connectivity analysis using Granger causality

We applied the following Granger causality analysis to the
deOxyHb data, in which the expected talking and listening
related activity patterns within Broca’s and Wernicke’s
areas in the left hemisphere were obtained (Hirsch et al.,
2018). Granger causality is a connectivity analysis algorithm
that can explore the directionality of leader/follower relation-
ships between pairs of signals (Barnett and Seth, 2014). The
Granger causality analysis calculates the autoregressive
model of the time-course of the data, assuming that the
data are stationary and the present state of the data could
be estimated by the history of the data, as shown in Eq. (1).

X tð Þ = +
p

k = 1

Ak � X t� kð Þþ ex tð Þ (1)

Here p is the model order (how much past is referred to
estimate present state) and ex tð Þ is residual. The main idea
of Granger causality from data Y to data X, GY!X , is how

much the estimate of X tð Þ could be improved if the regres-
sion model includes the past of Y tð Þ or not. Therefore, we
calculate two regression model Eqs. (1) and (2) and compare
the estimation error (residual) to determine the Granger cau-
sality from Y to X, as in Eq. (3).

X tð Þ = +
p

k = 1

A¢xx, k � X t� kð Þþ +
p

k = 1

A¢xy, k � Y t� kð Þþ e¢x tð Þ

(2)

GY!X � ln
e¢x tð Þ
ex tð Þ (3)

This two-variable model can be expanded to a multivariate
model, in which there are more than two data sets to deter-
mine the conditional effective connectivity between each
pair under the common contribution of the past of other
data sets (Barnett and Seth, 2014). We used the multivariate
Granger causality (MVGC) Toolbox (Barnett and Seth,

FIG. 2. Diagram of experimental
design (a) including original (b)
and shuffled (c, d) fNIRS signals
for GC analysis. Dyads of partici-
pants performed an object naming
and description task alternately.
Background colors of gray, green,
and yellow indicate corresponding
epochs. The Granger causality was
calculated with original and shuf-
fled data. GC, Granger causality.
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2014) to determine MVGC relationships between each pair
of hemodynamic signals measured from two canonical lan-
guage systems of Broca’s and Wernicke’s areas from two
persons. The strengths of effective connectivity between all
pairs of two language systems’ responses of two persons
were determined as Granger causality indices according to
the toolbox output for each pair of participants, which
were further assigned to the group-level statistical analysis
between original and shuffled data sets.

To determine the hemodynamic signal time-courses of the
two canonical language systems, the deOxyHb data of spe-
cific channels were selected based on the individual anatom-
ical locations of channels in the normalized MNI space. We
selected the channels localized in the left Broca’s area as
channels of interest of motor speech area. The channels se-
lected for Wernicke’s area included those localized in the
left supramarginal and angular gyri. If there was no channel
localized in these two motor language areas due to the sparse
arrangement of the optodes, we included the channels local-
ized to the left superior temporal gyrus. The deOxyHb
signals in each ROI (Broca’s and Wernicke’s areas) were
averaged within participants if there were multiple channels
selected. The average number of channels selected for each
ROI was 1.95 (ranging from 1 to 3) and 2.19 (ranging
from 1 to 4) in Broca’s and Wernicke’s areas, respectively.

The 180-s single run of fNIRS data averaged within the
ROI was divided into twelve 15-s blocks, in which one par-
ticipant was talking and the other was listening (Fig. 2a).
Data from two runs were combined, and therefore, there
were 12 extracted data sets for the same talking/listening
condition (such as ‘‘participant 1 talks and participant 2 lis-
tens’’) for each pair and each monologue/dialogue condition.

The data were further downsampled to 3.7 Hz according
to our previous fNIRS connectivity studies (Hirsch et al.,
2017, 2018) to avoid spurious connectivity measures related
to higher frequency noise component such as heart beats.
Model order for Granger causality analysis was fixed to 15
(equivalent to 4.05 s) based on the results of model order es-
timation using the Akaike Information Criteria, implemented
in the toolbox, and the previous findings of delayed syn-
chrony of fNIRS signals between the speaker and listener
during natural verbal communication (Liu et al., 2017). To
confirm the validity of the Granger causality model, we cal-
culated the square summability and stability (covariance sta-
tionarity) of the coefficients of an estimated autoregressive
model (Barnett and Seth, 2014). Residual covariances and
1-lag residual covariances are also checked for positive-
definitiveness to exclude ill-conditioned autoregressive mod-
eling. We used the default criteria for these validations
implemented in the MVGC Toolbox.

