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ABSTRACT

Air pollution causes widespread environmental and health problems and severely hinders the quality of life of urban residents. Traffic is
critical for human life, but its emissions are a major source of pollution, aggravating urban air pollution. However, the complex interaction
between traffic emissions and air pollution in cities and regions has not yet been revealed. In particular, the spread of COVID-19 has led vari-
ous cities and regions to implement different traffic restriction policies according to the local epidemic situation, which provides the possibility
to explore the relationship between urban traffic and air pollution. Here, we explore the influence of traffic on air pollution by reconstruct-
ing a multi-layer complex network base on the traffic index and air quality index. We uncover that air quality in the Beijing–Tianjin–Hebei
(BTH), Chengdu–Chongqing Economic Circle (CCS), and Central China (CC) regions is significantly influenced by the surrounding traffic
conditions after the outbreak. Under different stages of the fight against the epidemic, the influence of traffic in some regions on air pollution
reaches the maximum in stage 2 (also called Initial Progress in Containing the Virus). For the BTH and CC regions, the impact of traffic on air
quality becomes bigger in the first two stages and then decreases, while for CC, a significant impact occurs in phase 3 among the other regions.
For other regions in the country, however, the changes are not evident. Our presented network-based framework provides a new perspective
in the field of transportation and environment and may be helpful in guiding the government to formulate air pollution mitigation and traffic
restriction policies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087844

Increasing air pollution has a significant negative impact on
human health. Urban traffic emissions will increase air pollution.
However, their dynamic modes among cities and regions remain
a significant challenge. The impact of COVID-19 has forced cities
and regions to implement different traffic restriction policies one
after another, which naturally becomes a controlled experiment
to reveal their relationship. In the present work, we develop a
multi-layer network-based framework with the traffic index and
air quality index. We find that air quality is related to their sur-
rounding traffic conditions in the BTH, CCS, and CC regions
when the epidemic spreads. In addition, to study the influence of

traffic on air pollution, different stages in the fight against the
epidemic are identified. Our method and results presented here
not only provide a deep understanding of the influence of traffic
on air pollution but can also be applied to study other climate and
environment phenomena such as global warming.

I. INTRODUCTION

With the use of fossil energy sources such as transportation,
industry, agriculture, and power and the continuous increase in
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the daily cooking and heating needs of people, there is an even-
tual serious increase in air pollution. Air pollution poses a major
threat to human health and can cause stroke, heart disease, lung
cancer, and acute and chronic respiratory diseases.1 According to
WHO estimates, about 91% of the world’s population lives in places
with poor air quality, causing about 4.2 × 106 deaths per annum.2

The transportation system is one type of critical lifeline and is
essential to the functioning of modern society.3 Traffic emission is
a major source of air pollution in urban areas,4,5 and this pollu-
tion occurs as a result of carbon monoxide (CO), carbon dioxide
(CO2), volatile organic compounds (VOCs) or hydrocarbons (HCs),
nitrogen oxides (NOx), secondary aerosols formed through physical
and chemical processes, and pollutant-suspended particles caused
by brakes, tire wear, and rewear.6 Urban traffic congestion has
increased traffic emissions, further increasing air pollution. Thus, it
is vital to explore the relationship between traffic and air pollution.

Considerable research has been devoted to exploring the influ-
ence of traffic on air pollution. The most intuitive method is by
making spatiotemporal variations of air pollutants, including CO,
CO2, PM2.5, PM10, SO2, O3, and NOx. With diurnal analysis of
hourly PM2.5, PM10, NO2, and CO concentrations, two ascending
stages caused by two traffic peaks have been found.7 An increase
in secondary organics (NH4)2SO4 and NH4NO3 caused by vehicle
emission has also been found.8 Then, some statistical methods are
used in this field. Multivariate autoregressive models are used to
estimate pollution levels under different traffic conditions.9 Further,
some physical approaches are proposed based on a parameterized
analytical representation of the entire fuel consumption and emis-
sion process. Approaches like CMEM10 and MOBILE11 can simulate
and estimate CO, HC, and NOx emitted by traffic.12 Experimen-
tal studies are also exploring the impact of traffic and its emissions
on air pollution. Combining the chassis dynamometer system and
an outdoor enclosed environmental chamber, new particle forma-
tion from traffic emissions has been assessed. The new particle
formation can frequently produce high levels of ultrafine particles,
causing serious air pollution.13 However, the above methods are
either microscopically unable to explore the relationship between
traffic and air pollution in large-scale areas (like physical and exper-
imental methods) or generalize and fail to reveal the mechanism of
how regional traffic variability causes a change in air pollution (like
statistical methods).

