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Abstract

The objective of this study was to build a machine learning model that can predict healing of 

diabetes-related foot ulcers, using both clinical attributes extracted from electronic health records 

(EHR) and image features extracted from photographs. The clinical information and photographs 

were collected at an academic podiatry wound clinic over a three-year period. Both hand-crafted 

color and texture features and deep learning-based features from the global average pooling layer 

of ResNet-50 were extracted from the wound photographs. Random Forest (RF) and Support 

Vector Machine (SVM) models were then trained for prediction. For prediction of eventual wound 

healing, the models built with hand-crafted imaging features alone outperformed models built with 

clinical or deep-learning features alone. Models trained with all features performed comparatively 

against models trained with hand-crafted imaging features. Utilization of smartphone and tablet 

photographs taken outside of research settings hold promise for predicting prognosis of diabetes-

related foot ulcers.
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1. Introduction

Diabetes-related foot ulcers (DFU) remain a significant cause of increased morbidity in 

patients with diabetes. Recent studies suggest that a diabetic patient’s lifetime incidence 

of developing a DFU may be as high as 25% [1], and greater than 85% of amputations 

in diabetic patients are preceded by a foot ulcer [2]. The current prognostication of the 

DFUs are mainly assessed by the clinicians based on various clinical characteristics of 

the patients, including the infection status of the wounds, comorbidities, and information 

obtained from imaging modalities, which requires a great deal of mental and manual 

labor of clinicians. To reduce such burden, several technologies have been developed for 

management of DFUs. For example, a few smartphone applications were created for image 

capturing and analysis, such as wound area determination and healing score evaluation [3,4]. 

Deep learning approaches, given its widespread success in medical image segmentation 

[5,6], have been utilized in several analyses of diabetic foot ulcer images as well: Gamage et 

al. [7] applied low-rank matrix factorization method on features extracted by convolutional 

neural network (CNN)-based architecture to predict six different severity stages of the 

DFUs, achieving accuracy of over 96%. Wound area segmentation from photographs using 

CNN is another well-explored area for DFU studies [8,9]. Incorporation of such tools and 

techniques into a telemedicine system is another area that’s actively pursued in management 

of DFUs [10,11].

In this study, we built machine learning models with the imaging biomarkers extracted 

from the wound photographs and the clinical attributes extracted from the electronic health 

records (EHR) to predict eventual healing of the DFUs, introducing additional potential 

machine learning tool in management and prognostication of DFUs. Identification of 

the wounds that would heal upon appropriate treatments is important in wound healing 

prognostication as it can save a patient from potential limb loss. While many studies have 

utilized machine learning techniques with wound photographs for diagnosis and staging, the 

prognosticative prediction of eventual wound healing has been limited to usage of clinical 

and laboratory markers [12,13].

DFU’s have demonstrated clinical features of the wound that can predict healing or 

infection; for example, prior work has demonstrated that the rate of wound surface area 

changes over time is highly predictive of healing [14]. A study by Valenzueula-Silva et al. 

found that wound base granulation tissue >50% at 2 weeks, >75% at the end of treatment, 

and 16% reduction in area had >70% positive predictive value for healing [15]. Such 

features of the wounds, as well as the advancement of image analysis techniques discussed 

earlier, hold promise for smartphone and tablet camera technologies to advance telemedicine 

and clinical prognostication of the DFU. The aim of this study is to build prediction models 

for wound healing using hand-crafted and deep learning-based imaging biomarkers extracted 

from the ulcer photographs as well as clinical attributes obtained during the clinic visits.
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2. Research design and methods

2.1. Clinical setting

The electronic health records (EHR) of 2291 visits for 381 ulcers from 155 patients who 

visited the Michigan Medicine Podiatry and Wound clinic for diabetic foot ulcers and/or 

complications thereof from November 2014 to July 2017 were collected from its EHR 

system, along with smartphone or tablet photographs of the ulcers taken by the medical staff 

during each visit. Each ulcer was followed further down the EHR to assess for healing.