As mentioned in the Participant section, the data of one
dyad were excluded from the analysis as the fNIRS signals
from one partner did not meet the stationarity criteria. The
data were demeaned and whitened before the Granger causal-
ity analysis to avoid potential confound caused by different
power of signals in the ROIs (Bastos and Schoffelen, 2016).

The Granger causality between within-brain and across-
brain canonical language systems was calculated with origi-
nal, surrogate, and shuffled data, in which the latter two were
adopted to validate the statistical significance of causal
strength found in the original data. In case of analyzing orig-
inal data, the averaged deOxyHb signals from Broca’s area

were paired with those from Wernicke’s area of the same
block (Fig. 2b). In case of analyzing surrogate data, the orig-
inal data were phase-randomized before Granger causality
analysis, while the origin of signals and order of blocks
were preserved for each individual. The Granger causality in-
dices derived from the surrogate data serve as a valid ‘null
case’ for statistical inference (Prichard and Theiler, 1994).

Strengths of the causal relationships of the original data are
expected to be larger than those of the surrogate data if the time
series changes of the hemodynamic responses in one language
area influence those in another. The empirical p value of the
Granger causality indices derived from original data was deter-
mined from distribution of 500 permutated surrogate data sets.

The statistical inference of the original Granger causality
indices was further tested with two types of shuffled data
sets, where the phase information of the signal was pre-
served, but the signals from different blocks were paired in
either a within-brain or an across-brain manner. In case of
analyzing within-brain Granger causality in shuffled data,
signals from Broca’s area were paired with those from Wer-
nicke’s area taken from different blocks of the same individ-
ual (Fig. 2c). In case of analyzing across-brain Granger
causality in shuffled data, the pair of signals from Broca’s
and Wernicke’s areas was preserved in the same block
with each individual, while those were combined with differ-
ent blocks of their partners (Fig. 2d). We used these two
shuffled data sets to manipulate either within-brain or across-
brain combinations of the data structure while preserving the
other combination relationship since MVGC takes the contri-
bution of the causal relationships between all possible com-
binations of the data subsets into account.

The Granger causality indices from 265 combinations for
each shuffled data set, which are the all possible combina-
tions of shuffled order without overlap with the original com-
bination of blocks for each run, were averaged and compared
with those obtained from original data using a paired t-test.
Strengths of causal relationship of original data are expected
to be larger than those of shuffled data if the hemodynamic
response patterns of communicating brain regions covary
with the contents and compositions of the spoken words
that are specific to the corresponding block. We confirmed
the statistical independence of the surrogate and shuffled
data sets, indicating that the two statistical analyses are
based on different null hypotheses described above (see
Supplementary Data for the details and Supplementary
Figs. S1 and S2). Therefore, we defined a valid causal rela-
tionship as one that met both statistical criteria from surro-
gate and shuffled data analyses. We defined p value <5%
as a statistically significant difference.

Validation of Granger causality model with simulated
fNIRS signals with potential hemodynamic delay

We performed realistic simulations to investigate whether
the directional interactions detected in the present data could
be identified from fNIRS data despite the possible hemody-
namic confounds. We assumed four ROIs in two brains in
which directional connectivity was assumed independently
in each brain ( x1, . . . , x4f g in Fig. 3a). The autocorrelated
time series data were first modeled from x1 to x2 and from
x3 to x4 using Eq. (4) as in Schippers and associates (2011),
followed by adding the receiver signals with a fixed neuronal
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transmission delay (4.05 s, gray lines at x2 and x4 in Fig. 3b).
The duration of neuronal delay was empirically determined
from the model estimation result of the original fNIRS data
set. The causal influence between the signals was set to
0.15 so that the mean Granger causality index estimated
from the simulation data set would be comparable with
that obtained from the original data set.