With the coronavirus pandemic sweeping the world, many
countries have implemented strict lockdown policies to stop the
spread of the disease. These policies, especially limited transporta-
tion activities, will improve ambient air quality. This has been
confirmed in some cities or regions in China,4–6,14–24 Egypt,25 Spain,26

France,26 Italy,26–28 Brazil,29–31 Korea,32 New Zealand,33 Singapore,34

the United States,9,26,35 Malaysia,36 East Asia,37 Europe,38 and even at
the global level.39 However, a study40 has also found that the over-
all air quality in urban areas in China has not improved even with
the COVID-19 lockdown. Besides, as the world gradually opens up
every time a wave ends, there is relaxation in movement restrictions,
paving the way for a return of harsh air in some city in Asia. For
example, India is worse off now than before.41 With the lifting of
the lockdown in some areas of China, large-scale movement of peo-
ple and goods began, and air pollution has gradually returned to, or
is likely to exceed, the levels before the lockdown.42 Therefore, with

the different development stages and response measures of the pan-
demic, the contribution of traffic to air pollution will also change
significantly. An improved understanding of the role of traffic in air
pollution during the spatiotemporal changes occurring in COVID-
19 is, thus, needed, since it is beneficial to reduce air emissions
through regulation and incentives.

In past years, network theory has been found useful for better
understanding spatiotemporal behavior in the climate system.43–48

Climate networks establish correlations among climate anomalies
in distant parts of the world and attempt to explain them using rel-
evant physical progress. In a climate network, geography data are
transformed into nodes and edges of a network that can represent
spatiotemporal relationships. Nodes refer to geographical locations
or grid sites, and edges are constructed based on similarities (such
as cross correlations) in the variability over time between pairs of
nodes. Various climate data records (such as temperature, pres-
sure, winds, and precipitation) can be used to construct a climate
network. The climate network approach can provide a powerful
framework to better understand the structure and pattern of climate
phenomena, including air pollution.43

The basic idea behind climate networks is that relevant and
important features of atmospheric mechanisms influence the vari-
ability of the traffic index to air pollution at different locations,
and these influences are encoded in the structure of the network.
By extracting the topological index of the network, we can reveal
the underlying links from traffic to air pollution. In this study, we
develop a network-based framework to explore the influence of
traffic on air pollution during the temporal and spatial changes in
COVID-19. A multi-layer network between traffic index and air pol-
lution is reconstructed. Our results can help formulate strategies and
countermeasures for traffic emission and air pollution.

II. DATA

A. Traffic index data

In this study, we collect the traffic index data from TOM-
TOM (https://www.tomtom.com/en_gb/traffic-index/). These data
can represent congestion levels in Chinese cities. Here, we employ
the daily traffic index (TL) of 21 major cities from January 1 to July
for 2019 and 2020, respectively. The TL is measured by calculating
the proportion of increase in the actual travel time over free flow
travel time, and its value is greater than or equal to 0. The larger the
indicator value, the more severe is the traffic congestion.

