Skip to main content
. Author manuscript; available in PMC: 2022 May 2.
Published in final edited form as: Comput Biol Med. 2020 Oct 8;126:104042. doi: 10.1016/j.compbiomed.2020.104042

Table 2.

Performance of each model, with varying usage of features. The values for validation sets are Mean ± Standard deviation from the 3 cross validations.

Models built with all available features
Metric AUROC Accuracy Precision Recall F1
RF_val 0.691 ± 0.075 0.671 ± 0.064 0.743 ± 0.042 0.823 ± 0.096 0.777 ± 0.043
RF_test 0.734 0.811 0.828 0.923 0.873
SVM_val 0.735 ± 0.083 0.726 ± 0.066 0.780 ± 0.061 0.854 ± 0.053 0.814 ± 0.044
SVM_test 0.734 0.811 0.828 0.923 0.873
Models built only with hand-crafted image features
RF_val 0.683 ± 0.042 0.646 ± 0.033 0.795 ± 0.033 0.671 ± 0.033 0.727 ± 0.017
RF_test 0.760 0.811 0.852 0.885 0.868
SVM_val 0.691 ± 0.046 0.561 ± 0.037 0.840 ± 0.074 0.471 ± 0.032 0.600 ± 0.015
SVM_test 0.794 0.784 0.909 0.769 0.833
Models built only with clinical features
RF_val 0.693 ± 0.056 0.707 ± 0.025 0.757 ± 0.042 0.875 ± 0.104 0.805 ± 0.026
RF_test 0.636 0.784 0.765 1 0.867
SVM_val 0.701 ± 0.086 0.591 ± 0.084 0.810 ± 0.119 0.567 ± 0.136 0.652 ± 0.094
SVM_test 0.657 0.703 0.800 0.769 0.784
Models built only with deep learning features
RF_val 0.692 ± 0.051 0.720 ± 0.055 0.764 ± 0.070 0.880 ± 0.025 0.815 ± 0.033
RF_test 0.670 0.757 0.793 0.885 0.836
SVM_val 0.726 ± 0.052 0.707 ± 0.068 0.737 ± 0.069 0.912 ± 0.033 0.813 ± 0.044
SVM_test 0.670 0.757 0.793 0.885 0.836