x1 ið Þ
x2 ið Þ
x3 ið Þ
x4 ið Þ

2
6664

3
7775 =

0:9 0 0 0

0:15 0:9 0 0

0 0 0:9 0

0 0 0:15 0:9

2
6664

3
7775

x1 i� 1ð Þ
x2 i� 1ð Þ
x3 i� 1ð Þ
x4 i� 1ð Þ

2
6664

3
7775

þ

e1 ið Þ
e2 ið Þ
e3 ið Þ
e4 ið Þ

2
6664

3
7775

(4)

Here xn ið Þ and en ið Þ n = 1, . . . , 4ð Þ represent fNIRS sig-
nal and noise, respectively, at ROI n at time i.

The variations in hemodynamic delay were introduced by
convoluting the autocorrelated time series data with two
types of hemodynamic response function, which are different
in onset peak time. We assumed the hemodynamic delay of

2.5 s, its empirical upper limit length (Deshpande et al.,
2010; Handwerker et al., 2004), opposing the direction
of neural information flow (black lines of x2 and x4 in
Fig. 3b). The hemodynamic response functions were gener-
ated by built-in function of SPM8 software (spm_hrf.m).
In this case, the signals of the sender and the receiver are
temporally overwrapped and may cause underestimation of
sender-to-receiver causal relationship. We considered this
worst-case scenario rather than estimating the hemodynamic
delay from the present fNIRS data set, which may be affected
by the potential trial-to-trial variation in the hemodynamic
response pattern due to the nature of natural speaking and
listening task. Gaussian noise of 100% signal strength was
added to represent physiological noise in the hemodynamic
response.

Since detection accuracy of Granger causal relationship in
fMRI data strongly depends on the sampling rate (Deshpande
et al., 2010), we investigated detection rates of true and false
connectivity with varied sampling rates of 0.25, 0.33, 0.5, 1,
2, 3, and 3.7 Hz, including the sampling rate of conventional
fMRI data (0.33–1 Hz) and that of downsampled fNIRS data
presently used for original Granger causality analysis
(3.7 Hz). The significance of Granger causality strength
was validated by calculating z-score of Granger causality
index with the original simulation data relative to the

FIG. 3. Simulation summary investigating detectability of Granger causal relationship with fNIRS data. (a) Causal rela-
tionship was assumed between two ROIs in each of two brains. (b) Example of simulated fNIRS signals. Signals at the re-
ceiver ROIs (gray lines in x2 and x4) were assumed to have neuronal delay from those at the sender ROIs (x1 and x3) for
information transmission. The signals at the receiver ROIs were further shifted back to opposing direction of the neuronal
delay (black lines in x2 and x4) to simulate the worst-case scenario leading to the underestimation of causal relation-
ship. Gaussian noise was further added to these simulated signals for the GC analysis. (c) Heat maps showing the ratio of
correctly (blue panels) or incorrectly (orange panels) detected Granger causal relationship with varied sampling Fs of the
data. The number in each cell indicates the percentage of detecting valid GC among 100 trials of simulation. At the sampling
rate of the original fNIRS GC analysis (Fs = 3.7 Hz), the assumed directional connectivity was perfectly detected, while the
false detection was scarce. (d) Changes of mean detection rates for true and false connectivity with different sampling fre-
quencies. The mean detection rates were calculated as the average occurrence ratio of valid GC over true (from x1 to x2 and
from x3 to x4: filled circles) or false (the other pairs of ROIs: open triangles) combinations of signals. Fs, frequencies; ROIs,
regions of interest.
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empirical null distributions of Granger causality indices
obtained from 1000 times of Granger causality analysis
with phase-randomized data as surrogate data sets. The
z-score larger than three was recognized as a significant
Granger causal relationship (Deshpande et al., 2010). We
performed 100 z-score calculations and determined the de-
tection rate of Granger causality for all possible combina-
tions of ROIs and sampling rates.

Results

GLM analysis

Figure 4 and Table 1 demonstrate the results of voxel-wise
GLM contrast maps showing cortical activity between
talking and listening in dialogue conditions. The representa-
tive contrast map for the dialogue condition confirmed
the findings in the canonical language regions, as reported
previously (Hirsch et al., 2018) in accordance with the con-
ventional models of language processing (Price 2012).