B. Air quality index

Daily air quality index (AQI) data acquired from the China
National Environmental Monitoring Centre (CNEMC) are used in
this study. The AQI is based on ambient air quality standards and
the impact of various pollutants on human health, ecology, and the
environment and simplifies the concentrations of several air pol-
lutants that are routinely monitored into a single index value. The
value range of the AQI is set from 0 to 500. The larger the value,
the more serious the air pollution. According to traffic index (TL)
records, the AQI of 21 major cities for the period between January 1
and July for the years 2019 and 2020 is selected.
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III. METHODS

A. Data pre-processing

In this study, we divided 21 cities into six region groups
according to the existing geographical divisions, namely, Bei-
jing–Tianjin–Hebei (BTH), Northeast China (NEC), the Chengdu–
Chongqing Economic Circle (CCS), Central China (CC), the
Guangdong–Hong Kong–Macao Greater Bay Area (GHM), and the
Yangtze River Delta (YRD) as shown in Table I. BTH includes two
municipalities, Beijing and Tianjin, and is located at the heart of
the Bohai Rim in China. It is the largest and most dynamic region
in northern China, one of the regions with the greatest potential
for economic development in China, and one of the regions with
the most extensive transportation and logistics network. A one-
hour traffic circle with rail transit was initially formed. NEC is the
general term for land in the northeast of China. The economy of
NEC started early and has made great historical contributions to the
development and growth of China. However, due to the severe loss
of youth and the impact of cold weather, the economy of NEC has
failed to keep pace with that of the rest of the country in the past
30 years, thus also affecting the building of transportation infras-
tructure. The CCS is an urbanized area with the highest level of
development and great development potential in western China. It is
an important part of the implementation of the Yangtze River Eco-
nomic Belt and the Belt and Road strategy. It is the starting point of
the new land-sea corridor in the west and has the unique advan-
tage of linking the southwest and northwest and connecting East
Asia with Southeast Asia and South Asia. The CCC is located in
the central part of China, with many national transportation trunk

TABLE I. Outbreak level for COVID-19 among cities.

City Outbreak level Region group
Cumulative

confirmed cases

Beijing 4 BTH 1 049
Tianjin 3 BTH 364
Shijiazhuang 3 BTH 898
Shenyang 1 NEC 70
Changchun 2 NEC 150
Chengdu 2 CCS 158
Chongqing 3 CCS 591
Wuhan 4 CC 50 340
Changsha 3 CC 242
Guangzhou 3 GHM 377
Shenzhen 3 GHM 423
Zhuhai 1 GHM 98
Dongguan 1 GHM 99
Xiamen 1 GHM 35
Quanzhou 1 YRD 47
Shanghai 4 YRD 1 840
Suzhou 1 YRD 87
Wuxi 1 YRD 55
Nanjing 1 YRD 93
Hangzhou 2 YRD 181
Ningbo 2 YRD 157

lines reaching the whole country. It has the advantage of being a
strategic hub in the east, west, north, and south of the country and a
water and land transportation hub. Economically, it is considered
to be a relatively underdeveloped area. The GHM includes Hong
Kong, Macau, Guangzhou, Shenzhen, and other cities. The GHM,
the New York Bay Area, the San Francisco Bay Area, and the Tokyo
Bay Area of Japan are also known as the four major bay areas in
the world. The GHM is one of the regions with the highest degree
of openness and the strongest economic vitality in China. It occu-
pies an important strategic position in the overall development of
the country, paving the way for the formation of a convenient, effi-
cient, modern, and comprehensive transportation system. The YRD
is an important intersection between the “Belt and Road Initiative”
and the Yangtze River Economic Belt. It is an important platform
for China to participate in international competition, an impor-
tant engine for economic and social development, and one of the
regions with the best urban foundation in China. In terms of the
density of highway and railway transportation lines, the YRD leads
the country, paving the way for the formation of a three-dimensional
comprehensive transportation network.

By using the cumulative confirmed cases of cities as of March
16, 2021, to represent the risk of COVID 19, we can classify cities
into four outbreak levels: 1: [0,100), 2: [100, 300), 3: [300, 1000), and
4: [1000, +∞) as shown in Table I. The higher the outbreak level
in the cities, the higher the number of infected people and the wider
the spread of the epidemic. Here, the effect of seasonality on the AQI
has been removed by subtracting the calendar day’s mean from the
original datasets.

