Table 2.
Models built with all available features | |||||
---|---|---|---|---|---|
Metric | AUROC | Accuracy | Precision | Recall | F1 |
RF_val | 0.691 ± 0.075 | 0.671 ± 0.064 | 0.743 ± 0.042 | 0.823 ± 0.096 | 0.777 ± 0.043 |
RF_test | 0.734 | 0.811 | 0.828 | 0.923 | 0.873 |
SVM_val | 0.735 ± 0.083 | 0.726 ± 0.066 | 0.780 ± 0.061 | 0.854 ± 0.053 | 0.814 ± 0.044 |
SVM_test | 0.734 | 0.811 | 0.828 | 0.923 | 0.873 |
Models built only with hand-crafted image features | |||||
RF_val | 0.683 ± 0.042 | 0.646 ± 0.033 | 0.795 ± 0.033 | 0.671 ± 0.033 | 0.727 ± 0.017 |
RF_test | 0.760 | 0.811 | 0.852 | 0.885 | 0.868 |
SVM_val | 0.691 ± 0.046 | 0.561 ± 0.037 | 0.840 ± 0.074 | 0.471 ± 0.032 | 0.600 ± 0.015 |
SVM_test | 0.794 | 0.784 | 0.909 | 0.769 | 0.833 |
Models built only with clinical features | |||||
RF_val | 0.693 ± 0.056 | 0.707 ± 0.025 | 0.757 ± 0.042 | 0.875 ± 0.104 | 0.805 ± 0.026 |
RF_test | 0.636 | 0.784 | 0.765 | 1 | 0.867 |
SVM_val | 0.701 ± 0.086 | 0.591 ± 0.084 | 0.810 ± 0.119 | 0.567 ± 0.136 | 0.652 ± 0.094 |
SVM_test | 0.657 | 0.703 | 0.800 | 0.769 | 0.784 |
Models built only with deep learning features | |||||
RF_val | 0.692 ± 0.051 | 0.720 ± 0.055 | 0.764 ± 0.070 | 0.880 ± 0.025 | 0.815 ± 0.033 |
RF_test | 0.670 | 0.757 | 0.793 | 0.885 | 0.836 |
SVM_val | 0.726 ± 0.052 | 0.707 ± 0.068 | 0.737 ± 0.069 | 0.912 ± 0.033 | 0.813 ± 0.044 |
SVM_test | 0.670 | 0.757 | 0.793 | 0.885 | 0.836 |