Increased activity was found in Broca’s area, the left infe-
rior frontal gyrus, and the ventral premotor area in case of
talking relative to listening task in both conditions, confirm-
ing the involvement of the articulatory network during
talking. Increased activity in the left superior/middle tempo-
ral gyrus and supramarginal gyrus was observed in case of
listening relative to talking, supporting the involvement of
the speech perception and comprehension centers (posterior
middle temporal and parietal areas) during listening. These
patterns were consistent with the results obtained from the
monologue and combined monologue and dialogue condi-
tions ( p < 0.05). The ROIs were selected based on these re-
sults for the following effective connectivity analysis using
Granger causality. We specifically focused on Broca’s area
and Wernicke’s area considering their fundamental role of
the motor/sensory interaction (Hickok and Poeppel, 2007;
Price, 2012) in the verbal communication.

Validation of Granger causality model

Changes in detection rates for true and false connectivity
of the simulation data are shown in Figure 3c and d. As
expected, the true connectivity was more likely to be
detected with a higher sampling rate. The causal relationship
was completely determined from simulated hemodynamic
data with a sampling rate of 1 Hz or above. Although the
false detection rate was negligible (<5% of occurrence) at
any combination of the ROIs and sampling frequency, the
number of connections showing false-positive connectivity
was also decreased with higher time resolution of the data
(>0.5 Hz). These results demonstrate that the Granger causal-
ity analysis could reliably interpret the directional interac-
tions identified in the original data analysis under present
conditions of assumed neuronal delay and sampling rate of
fNIRS data.

Granger causality connectivity

Changes in the effective connectivity were observed be-
tween the Broca’s and Wernicke’s areas relative to the surro-
gate or shuffled control data set within single brain, but not for

FIG. 4. GLM contrast map of deOxyHb signals between
talking and listening tasks in dialogue condition. Red/yellow
indicates regions with larger activity in talking relative to lis-
tening, and blue/cyan indicates those with larger activity in
listening relative to talking. Please also refer to Table 1 for
detailed anatomical locations of the activities. deOxyHb,
deoxyhemoglobin; GLM, general linear model.

Table 1. Voxel-Wise General Linear Model Contrast Comparisons

(Deoxyhemoglobin Signals, Contrast Threshold p < 0.01)

Contrast

Peak voxel

MNI coordinates [mm]

t value Anatomical regions in area BA Prob.X y z

Dialogue
Talk > listen �56 2 40 3.31 Premotor and supplementary motor cortex 6 0.71

Dorsolateral prefrontal cortex 9 0.22
�66 �6 10 3.25 Superior temporal gyrus 22 0.34

Premotor and supplementary motor cortex 6 0.21
Subcentral area 43 0.17

�62 4 �2 2.98 Superior temporal gyrus 22 0.40
Middle temporal gyrus 21 0.35

Listen > talk �66 �48 18 �3.88 Superior temporal gyrus 22 0.56
Supramarginal gyrus part of Wernicke’s area 40 0.31

�70 �36 �8 �3.01 Middle temporal gyrus 21 0.81
Superior temporal gyrus 22 0.12

Clusters on the left hemisphere are shown.
BA, Brodmann area; MNI, Montreal Neurological Institute; Prob., probability of inclusion.
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across brains, in both cases of ‘‘monologue’’ and ‘‘dialogue’’
conditions. Table 2 shows the summary of Granger causality
strengths derived from original, surrogate, and within-brain
shuffled data sets. The original fNIRS signals showed valid
Granger causality indices relative to surrogate signals bidirec-
tionally between Broca’s area and Wernicke’s area in the lis-
tener’s brain and unidirectionally from Broca’s area to
Wernicke’s area in the speaker’s brain regardless of the con-
ditions of communication. In comparison with the shuffled
data sets, original fNIRS signals showed significantly larger
Granger causality indices bidirectionally between Broca’s
and Wernicke’s areas in the listener’s brain in ‘‘dialogue’’

condition, while only unidirectional connectivity from Bro-
ca’s area to Wernicke’s area was confirmed in the ‘‘mono-
logue’’ condition.