B. Network construction

Similar to earlier studies,44,45 we define the XTj,Ai
(τ ) as the time-

delayed cross-correlational function for the TL node j and AQI node
i, denoted by XTj ,Ai

(τ ): for τ ≥ 0,

XTj , Ai
(τ ) =

∑L−τ

t=1 (Ai(t) − Āi)(Tj(t + τ) − T̄j)
√

∑L−τ

t=1 (Ai(t) − Āi)
2
·

√

∑L−τ

t=1 (Tj(t + τ) − T̄j)
2
, (1)

and for τ < 0,

XTj ,Ai
(−τ) =

∑L−τ

t=1 (Ai(t + τ) − Āi)(Tj(t) − T̄j)
√

∑L−τ

t=1 (Ai(t + τ) − Āi)
2
·

√

∑L−τ

t=1 (Tj(t) − T̄j)
2
,

(2)

where Āi and T̄j denotes the average of AQI time series and TL time
series. The time lags τ are in the range of −7 and +7 days. The time
lag is chosen to be long enough to avoid the sensitive of correlation
estimation to our choice of time lag, which leads to erroneous cor-
relation estimation. The deviations in the link identification due to
persistence or autocorrelation in the records are reduced by dividing
the std(Xj,i). The strength of the positive and negative link weights is
denoted as

W
pos

Tj , Ai
=

(max(XTj ,Ai
) − mean(XTj ,Ai

))

std(XTj ,Ai
)

(3)
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W
neg

Ai ,Tj
=

(min(XTj ,Ai
) − mean(XTj ,Ai

))

std(XTj ,Ai
)

, (4)

where max(XTj ,Ai
), min(XTj ,Ai

), mean(XTj ,Ai
), and std(XTj ,Ai

) are the

maximum, the minimum, mean, and the standard deviation of the
cross-correlational function, respectively. We define τ

pos

Tj ,Ai
and τ

neg

Tj ,Ai

as the corresponding time lags at these two peaks. When τTj ,Ai
> 0,

the links are outgoing from TI nodes pointing to AQI nodes; when
τTj ,Ai

< 0, the links are pointing away from AQI nodes coming

toward TI nodes. Here, links with zero-time lags are excluded. The
adjacency matrix of a climate network is defined as

3
pos

Tj ,Ai
=

{

1 if W
pos

Tj ,Ai
≥ Q and τ

pos

Tj ,Ai
> 0 ,

0 else,
(5)

3
neg

Tj ,Ai
=

{

1 if W
neg

Tj ,Ai
≤ −Q and τ

neg

Tj ,Ai
> 0,

0 else.
(6)

Here, Q is a threshold for the weight links, which is determined
based on the shuffling procedure.46,47 In the shuffled case, the order
of days is permutated for each pair of TI and AQI nodes j and i.47

By this step, we keep all the statistical quantities of the original data
but omit the physical dependencies between TI and AQI nodes. In
such a case, the shuffled network represents the properties of statisti-
cal quantities and the autocorrelations of the original records, which
may introduce unrealistic links. If the original link weights are sig-
nificantly higher than those of the control, we regard it as a real link;

otherwise, they are spurious links. Then, we obtain the desired con-
nection between the TI and the AQI based on the adjacency matrix
3

pos

Tj ,Ai
and 3

neg

Tj ,Ai
.

The degree is the most common application for measuring cli-
mate networks. A link that points toward a node is referred to as an
in-degree link, and a link that points away from a node is consid-
ered as an out-degree link. The way in which the TI is dynamically
influenced by the AQI is defined as the weighted out-degree of TI
nodes, which are the total outgoing link weights from TI nodes.48

The response of the AQI to the TI is denoted as the weighted in-
degree of AQI nodes, which are the total incoming link weights
pointing toward AQI nodes.

Obviously, the outgoing links of the TI are the same as the
incoming links of the AQI. Nodes that have higher values represent a
higher connection with other nodes in the network, while lower val-
ues mean “isolated” in the network. The in and out fields describe
the level of TI nodes impacting the AQI nodes and the level of the
affected AQI nodes from TI nodes, respectively.

