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Abstract

In rodents, a single injection of lipopolysaccharide (LPS) during gestation causes chemical and 

functional abnormalities in the offspring. These effects may involve changes in the kynurenine 

pathway (KP) of tryptophan degradation and may provide insights into the pathophysiology of 

psychiatric diseases. Using CD1 mice, we examined acute and long-term effects of prenatal LPS 

treatment on the levels of kynurenine and its neuroactive downstream products kynurenic acid 

(KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid. To this end, LPS (100 μg/kg, i.p.) 

was administered on gestational day 15, and KP metabolites were measured 4 and 24 h later or 

in adulthood. After 4 h, kynurenine, KYNA and 3-HK levels were elevated in the fetal brain, 

3-HK and KYNA levels were increased in the maternal plasma, and kynurenine was increased 

in the maternal brain, whereas no changes were seen in the placenta. These effects were less 

prominent after 24 h, and prenatal LPS did not affect the basal levels of KP metabolites in the 

forebrain of adult animals. In addition, a second LPS injection (1 mg/kg) in adulthood in the 

offspring of prenatally saline- and LPS-treated mice caused a similar elevation in 3-HK levels in 

both groups after 24 h, but the effect was significantly more pronounced in male mice. Thus, acute 

immune activation during pregnancy has only short-lasting effects on KP metabolism and does not 

cause cerebral KP metabolites to be disproportionally affected by a second immune challenge in 

adulthood. However, prenatal KYNA elevations still contribute to functional abnormalities in the 

offspring.
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Introduction

Adverse events during pregnancy have significant effects on brain development and can in 

turn lead to pathological consequences in the offspring (Debnath et al., 2015; Haddad et al., 

2020; Seidman et al., 2000; Stolp et al., 2012). More specifically, epidemiological studies 

suggest that prenatal exposure to infectious agents can be linked to an increased risk to 

develop a variety of psychiatric disorders, including depression and schizophrenia (Borrell 

et al., 2002; Brown, 2012; Conway & Brown, 2019; Kirkbride et al., 2012; Rapoport et 

al., 2005; Stower, 2019). This concept is supported by a substantial number of experiments 

in rodents, which showed that maternal immune activation leads to several neurochemical 

and behavioral abnormalities in the adult offspring, which are similar to those observed in 

patients (Meyer & Feldon, 2010, 2012; Ozawa et al., 2006; Romero et al., 2007; Smith et 

al., 2007). One of the most widely used experimental approaches in this respect involves 

maternal exposure to the prototypical endotoxin lipopolysaccharide (LPS), which triggers 

an immune response by interacting with Toll-like receptors of the innate immune system 

(Janssens & Beyaert, 2003; Park & Lee, 2013). This treatment results in distinct deficits 

in the progeny later in life, including decreased hippocampal neurogenesis, dysfunctional 

synaptic transmission, and a number of behavioral abnormalities, including cognitive 

impairments (Chlodzinska et al., 2011; Coyle et al., 2009; Depino, 2015; Escobar et al., 

2011; Fernandez de Cossio et al., 2017; Lin & Wang, 2014). Converging evidence suggests a 

causal relationship between the prenatal bacterial infection and the deficits seen in the adult 

offspring. However, in spite of their possible relevance for the pathophysiology of major 

psychiatric diseases, the mechanisms underlying the untoward long-term consequences of 

maternal LPS administration have not been clarified so far.

Activation of the kynurenine pathway (KP) of tryptophan degradation may be a significant 

factor in this context. In particular, in adult animals, the initial, rate-limiting enzyme of the 

KP, indoleamine-2,3-dioxygenase (IDO), is readily induced by LPS and other inflammatory 

stimuli (Lestage et al., 2002; O’Connor et al., 2009), resulting in an increased conversion 

of tryptophan to kynurenine (Figure 1). Downstream, the KP contains several neuroactive 

metabolites, including the free radical generator 3-hydroxykynurenine (3-HK), the NMDA 

receptor agonist quinolinic acid (QUIN), and, in a competing branch, kynurenic acid 

(KYNA), an antagonist of α7 nicotinic acetylcholine (α7nACh) and NMDA receptor 

function (Schwarcz & Stone, 2017). Focusing on KYNA because of its ability to affect 

these two receptors, which are both believed to be critically involved in the pathophysiology 

of psychiatric disorders (Lakhan et al., 2013; Olincy & Freedman, 2012), a series of 

studies demonstrated that even moderate increases in the brain levels of this metabolite 

cause disease-relevant cognitive deficits in animals (Pocivavsek et al., 2016). Notably, 

abnormal prenatal increases in KYNA levels, which can be produced experimentally in 

rodents by administering kynurenine or a kynurenine 3-monooxygenase (KMO) inhibitor 

to the dam during the last week of gestation (cf. Figure 1), lead to chemical, structural 

and electrophysiological abnormalities reminiscent of psychiatric disorders in the adult 

offspring (Alexander et al., 2013; Forrest, Khalil, Pisar, Darlington, et al., 2013; Khalil et al., 