A unidirectional causal relationship from Broca’s area to
Wernicke’s area was found in the speaker’s brain regardless
of the conditions of communication. These results indicate
that the detected effective connectivity networks are charac-
terized by both the time series and the context-dependent
structure of the cortical activities between the motor and sen-
sory language areas.

Figure 5 summarizes effective connectivity changes between
language regions of listeners and speakers’ in ‘‘dialogue’’ and

Table 2. Strengths of Within-Brain Effective Connectivity (Granger Causality Indices)

Between Two Language Systems

Listener Speaker

Broca to Wernicke Wernicke to Broca Broca to Wernicke Wernicke to Broca

Dialogue
Original 0.0370 – 0.0016a,b 0.0398 – 0.0021a,b 0.0433 – 0.0038a,b 0.0379 – 0.0018
Surrogate 0.0349 – 0.0014 0.0350 – 0.0016 0.0357 – 0.0016 0.0355 – 0.0016
Shuffled 0.0320 – 0.0025 0.0332 – 0.0017 0.0336 – 0.0037 0.0335 – 0.0015

Monologue
Original 0.0454 – 0.0026a,b 0.0378 – 0.0016a 0.0430 – 0.0037a,b 0.0355 – 0.0014
Surrogate 0.0350 – 0.0015 0.0347 – 0.0015 0.0364 – 0.0016 0.0361 – 0.0016
Shuffled 0.0332 – 0.0025 0.0338 – 0.0016 0.0330 – 0.0036 0.0331 – 0.0013

Values show mean – standard error for original and shuffled data sets and mean – standard deviation for surrogate data sets, respectively.
We used standard deviation to describe the distribution of surrogate data since the standard error is affected by the arbitrarily determined
number of generated data sets.

aSignificantly larger than surrogate control.
bSignificantly larger than shuffled control ( p < 0.05).

FIG. 5. Schematic representation of Granger causal connectivity between canonical speech areas during two-person dia-
logue with interaction (a, b) and monologue talking and listening (c, d). The directional connectivity that showed statistical
inference over both surrogate and shuffled controls was illustrated in the figure. For the speaking task (b, d), the observed
direction of connectivity is from Broca’s area to Wernicke’s area regardless of existence or inexistence of interaction. How-
ever, for the listening task, the connectivity is bidirectional including both bottom-up and top-down directions under inter-
action (a), whereas it is unilateral without interaction (c). The nodes were visualized with the BrainNet Viewer (Xia et al.,
2013).

218 ONO ET AL.



‘‘monologue’’ conditions. Directional connectivity relation-
ships that meet both criteria from surrogate and shuffled con-
trols are illustrated. Both listener and speaker showed a
statistically significant increase in directional connectivity
from Broca’s area to Wernicke’s area regardless of the con-
ditions. On the contrary, an increase in the directional con-
nectivity from Wernicke’s area to Broca’s area was found
only in the listener’s brain during the dialogue condition.

Discussion

We apply a novel brain imaging technology, fNIRS, to
capture the dynamics of cortical signal processing during
live two-person verbal communication. Production of speech
was characterized by increased activity in Broca’s area, located
in the left hemisphere prefrontal cortex, and receiving verbal
information (listening) was associated with the increased activ-
ity in the left temporoparietal region, Wernicke’s area.

The directional connectivity analysis using Granger cau-
sality between the two language areas revealed that both lis-
tening and speaking showed augmented unidirectional
connectivity from Broca’s area to Wernicke’s area regardless
of the existence of interaction. In addition, however, interac-
tive verbal communication was characterized by bidirec-
tional cortical connectivity between these two language
areas in the listener’s brain, while the structure of effective
connectivity in the speaker’s brain remained unchanged as
in the noninteractive condition.

This finding is consistent with a dual-stream model for
language processing (Hickok and Poeppel, 2007) within
the context of a natural interactive task. Bidirectional ana-
tomical connectivity between these two language areas has
previously been demonstrated by studies using diffusion ten-
sor MRI (Catani and Jones, 2005), electrocorticography
(ECoG; Matsumoto et al., 2004), and lesion studies (Hickok
and Poeppel, 2007). Our results further confirm this effective
connectivity between these two language areas in the novel
application of live, verbal partnered communication.