C. Significance tests

The statistical significance of link weights is determined based
on a shuffling procedure. In the shuffled case, the order of years is
permutated and the order of days within each year is maintained for
each pair of TI and AQI nodes i and j.41 We generate shuffled data
according to the procedures described in Sec. III B. This shuffling
keeps all the statistical quantities of the original data but omits the
physical dependencies between TI and AQI nodes. In such a case,

FIG. 1. The analysis framework.
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the shuffled network represents the properties of statistical quan-
tities and the autocorrelations of the original records, which may
introduce unrealistic links. We choose a control for the records to
distinguish realistic links from unrealistic ones. If the original link
weights are significantly higher than those of the control, we regard
them as real links; otherwise, they are spurious links.

D. Analysis framework

In this study, we use two types of networks: single and two-
layered networks and four steps to explore the influence of traffic on
air pollution during the pandemic as shown in Fig. 1. Specifically,
we take the city as a node and first construct a single-layer network
of air quality in 2019 and 2020 to compare and study the changes
in air quality during the epidemic. Then, some multi-layer networks
between the TL and the AQI are constructed to explore the impact
of the epidemic on air pollution, specifically, the impact of different
regions (six regions), different time stages (five stages), and outbreak
levels (four levels) of the development of the epidemic.

IV. RESULTS AND DISCUSSION

We present the main results of the correlated multi-layered
networks composed of the TI and AQI as described above.

A. The change in air pollution caused by the

pandemic

We explore the change in air pollution caused by the pandemic.
The influence of the target city’s air pollution on other cities is quan-
tified by the weighted degrees associated with the total weights of the
significant interlinks from other city nodes, which are presented in
Fig. 2. A higher weighted in-degree (WID) indicates that target cities
receive haze from other cities, whereas a higher weighted out-degree
denotes a greater transport strength from target cities to other cities.

We find that the values of the weighted in-degrees in the
Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD)
regions were higher in 2019. Compared with the pre-epidemic
(2019) values, the values of Beijing, Tianjin, Shijiazhuang, and

Changchun in North China decrease, especially in Beijing. In the
YRD region, the values of Nanjing, Hangzhou, and Suzhou increase
and those of other cities remain unchanged. The value of Wuhan
decreases, while that of Changsha City in Central China (CC)
remains the same. In southwest China (CCS), the value of Chengdu
decreases and that of Chongqing increases slightly. For the Guang-
dong–Hong Kong–Macao Greater Bay Area (GHM), the values of
Guangzhou, Dongguan, Shenzhen, and Zhuhai increase, while those
of Quanzhou and Xiamen basically remain unchanged.

In terms of out-degree, the values of Nanjing and Hangzhou
in the southwest region, Fujian Province, and the YRD region are
higher. Compared with the pre-epidemic (2019) value in northern
China, the value of Beijing becomes larger; the value of Changchun
decreases and those of others remain basically unchanged. In the
YRD, the value of Hangzhou becomes significantly smaller. In cen-
tral China, the value of Wuhan becomes larger, while in the south-
western region, it remains basically unchanged. In the GHM, only
the value of Guangzhou is significantly smaller.

As some large cities are affected by the pandemic, traffic restric-
tions are imposed as a result of the restrictions on production. The
contribution of air pollution from other cities becomes greater.

Overall, we uncover that large cities such as Beijing, Tianjin,
and Wuhan have larger in-degree values and lower out-degree val-
ues. This finding indicates that the air quality over these cities is less
relative to the air condition in the cities around it. In contrast, air
quality levels in Hangzhou and Guangzhou have a weak relationship
with their surrounding cities, and, hence, they are more likely influ-
enced by the epidemic. In addition, there are no distinct changes in
cities over most of the CES and GHM regions, suggesting that air
quality over these cities is less influenced by the epidemic.

B. The influence of traffic on air pollution due to the

pandemic

Based on the weighted degree index, we further study the influ-
ence of traffic on air pollution due to the pandemic in different
regions by constructing a multi-layer network between the TL and
the AQI. Figure 3 illustrates violin plots of the weighted in-degrees

FIG. 2. The maps of difference of weighted in-degrees (outgoing from the AQI nodes) between 2019 and 2020 (a) and the maps of difference of weighted out-degrees
(incoming to the AQI nodes) between 2019 and 2020 (b).
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FIG. 3. Violin plots of the weighted in-degrees (WID) that are outgoing from the
TL nodes among different regions.