2014; Pershing et al., 2015; Pisar et al., 2014; Pocivavsek et al., 2014). Interestingly, these 

long-term effects include functionally relevant increases in KYNA levels in the adult brain 
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(Pershing et al., 2016; Pocivavsek et al., 2019; Pocivavsek et al., 2014). In view of the fact 

that the concentration of KYNA is significantly elevated in the brain and cerebrospinal fluid 

of persons with schizophrenia (Erhardt et al., 2001; Linderholm et al., 2012; Sathyasaikumar 

et al., 2011; Schwarcz et al., 2001), these findings jointly raised the possibility that an 

impairment in KP metabolism during the prenatal period may play a role in the emergence 

of psychiatric symptoms later in life (Notarangelo & Pocivavsek, 2017).

Despite the fact that both prenatal LPS administration and KYNA up-regulation cause 

deficits on mature animals, and that the acute consequences of these two interventions 

during pregnancy have been described individually, the possible relationship between 

prenatal LPS exposure and KP metabolism has not been directly examined so far. This is 

particularly relevant as the regulation of the KP differs both qualitatively and quantitatively 

at various stages of development (Gramsbergen et al., 1997; Notarangelo et al., 2019; 

Notarangelo & Pocivavsek, 2017).

Because of its possible translational significance, the present study was designed to address 

this question by examining the short- and long-term effects of a single prenatal injection 

of LPS on KP metabolism in mice. Using a dose known to raise cytokine levels while 

minimizing the risk of preterm delivery and maternal mortality (Fricke et al., 2018), we 

administered 0.1 mg/kg LPS intraperitoneally (i.p.) on gestational day (GD) 15. Since 

activation of the immune system later in life is also considered to play a role in the 

pathophysiology of major psychiatric disorders including depression and schizophrenia 

(Benros et al., 2011; Dantzer et al., 2008), the offspring of prenatally treated animals 

received an additional LPS injection in adulthood. In all animals, the levels of pivotal KP 

metabolites were analyzed both during pregnancy and in adulthood.

Materials and Methods

Chemicals

Kynurenic acid (KYNA), 3-hydroxy-DL-kynurenine (3-HK), quinolinic acid (QUIN), 

[2H6]L-kynurenine, pentafluoropropionic anhydride and 2,2,3,3,3-pentafluoro-1-propanol 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). L-Kynurenine sulfate 

(“kynurenine”; purity: 99.4%) was obtained from Sai Advantium (Hyderabad, India). 

[2H3]Quinolinic acid was purchased from Synfine Research (Richmond Hill, Ontario, 

Canada). LPS from E. coli (L-3129, serotype 0127.B8) was obtained from Sigma-Aldrich 

(St. Louis, MO, USA).

All other chemicals were obtained from various commercial suppliers and were of the 

highest available purity.

Mice

Pregnant CD-1 mice (2–3 month-old; gestational age: 2 days) were obtained from Charles 

River Laboratories (Frederick, MD, USA) and were individually housed upon arrival. All 

experiments were approved by the Institutional Animal Care and Use Committee (IACUC) 

of the University of Maryland School of Medicine. Mice were maintained on a 12 h light/

dark cycle in a temperature-controlled room with ad libitum access to food and water. For all 
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prenatal studies, 2–4 embryos per litter were used, and the data were expressed as averages 

of each litter. For studies in adult animals, only one male and one female mouse was used 

for each experimental condition.

Lipopolysaccharide injection

Pregnant dams were injected i.p. with 0.1 mg/kg LPS on GD 15. Control mice received 

an i.p. injection of a sterile saline solution. To evaluate the acute consequences of LPS, 

dams (n = 3–4 per group) were euthanized using carbon dioxide either 4 or 24 h later, 

and maternal brain (“forebrain”: whole brain without cerebellum) and plasma (collected 

in EDTA-containing tubes and centrifuged at 6,000 × g for 10 min) as well as placenta 

and fetal brain were collected and stored at −80°C until analysis. To investigate long-term 

effects, separate dams were left undisturbed after the prenatal administration of LPS or 

saline (n = 7–8 per group), and male and female offspring were weaned on postnatal day 

(PND) 21. At PND 60, mice were then injected i.p. with either LPS (0.1 or 1 mg/kg, i.p.) 

or saline and euthanized using carbon dioxide 24 h after the treatment. Forebrains of these 

animals were rapidly collected and stored at −80°C until analysis.