2.2. Clinical data

A total of 48 clinical attributes were extracted from the EHR. The entire list of clinical 

features is available in Supplementary Table 1 along with the % of the missing data that 

had to be imputed. The missing clinical parameters were imputed as the Euclidean distance-

weighted mean of the three most similar data points (n = 3) using the k-nearest neighbor 

(k-NN) algorithm [16]. All of the non-numeric features were discretized – for example, 

categorical features, such as total contact cast or offload use, were binarized with one-hot 

encoding, and the University of Texas San Antonio (UTSA) foot ulcer grading system was 

separated into the score and grade. The estimated glomerular filtration rate (eGFR) was 

discretized into chronic kidney disease (CKD) stages, with a score of 0 given to CKD 

stage 1 and 2 because eGFR greater than 60 were right-censored in the dataset. However, 

the magnetic resonance imaging (MRI) signs of infection, Technetium-99 scan signs of 

infection, toe systolic pressure, and ankle systolic pressure were binarized into whether they 

were obtained at all or not (rather than imputing the unobtained values), since they were not 

measured in greater than 75% of the visits and the fact that they were obtained suggests its 

clinical significance to the treating clinician.

2.3. Image processing

The foot ulcers were manually segmented from the photograph by a podiatry fellow and 

a trained medical student using either Microsoft Paint or Adobe Photoshop (Fig. 1). The 

images were then processed using MATLAB R2019a to extract color and texture features. 

The radiomic texture texture features were extracted using a toolkit provided in Ref. 

[17]. The entire list of hand-crafted image-related features is presented in Supplementary 

Table 2. In addition, 2048 deep learning-based features were extracted from the global 

average pooling (GAP) layer of ResNet50 [18]: The network was initially loaded with the 

pre-trained weights from ImageNet. The manually segmented wound region was resized to 

(224, 224) pixels, which ResNet50 can take in as an input. Then each value output by the 

2048 nodes in the GAP layer upon the input of each wound image was used as a feature.

2.4. Prediction models

Two kinds of machine learning models, namely random forests (RF) [19] and support vector 

machine (SVM) [20] with an RBF kernel, were built to predict whether or not the wound 

would eventually heal. Outcomes including outpatient infection leading to hospitalization 

and/or amputation were considered “Not healed,” and complete epithelization was 

considered “Healed” – However, if a previously infected ulcer did eventually result in 
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complete epithelization, then it was excluded from our study. In addition, those lost to 

follow up were entirely excluded from the study. If an ulcer previously marked as healed 

re-ulcerated at the same location, the recurrence event was excluded from the study. Any 

ulcer without an image at the initial visit was also excluded. This resulted in 208 wounds 

from 113 patients. Among these wounds, 25% were held out as the final test set and 

3-fold cross validation was performed on the remaining 75% of the data as the training 

set for hyperparameter selection. Wounds from the same patient remained in the same fold 

throughout the entire analysis pipeline to ensure no data leakage between the folds and 

between the training and test sets.

Randomized grid-search was performed on the training set with 3-fold cross validation to 

find the model with the best area under the receiver operating characteristic (AUROC) curve, 

and the hyperparameter combination that produced the best AUROC during the validation 

was used to predict the outcomes in the test set. For the RF model, 2000 combinations of 

hyperparameters were included, including the use of bootstrapping, tree selection criteria 

(Gini impurity or entropy), the maximum depth, the minimum number of samples in 

a leaf, the minimum number of samples required to split a node, and the number of 

principal components in PCA. For the SVM model, 2028 combinations of hyperparameters 

were included, including C, the penalty parameter of the error term; gamma, the kernel 

coefficient; and the number of principal components in PCA. To accelerate the training 

process, the best hyperparameter combination was searched for among 300 randomly 

selected hyperparameter combinations for each model. The entire hyperparameter sets are 

available in Supplementary Table 3.

Furthermore, a separate RF model trained from clinical and hand-crafted image features 

alone without the PCA (since the deep learning features cannot be interpreted in semantic 

terms) from the training set to obtain feature importance values and shed light on which 

features had most impact on prediction.

3. Results

Table 1 shows the patient characteristics of the two groups based on whether or not the 

wound healed eventually. Of the 48 clinical features, 12 features were found to have a 

statistically significant difference (P < 0.05) as determined by an unpaired Student’s t-test.