(outgoing from the TL nodes) among different regions. After com-
paring the years 2019 and 2020 in Fig. 2, we find that the pandemic
causes significant changes in terms of the influence of traffic on air
pollution. Specifically, when an epidemic occurs in the BTH region,
air pollution is greatly affected by the traffic of other cities in the
region (the weight in-degree value becomes higher). The influence
of traffic from other cities on BTH’s air pollution changes from a
dispersed one to a larger one for all cities in this region. The change
in the influence of traffic on air pollution due to the pandemic in
the NEC and CCS regions is similar to that in BTH. Among BTH,
NEC, and CCS, the weighted in-degrees of CCS change the most
compared with the situation that prevailed before the epidemic. The
CC and GHM regions have larger mean values, larger maximum
values, and smaller minimum values of weight in-degrees when the
epidemic occurs. This suggests that some cities in these areas have
closed traffic or factories for a period of time after the occurrence
of the epidemic, while other cities are basically unaffected. What is
more surprising is that compared to before the epidemic, for cities
in the Yangtze River Delta, traffic emissions in other cities has less
impact on the city’s air pollution. These results indicate that either
the epidemic has no major impact on the transportation, produc-
tion, and life in these areas or that the recovery in these areas is
faster.

FIG. 4. The maps of weighted in-degrees, WID (incoming to the AQI nodes and outgoing from the TL nodes) for stage I (a), II (b), III (c), IV (d), and V (e), respectively.
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Affected by the epidemic, the values over the BTH, CC, and
CCS regions tend to be concentrated, suggesting that the air quality
over these regions is largely related to their surrounding traffic. For
the YRD and GHM regions, the values tend to be dispersed, which
means that the air quality level over these regions is less influenced
by traffic from other regions. Hence, their own pollution is mainly
caused by the emissions and dust from mobile sources. Air pollution
in the NEC region is hardly affected by the epidemic.

C. The influence of traffic on air pollution with

different stages of fighting the pandemic

The epidemic situation and its control measures vary in differ-
ent response stages, which will eventually lead to distinct impacts
of traffic on air pollution. According to the State Council Informa-
tion Office of the People’s Republic of China, China’s fight against
COVID-19 can be divided into five stages:49 (I) Swift response to
the public health emergency (December 27, 2019–January 19, 2020):
the nationwide epidemic prevention and control plan was launched
after cases were confirmed in Wuhan, as well as cases in other parts
of China due to virus carriers traveling from the city; (II) Initial
progress in containing the virus (January 20–February 20, 2020):
The number of newly confirmed cases across the country increased
rapidly, and prevention and control was extremely severe. China
adopted a key measure to stop the spread of the virus by closing
outbound traffic from Wuhan and Hubei; (III) Newly confirmed
domestic cases on the Chinese mainland dropped to single digits
(February 21–March 17, 2020): epidemic prevention and control
achieved important results, people resumed work and production
in an orderly manner, urban traffic resumed, and, consequently,
emissions increased; (IV) Wuhan and Hubei—initial victories in a
critical battle (March 18–April 28, 2020): the spread of the local
epidemic in the country with Wuhan as the main battlefield was
basically blocked, and control measures for outbound traffic from
Wuhan and Hubei were lifted; (V) Ongoing prevention and control
(since April 29, 2020): presently, the domestic epidemic situation
is generally sporadic, and there are clustered epidemics caused by
sporadic cases in some areas. The national epidemic prevention and
control has become normalized, and traffic has returned to normal
as a whole. To further study the relationship between traffic and air
pollution, we classify our datasets into five stages by using time inter-
vals of these five stages. Figure 4 illustrates the maps of weighted
in-degrees for different stages.

In Fig. 4, we find that the impact of traffic in other cities on
the air pollution of the BTH region reaches the maximum in stage
2 and then reaches the second peak in stage 4 in the region. For
the NEC region, the impact reaches the maximum in the beginning
stage and then reaches the second peak in the last stage. The impact
of traffic reaches its maximum in phase 3 among the CCS and CC
regions, especially in CC. For YRD, the traffic impacts in each stage
are basically the same.