This dyadic interaction revealed different dynamics
depending on the interactive/noninteractive aspect of the
communication. The leader/follower relationship from Bro-
ca’s area to Wernicke’s area was commonly observed in
both listener and speaker during interactive as well as nonin-
teractive communication, even though their behavior was
different (sending vs. receiving information). In the case of
the speaker, activation of Broca’s area, which is assumed
to play a role in articulating the sentence, is hypothetically
supported by a function of Wernicke’s area to confirm the
spoken sounds. The flow of information corresponds to the
previously described earlier gamma band firing pattern in
Broca’s area related to Wernicke’s area observed in presur-
gical patients who engaged in an interpersonal conversation
task under ECoG monitoring (Towle et al., 2008). In the case
of listener, activation of Broca’s area may arise from the
anticipation of the upcoming sentences from the speaker
(Pickering and Garrod, 2007), and again which would be con-
firmed as auditory information processed by Wernicke’s area.

Interactive verbal communication further added feedback-
style connectivity from Wernicke’s area to Broca’s area, and
may represent additional cognitive activity relating inter-
preted sentences from the speaker to the sentences that the
listener prepares for the forthcoming turn to speak. Indeed,

this hypothesis is supported with our previous observation
of the enhanced average signal intensity in Wernicke’s
ROI in the listener’s brain during the interactive relative to
noninteractive communication (Hirsch et al., 2018). The dif-
ference in Granger causality indices between the actual and
surrogate/shuffled data set further suggest that hemodynamic
responses within these canonical language-related areas were
responsive to the conditions of interpersonal interaction.

Our previous functional connectivity analysis using wave-
let coherence (Hirsch et al., 2018) found augmented hemody-
namic coherence between the superior temporal gyrus (part
of Wernicke’s area) and the subcentral area of the dyads.
These regions are associated with verbal reception and
encoding as well as face/mouth motor activity, respectively,
during the interactive dialogue condition compared with
noninteractive monologue condition. The complementary
findings in the present within brain study illustrate the na-
tures of the two connectivity analysis methods.

Coherence analysis used in the cross-brain study deter-
mines functional connectivity by timing-synchronized activ-
ity of two signals, while Granger causality analysis used in
the single-brain analysis determines effective connectivity
by calculating the involvement of the history of other sig-
nal(s) to estimate the signal of interest. The connectivity
found between canonical language areas in Granger causality
analysis but not in the coherence analysis may be due to a
delay in neural information processing between the motor
and sensory language areas.

Some support for this hypothesis is provided by previous
ECoG studies utilizing word-repeating tasks that have dem-
onstrated that gamma activity in the frontal language area
precedes the actual voice-onset time to speak a word, but
that in the temporal language area arises close to the voice-
onset time (Towle et al., 2008). Our results suggest that
Granger causality analysis is well fit to understand leader/
follower relationships of the language areas within a brain,
and is a promising analysis tool to investigate the strength
of causal relationships depending on the social context such
as interactive and noninteractive verbal communication.

Since activity in the subcentral area was also found in the
interpersonal communication using a different social modal-
ity of eye-contact (Hirsch et al., 2017), it might also play a
role in the coordination of social exchanges regardless of
the sensory modality. Although the present analysis focused
on the canonical language areas and did not analyze causal
relationship between these areas and the subcentral area,
our results suggest that the multiple neural network activities
based on the functional and effective connectivity were in-
volved in the person-to-person language communication.
Incorporating these additional ROIs found in the GLM anal-
ysis into the functional and effective connectivity analyses
could further expand our understanding of the neural defini-
tion of ‘interactive’ verbal communication.