Table 2 shows the precision, recall, F1 score, accuracy and AUROC on the test set for 

the SVM and RF models chosen based on the best AUROC obtained on the training set. 

The P-values for the significant difference between the AUROCs were obtained by using 

Nadeau-Bengio corrected t-test [21,22] on 500 random subsamples of the test set (Table 3). 

Each random subsample was created by randomly choosing, with replacement, 90% of the 

entries in the test set.

The feature importance chart obtained from the RF model without the PCA and deep 

learning-based features is presented in Table 4.
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4. Discussion & conclusions

Both the RF and SVM models trained with hand-crafted imaging features alone 

outperformed models trained with deep learning-based or clinical features alone (P < 0.05; 

Table 3). They also slightly outperformed the models trained with all features, although they 

did not reach a statistical significance. Models trained with deep learning or clinical features 

alone performed comparatively against each other. Models trained with all of the available 

features outperformed the models trained with deep learning or clinical features alone, but 

they did not attain statistical significance.

This finding is interesting, as hand-crafted color and texture features, which require less 

computations than extraction of deep learning features, may actually suggest more about the 

prognostication of the wound healing outcomes. The color features, especially, consist of 

the simple mean and standard deviation of color intensity values in different color spaces 

and can therefore be intuitive to the clinicians; for example, the feature importance chart 

(Table 4) suggests that the mean of green color is one of the most important features, and 

one would clinically expect that the non-red colors in ulcers are concerning for more serious 

or gangrened infections. Deep learning architectures are known to outperform hand-crafted 

images for wound image segmentation, but as long as the wound is already segmented by 

any means, the hand-crafted features may still be useful in clinical prognostication.

The feature importance chart also demonstrates that most important features are 

predominantly hand-crafted imaging features when the PCA is not performed. Only 7 

features out of 30 were clinical features. Among the clinical features, the patient’s 

nutritional status (pre-albumin) and the size of the ulcer are ranked among the 30 most 

important features. The nutritional status is known to affect any kind of wound healing 

[23,24] and has been found to be independently associated with prognosis of diabetic foot 

ulcers [25]. While our study did not include the size change at a certain time point, the 

wound surface area change at 4 weeks has been found to be a robust predictor of ulcer 

healing [14].

Although there has been no other study that combined hand-crafted image features, deep 

learning features and clinical features to build a prediction model for wound healing like our 

study, there have been studies that have tested clinical or molecular biomarkers’ predictive 

values in the healing of DFU. Fife et al. [12] created a multivariable logistic regression 

model using multiple clinical indices and demonstrated AUROCs between 0.648 and 0.668 

for both the whole course model and the first encounter model. Margolis et al. [26] also 

used several clinical prognostic factors to create various multivariable logistic regression 

models and demonstrated the AUROCs of 0.66–0.70. Another study, which used the ratio 

of serum matrix metalloproteinase-9 (MMP-9) to tissue inhibitor of MMPs (TIMP) as a 

predictor for wound healing, demonstrated an AUROC of 0.658 [27]. Compared to these 

models, our models demonstrated higher AUROC value when using either all features 

(0.734) or hand-crafted imaging features alone (0.760–0.794) and comparatively when only 

deep learning features (0.670) or clinical features (0.636–0.657) were used in the models.
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A few limitations exist for this study. First of all, Although the initial dataset contains almost 

2300 visit records including the follow-up visits, only 208 ulcers were used because of 

the lack of images, those lost to follow-up, and sometimes questionable segmentations of 

ulcers. Using information from each follow-up visit may be used to refine the models, and 

a further verification of this methodology and models will be necessary with a larger patient 

population and dataset. In addition, some of the clinical parameters had to be imputed 

because the EHR do not contain every single feature used in this study. This allows data 

points with more features to have more impact than those with fewer features in building 

the models, since the missing features are inferred from those visits that have those features 

recorded. Also, because the EHR are entered by different clinicians, there may be slight 

inconsistencies in clinical attributes that are manually charted, such as the ulcer size or 

UTSA grade. However, all EHR are internally audited within the health system for the 

billing practice and this problem is thereby mitigated.