From a different stage perspective in Fig. 4, due to the spread
of the epidemic in stage 1, travel in most cities is restricted, causing
the pollution of this city to be greatly influenced by the traffic of
other cities, but the GHM region is still more influenced than the
other regions. Unlike in other regions where the impact is high, air
pollution in the CC region is less influenced by traffic from other

regions in stage 2. With the passage of time, the impact of traffic in
other cities on air pollution in this city from the CC region changes
from small to large in stage 3. In stage 4, the impact of traffic on air
pollution in other cities is relatively small for all regions. In the stage
5, the cities whose traffic in other cities has less impact on the city’s
air pollution are only located in the BTH region.

Overall, the impact of traffic on air pollution in the BTH and
CC regions has great fluctuations, while in the CCS, GHM, and YRD
regions, the variations are much less. In Wuhan city, however, the
values of the weighted in-degrees are consistent with the variations
during the epidemic.

D. The influence of traffic on air pollution with

different outbreak levels in cities

Due to China’s vast land size, the development of the epi-
demic situation is significantly different. We need to deeply explore
the relationship between traffic and air pollution in different epi-
demic development areas. According to the COVID-19 cumulative
confirmed cases as of March 16, 2021, we classified the level of out-
break in cities (city level) into four groups as shown in Table I.
Figure 5 shows the weighted in- degrees (outgoing from the TL
nodes) among different outbreak levels in cities.

From the average value of view, the weighted in-degree is
mainly opposed to the outbreak level in the city. It shows that the
greater in-degree values, the smaller the outbreak level in the cities.
When the outbreak level is high, the traffic in the target city and
its surrounding areas is greatly affected by the epidemic, resulting
in lesser impact of traffic in the surrounding cities on air pollution
in the target city. Thus, traffic has little impact on the air quality
of cities with high outbreak levels. Regarding the different outbreak

FIG. 5. Box plots of the weighted in-degrees (WID) that are outgoing from the TL
nodes among different outbreak levels in cities (city level).
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levels in the cities, the changes between level 1 and level 3 are
relatively large, especially for level 3.

V. CONCLUSIONS

In this study, both single-layer and multi-layer networks have
been developed to explore the influence of traffic on air pollution
during the pandemic based on complex network approaches. We
have found that the epidemic has less impact on air quality over Bei-
jing, Tianjin, and Wuhan cities, while for Hangzhou and Guangzhou
cities, their air quality is related to the epidemic. Compared with
2019, the air quality in the BTH, CCS, and CC regions is tied to
the surrounding traffic conditions. In contrast, there are no signifi-
cant changes in the YRD and GHM regions between 2019 and 2020.
Furthermore, we analyzed the variations during different epidemic
stages. The impact of traffic in other cities on a city’s air pollution
reached the maximum in stage 2. For the BTH and CC regions, the
impact of traffic on air quality is large in the first two stages and
then shows a decreasing trend, while for CC, a significant impact
occurs in phase 3 among these regions. For other regions, there is lit-
tle change in different stages. In addition, the impact over different
outbreak levels is also investigated. A higher outbreak level generally
has a lower in-degree value. In the case of high ranking, the traffic
of the surrounding cities has less impact on the air pollution of the
target city.

Compared with traditional research methods, the climate net-
work method used in this study can explore the relationship between
traffic emissions and air pollution on a larger scale, especially the
long-distance impact between different cities, and more macro-
scopically indicate the impact of other cities’ emissions on a city’s
air pollution contribution. However, this study uses only telecon-
nection for network modeling and uses the index of degree for
quantitative analysis. Therefore, it lacks a more detailed and refined
aerodynamic transmission mechanism, making the quantification
of the contribution of traffic emissions to air pollution not pre-
cise enough. The division of urban outbreak levels and epidemic
development stages is relatively subjective and lacks more precise
quantitative evaluation criteria. Subsequent research should choose
a more scientific and effective division method. Besides providing
information for guiding government policies to improve air qual-
ity levels, the development of network parameters in this work is
a profitable attempt in the areas of transportation and atmospheric
environment. Our results can also call attention to further research
on the impact of transportation on air pollution.
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