Brain connectivity studies of verbal communication in-
cluding overt speaking tasks have been limited due to the
constraints of muscle, electrical, and motion artifacts related
to speaking. These artifacts can have deleterious effects on
neuroimaging data measured by functional brain imaging
techniques such as electroencephalogram and fMRI. A rela-
tive tolerance of fNIRS to these artifacts permits more
naturalistic experimental environments, including active
speaking between two people. However, fNIRS data can be
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also be affected by systemic blood flow changes that do not
represent neural effects. In this experiment, we removed
these using a spatial filter method (Zhang et al., 2016).

Our simulation study clearly showed another important
advantage of fNIRS in analyzing a causal relationship from
hemodynamic signals. The results confirmed previously
reported confounds in detecting Granger causality structures
between remote cortical regions derived from differences in
a hemodynamic delay (Smith et al., 2012), especially when
the sampling frequency of the data is lower than 0.5 Hz in
the present case. However, most conventional fNIRS sys-
tems, including ours, provide hemodynamic signals with
higher sampling rates, and the causal relationship found
from the corresponding data was sufficiently accurate. The
present results are encouraging in the sense that the higher
sampling rate of fNIRS over fMRI could be further utilized
to understand causal networks between cortical hemody-
namic signals. However, the applicability of Granger causal-
ity analysis could also depend on factors other than sampling
rates such as neuronal delay, noise level, and causal strength.
Validation of connectivity analysis with realistic simulations
specific to the research paradigm would contribute to under-
standing the causal structure of neuronal signals.

It should be noted, however, that the present simulation is
valid under the assumed neuronal delay parameter, which
was in fact much longer than that required for electrophysi-
ological signal transmission between ROIs. Differences in
hemodynamic responses of two regions (up to a couple of
seconds) in the direction opposite to the flow of information
could effectively flip the direction of the detected connec-
tivity if we assume the neuronal transmission delay to
only account for the time required for hard-wired transmis-
sion of the electrical signals between regions (i.e., up to tens
of milliseconds).

The effect of the hemodynamic delay is likely to be minor
relative to the length of the presently estimated neuronal
delay, according to fMRI studies showing synchronized acti-
vation patterns in the sensory and motor language areas dur-
ing natural sentence listening tasks (Wildgruber et al., 2002).
However, these studies lack precise time resolution, which
motivated us to validate our Granger causality model with
the fNIRS time resolution under the worst-case scenario of
the hemodynamic delay. The longer neuronal delay parame-
ter found in this study suggests additional within-region,
local-field information processing for transmission to higher
functional processes (Wildgruber et al., 2002).

The statistical power of the GLM analysis was relatively
weak despite the large number of participants incorporated.
A possible explanation would be that the trial-to-trial varia-
tions in the hemodynamic responses in the present natural
speech task may not fit well with the general, block-design
model of the hemodynamic response functions that we adop-
ted for the activity analysis. Since the participant received a
different topic every trial, the content and composition of
the spoken sentences would also have trial-by-trial varia-
tions. The time-course of the hemodynamic response could
have consequent trial-by-trial variations, possibly resulting in
smaller beta-value activations under the GLM analysis that as-
sumes constant activity for every trial. Incorporating speech
parameters such as the amplitude envelope of the spoken
words into the model might improve the statistical power;
however, this is beyond the scope of the present study.

The statistical power of GLM analysis does not affect the
main findings, since the Granger causality analysis uses raw
fNIRS signals without hemodynamic modeling and is capa-
ble of detecting causal relationships between ROIs that com-
monly exist across trials regardless of the variation in the
time-course of hemodynamic responses.

Conclusion

We applied directional connectivity analysis to the
hemodynamic data of dyads who communicated with and
without verbal interaction. Realistic simulations demon-
strated the advantage of higher time resolution of fNIRS
data in accurately detecting causal relationships between re-
mote hemodynamic signals. Our results show that interactive
communication engages an adaptive language network asso-
ciated with the receptive function of listening. Noninterac-
tive verbal communication (monologue) was associated
with unidirectional connectivity from Broca’s to Wernicke’s
areas in both speaker’s and listener’s brains. On the contrary,
interactive verbal communication (dialogue) involved bi-
directional language-related flow of information between
the two canonical language areas in the listener’s brain.
Together, directional connectivity analysis reveals bidirec-
tional dynamic flow of neuronal information during the lis-
tening epochs of two-person verbal interaction.
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