The tools that can originate from and the findings included in this study hold promise for 

the telemedicine system in the management of the DFU’s. First of all, all of the images 

utilized in this study were taken with a smartphone or tablet and did not require high-tech 

imaging only available in research settings. The use of hand-crafted image features and raw 

clinical attributes in the prediction algorithm more easily provides insights to both clinicians 

and patients on what attributes may be more important in positive outcomes in wound 

healing. Also, the fact that hand-crafted image features were of the most outperforming of 

all features means that a tool incorporating such pipeline may not have to require graphics 

processing units (GPU) necessary for deep learning-based analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

JSW, AM, JG, RBK and KN conceived of the presented study. All authors contributed to collection and 
preprocessing of the data. RBK designed and developed the experimental pipeline and performed the computations 
with support from SMRS, JG, JSW and KN. RBK wrote the manuscript with support from all other authors. All 
authors have discussed the results and contributed to the final manuscript. RBK is the guarantor of this work and, as 
such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy 
of the data analysis. The authors declare no conflicts of interest.

This work was supported by NIH DiaComp Collaborative Funding Program project, 17AU3752, NIDDK Diabetic 
Complications Consortium (DiaComp, www.diacomp.org), grant DK076169 and NIH NIDDK U01, DFU Clinical 
Research Unit, 1U01DK119083-01. This work was approved by IRB HUM00128252. The authors would like to 
thank Tianyi Bao and for collection of the data at the initial phase of this study.

References

[1]. Singh N, Armstrong DG, Lipsky BA, Preventing foot ulcers in patients with diabetes, J. Am. Med. 
Assoc 293 (2) (2005 Jan 12) 217.

[2]. Boulton AJM, The diabetic foot: grand overview, epidemiology and pathogenesis, in: Diabetes/
Metabolism Research and Reviews, John Wiley & Sons, Ltd, 2008. S3–6.

[3]. Wang L, Pedersen PC, Strong DM, Tulu B, Agu E, Ignotz R, Smartphone-based wound 
assessment system for patients with diabetes, IEEE Trans. Biomed. Eng 62 (2) (2015 Feb 1) 
477–488. [PubMed: 25248175] 

Kim et al. Page 6

Comput Biol Med. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.diacomp.org


[4]. Wang L, Pedersen PC, Strong DM, Tulu B, Agu E, Ignotz R, et al. , An automatic assessment 
system of diabetic foot ulcers based on wound area determination, color segmentation, and 
healing score evaluation, J. Diabetes Sci. Technol 10 (2) (2016 Mar 1) 421–428.

[5]. Ronneberger O, Fischer P, Brox T, U-net: convolutional networks for biomedical image 
segmentation, Springer, Cham, 2015 [cited 2019 Jul 12]. p. 234–41. Available from, http://
link.springer.com/10.1007/978-3-319-24574-4_28.

[6]. Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, et al. , Interactive medical image 
segmentation using deep learning with image-specific fine tuning, IEEE Trans. Med. Imag 37 (7) 
(2018) 1562–1573.

[7]. Gamage C, Wijesinghe I, Perera I, Automatic scoring of diabetic foot ulcers through deep CNN 
based feature extraction with low rank matrix factorization, in: 2019 IEEE 19th International 
Conference on Bioinformatics and Bioengineering, (BIBE), 2019, pp. 352–356.

[8]. Cui C, Thurnhofer-hemsi K, Soroushmehr R, Mishra A, Gryak J, Dom E, et al. , Diabetic wound 
segmentation using convolutional neural networks, 2019 41st Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society (EMBC) (2019) 1002–1005, 10.1109/
EMBC.2019.8856665.

[9]. Gamage H, Wijesinghe W, Perera I, Instance-based segmentation for boundary detection of 
neuropathic ulcers through Mask-RCNN, in: International Conference on Artificial Neural 
Networks, 2019, pp. 511–522.

[10]. Wijesinghe I, Gamage C, Perera I, Chitraranjan C, A Smart telemedicine system with deep 
learning to manage diabetic retinopathy and foot ulcers, in: 2019 Moratuwa Engineering 
Research Conference, MERCon, 2019, pp. 686–691.

[11]. Hazenberg CEVB, de Stegge WB, Van Baal SG, Moll FL, Bus SA, Telehealth and telemedicine 
applications for the diabetic foot: a systematic review, Diabetes Metab. Res. Rev 36 (3) (2020), 
e3247. [PubMed: 31808288] 

[12]. Fife CE, Horn SD, Smout RJ, Barrett RS, Thomson B, A predictive model for diabetic foot ulcer 
outcome: the Wound Healing Index, Adv. Wound Care 5 (7) (2016) 279–287.

[13]. Forsythe RO, Apelqvist J, Boyko EJ, Fitridge R, Hong JP, Katsanos K, et al. , Performance of 
prognostic markers in the prediction of wound healing or amputation among patients with foot 
ulcers in diabetes: a systematic review, Diabetes Metab. Res. Rev 36 (2020), e3278. [PubMed: 
32176442] 

[14]. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A, Percent change in wound area of diabetic 
foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week 
prospective trial, Diabetes Care 26 (6) (2003 Jun 1) 1879–1882. [PubMed: 12766127] 

[15]. Valenzuela-Silva CM, Tuero-Iglesias AD, Garcia-Iglesias E, Gonzalez-Diaz O, Del Rio-Martin 
A, Alos IBY, et al. , Granulation response and partial wound closure predict healing in clinical 
trials on advanced diabetes foot ulcers treated with recombinant human epidermal growth factor, 
Diabetes Care 36 (2) (2013 Feb) 210–215. [PubMed: 22966096] 

[16]. Stekhoven DJ, Bühlmann P, Missforest-Non-parametric missing value imputation for mixed-type 
data, Bioinformatics 28 (1) (2012 Jan 1) 112–118. [PubMed: 22039212] 

[17]. Vallières M, Freeman CR, Skamene SR, El Naqa I, A radiomics model from joint FDG-PET 
and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the 
extremities, Phys. Med. Biol 60 (14) (2015 Jul 7) 5471–5496. [PubMed: 26119045] 

[18]. He K, Zhang X, Ren S, Sun J, Deep residual learning for image recognition, in: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[19]. Breiman L, Leo, Random forests, Mach. Learn 45 (1) (2001) 5–32.

[20]. Cortes C, Vapnik V, Support-vector networks, Mach. Learn 20 (3) (1995) 273–297.

[21]. Nadeau C, Bengio Y, Inference for the generalization error, in: Advances in Neural Information 
Processing Systems, 2000, pp. 307–313.

[22]. Bouckaert RR, Frank E, Evaluating the replicability of significance tests for comparing learning 
algorithms, in: Pacific-asia Conference on Knowledge Discovery and Data Mining, 2004, pp. 
3–12.

[23]. Dickhaut SC, DeLee JC, Page CP, Nutritional status: importance in predicting wound-healing 
after amputation, J. Bone Joint Surg. Am 66 (1) (1984 Jan) 71–75. [PubMed: 6690446] 

Kim et al. Page 7

Comput Biol Med. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://link.springer.com/10.1007/978-3-319-24574-4_28
http://link.springer.com/10.1007/978-3-319-24574-4_28


[24]. Stechmiller JK, Understanding the role of nutrition and wound healing, Nutr. Clin. Pract 25 (1) 
(2010 Feb 3) 61–68. [PubMed: 20130158] 

[25]. Zhang S-S, Tang Z-Y, Fang P, Qian H-J, Xu L, Ning G, Nutritional status deteriorates as the 
severity of diabetic foot ulcers increases and independently associates with prognosis, Exp. Ther. 
Med 5 (1) (2013) 215–222. [PubMed: 23251271] 

[26]. Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA, Diabetic neuropathic foot ulcers: predicting 
which ones will not heal, Am. J. Med 115 (8) (2003) 627–631. [PubMed: 14656615] 

[27]. Li Z, Guo S, Yao F, Zhang Y, Li T, Increased ratio of serum matrix metalloproteinase-9 against 
TIMP-1 predicts poor wound healing in diabetic foot ulcers, J. Diabet. Complicat 27 (4) (2013) 
380–382.

Kim et al. Page 8

Comput Biol Med. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Example of manual wound segmentation. (a) Original wound image. (b) Segmented wound.
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Table 1

Patient Characteristics. The values in the Healed and Not Healed Column indicates the mean value of the data 

points. The P-value was determined by Student’s unpaired t-test with unequal variance.

Feature Name Healed (n = 164) Not Healed (n = 44) P-value

Wound length 0.788 0.823 0.817

Wound width 1.063 1.712 0.004

Wound depth 0.306 0.434 0.053

Foot 0.556 0.666 0.129

Age 60.458 58.594 0.387

Gender 0.347 0.219 0.052

Ethnicity_Hispanic 0.007 0.016 0.613

CCI 7.139 6.438 0.216

DR 0.174 0.234 0.330

ALC 1.69E+09 1.71E+09 0.822

HbA1c 8.370 8.569 0.537

Albumin 3.971 3.890 0.180

Pre-Albumin 22.534 25.698 0.010

CKD Stage 0.713 1.171 0.022

CRP 3.081 3.984 0.205

ESR 41.873 51.001 0.047

Infection 0.288 0.516 0.002

PTB 0.039 0.208 0.001

X-ray 0.102 0.150 0.296

MRI 0.083 0.219 0.020

tc99 0.007 0.031 0.294

DP_measured 0.850 0.830 0.690

PT_measured 0.837 0.808 0.579

AnkSys_measured 0.104 0.266 0.010

ToeSys_measured 0.125 0.266 0.026

TcPO2 0.000 0.063 0.045

BSA 2.843 3.398 0.491

BMI 35.175 33.909 0.297

TCC 0.033 0.005 0.058

Offload 0.395 0.352 0.513

Immunosuppressants 0.049 0.078 0.443

Oral Steroids 0.368 0.250 0.084

Antihypertensives 0.722 0.828 0.082

Oral Hypoglycemics 0.431 0.375 0.453

Canagliflozin 0.014 0.000 0.158

Insulin 0.694 0.750 0.407

Heparin 0.056 0.094 0.359

Allopurinol 0.076 0.063 0.713
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Feature Name Healed (n = 164) Not Healed (n = 44) P-value

NSAIDs 0.563 0.594 0.676

ASA 0.528 0.531 0.963

Coumadin 0.146 0.078 0.133

Xa inhibitors 0.000 0.000 Undefined

Race_African 0.111 0.234 0.041

Race_Asian 0.007 0.047 0.151

Race_Caucasian 0.875 0.703 0.008

Race_Other 0.007 0.016 0.613

UTSA Stage 1.155 1.274 0.069

ischemia 0.343 0.316 0.545

CCI: Charlson comorbidity index. DR: Diabetic retinopathy. ALC: Absolute lymphocyte count. CKD: Chronic Kidney Disease. CRP: C-reactive 
protein. ESR: Erythrocyte sedimentation rate. PTB: Probe to bone test. Tc99: Technetium 99 bone scan. DP: Dorsalis pedis pulse. PT: Posterior 
tibial pulse. TcPO2: Transcutaneous oxygen pressure. BSA: Body surface area. BMI: Body mass index. TCC: Total contact cast use. NSAID: 
Nonsteroidal anti-inflammatory drug. ASA: Aspirin.
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Table 2

Performance of each model, with varying usage of features. The values for validation sets are Mean ± 

Standard deviation from the 3 cross validations.

Models built with all available features

Metric AUROC Accuracy Precision Recall F1

RF_val 0.691 ± 0.075 0.671 ± 0.064 0.743 ± 0.042 0.823 ± 0.096 0.777 ± 0.043

RF_test 0.734 0.811 0.828 0.923 0.873

SVM_val 0.735 ± 0.083 0.726 ± 0.066 0.780 ± 0.061 0.854 ± 0.053 0.814 ± 0.044

SVM_test 0.734 0.811 0.828 0.923 0.873

Models built only with hand-crafted image features

RF_val 0.683 ± 0.042 0.646 ± 0.033 0.795 ± 0.033 0.671 ± 0.033 0.727 ± 0.017

RF_test 0.760 0.811 0.852 0.885 0.868

SVM_val 0.691 ± 0.046 0.561 ± 0.037 0.840 ± 0.074 0.471 ± 0.032 0.600 ± 0.015

SVM_test 0.794 0.784 0.909 0.769 0.833

Models built only with clinical features

RF_val 0.693 ± 0.056 0.707 ± 0.025 0.757 ± 0.042 0.875 ± 0.104 0.805 ± 0.026

RF_test 0.636 0.784 0.765 1 0.867

SVM_val 0.701 ± 0.086 0.591 ± 0.084 0.810 ± 0.119 0.567 ± 0.136 0.652 ± 0.094

SVM_test 0.657 0.703 0.800 0.769 0.784

Models built only with deep learning features

RF_val 0.692 ± 0.051 0.720 ± 0.055 0.764 ± 0.070 0.880 ± 0.025 0.815 ± 0.033

RF_test 0.670 0.757 0.793 0.885 0.836

SVM_val 0.726 ± 0.052 0.707 ± 0.068 0.737 ± 0.069 0.912 ± 0.033 0.813 ± 0.044

SVM_test 0.670 0.757 0.793 0.885 0.836
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Table 3

P-values obtained by Nadeau-Bengio corrected t-test [11,12] on 500 random subsamples of the test set 

between different models.

Model type Features used Features used P-value

RF All Hand-crafted image 0.515

RF All Deep learning 0.047

RF All Clinical 0.085

RF Deep learning Hand-crafted image 0.013

RF Clinical Hand-crafted image 0.562

RF Deep learning Clinical 0.562

SVM All Hand-crafted image 0.280

SVM All Deep learning 0.110

SVM All Clinical 0.086

SVM Deep learning Hand-crafted image 0.013

SVM Clinical Hand-crafted image 0.031

SVM Deep learning Clinical 0.780
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Table 4

The 30 most important features as determined by a RF model without PCA, using only hand-crafted image 

and clinical features (i.e. without deep learning features). The sum of importances of all features equals 1.

Feature name Feature importance value

img_LAB_Amean 0.034231

img_LAB_Lstd 0.033047

img_RGB_Rstd 0.032891

Pre_Alb 0.027744

img_HSV_Vstd 0.023306

img_RGB_Gmean 0.021559

img_HSV_Sstd 0.018536

img_HSV_Smean 0.017932

img_RGB_Gstd 0.017794

img_glrlm_SRHGE 0.017419

PTB 0.017041

Infection 0.017015

img_LAB_Bstd 0.016309

img_RGB_Bmean 0.015348

BSA 0.014811

img_glrlm_LGRE 0.012993

img_gabor_amp_std_4 0.012843

WndWdth 0.012599

img_glrlm_RLV 0.01215

img_ngtdm_Complexity 0.011454

img_glszm_GLV 0.011221

img_HSV_Hmean 0.011206

img_glszm_LGZE 0.01048

img_glcm_Correlation 0.010403

Age 0.010116

img_gabor_amp_mean_4 0.010031

img_RGB_Bstd 0.009844

img_glcm_Variance 0.00958

UTSAStage 0.009379

img_glrlm_LRLGE 0.009364

Std: Standard deviation. SRHGE: Short-run high gray-level run emphasis Amp: Amplitude. Std: Standard deviation. LAB: CIELAB color space. 
RGB: RGB color space. HSV: HSV color space. GLRLM: Gray-Level Run Length Matrix. SRHGE: Short-run high gray-level run emphasis. PTB: 
Probe to bone, BSA: Body surface area. LGRE: Low gray-level run emphasis. GLV: Gray-level variance. RLV: Run level variance. NGTDM: 
Neighborhood Gray Tone Difference Matrix. GLSZM: Gray-level size-zone matrix. LGZE: Low gray-level zone emphasis. LRE: Long run 
emphasis. LZE: Level zone emphasis. LGRE: Low gray-level run emphasis. GLCM: Gray-level co-occurrence matrix. ZSV: Zone-size variance. 
ZP: Zone percentage. SZHGE: Small zone high gray-level emphasis. LRLGE: Long-run low gray-level run emphasis.
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