Kynurenic acid and 3-hydroxykynurenine measurement

Ultrapure water was used for all tissue homogenizations and dilutions. Fetal brain tissue 

was homogenized by sonication (1:10, w/v), and the homogenate was further diluted for the 

measurement of 3-HK (1:20 final). Placenta was homogenized (1:10, w/v) and then diluted 

further (1:20 final for 3-HK, 1:100 final for KYNA). Maternal and offspring brain tissue 

(whole forebrain) was sonicated (1:5, w/v), and maternal plasma was diluted (1:2, v/v for 

3-HK and 1:10, v/v for KYNA).

Twenty-five μl of 6% perchloric acid were added to 100 μl of each sample, and precipitated 

proteins were removed by centrifugation (16,000 × g, 10 min). For KYNA determination, 

20 μl of the resulting supernatant were injected onto a 3 μm C18 reverse phase HPLC 

column (100 mm × 4 mm; Dr. Maisch GmbH, Ammerbuch, Germany), using a mobile phase 

containing 50 mM sodium acetate and acetonitrile (3% for brain and 6% for placenta and 

plasma; pH adjusted to 6.2 with glacial acetic acid) at a flow rate of 0.5 ml/min. Zinc acetate 

(0.5 M; not pH adjusted), was delivered post-column by a peristaltic pump (Dionex AXP, 

Thermo Fisher, Waltham, MA, USA) at a flow rate of 0.1 ml/min. In the eluate, KYNA 

was detected fluorimetrically (excitation: 344 nm, emission: 398 nm; S200a fluorescence 

detector; Perkin Elmer, Waltham, MA, USA).

For 3-HK determination, 20 μl of the supernatant were applied to a 3 μm HPLC column 

(HR-80; 80 mm × 4.6 mm; ESA, Chelmsford, MA, USA), using a mobile phase consisting 

of 1.5 % acetonitrile, 0.9 % triethylamine, 0.59 % phosphoric acid, 0.27 mM EDTA and 

8.9 mM sodium heptane sulfonic acid, and a flow rate of 0.5 ml/min. In the eluate, 3-HK 

was detected electrochemically using a HTEC 500 detector (Eicom Corp., San Diego, CA; 

oxidation potential: +0.5 V).
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Kynurenine and quinolinic acid measurement

To measure kynurenine and QUIN in tissue, the original homogenates were further diluted 

(v/v) in 0.1% ascorbic acid (1:20 final for maternal and offspring brain, 1:50 final for 

fetal brain, 1:100 final for placenta). For the determination of QUIN in maternal plasma, 

samples were diluted in 0.1% ascorbic acid (1:10, v/v). Fifty μl of an internal standard 

mix ([2H3]quinolinic acid, [2H6]L-kynurenine) were added to 50 μl of the samples, and 

proteins were precipitated with 50 μl of acetone. After centrifugation (13,700 × g, 5 min), 

50 μl of methanol:chloroform (20:50) were added to the supernatant, and the samples were 

centrifuged (13,700 × g, 10 min). The upper layer was added to a glass tube and dried 

down for 90 min. The samples were then derivatized with 120 μl of 2,2,3,3,3-pentafluoro-1-

propanol and 130 μl of pentafluoropropionic anhydride at 75°C for 30 min, dried down and 

reconstituted in 50 μl of ethyl acetate. One μl was injected in the GC/MS (Notarangelo et al., 

2012).

For determination of kynurenine in maternal plasma, 25 μl of 6% perchloric acid were added 

to 100 μl of the sample. Precipitated proteins were removed by centrifugation (16,000 × g, 

10 min), and 20 μl of the resulting supernatant were injected to a 3 μm C18 reverse phase 

HPLC column (100 mm × 4 mm; Dr. Maisch GmbH), using a mobile phase containing 50 

mM sodium acetate and 6% acetonitrile (pH adjusted to 6.2 with glacial acetic acid) at a 

flow rate of 0.5 ml/min. Zinc acetate (0.5 M; not pH adjusted), was delivered post column 

by a peristaltic pump (Dionex AXP, Thermo Fisher) at a flow rate of 0.1 ml/min. In the 

eluate, kynurenine was detected fluorimetrically (excitation: 365 nm, emission: 480 nm; 

S200a fluorescence detector; Perkin Elmer).

Sex determination

Embryonic tissue was retained for determination of sex by genotyping, 

using primers specific to Jarid1 (5′-CTGAAGCTTTTGGCTTTGAG-3′ and 5′-
CCGCTGCCAAATTCTTTGG-3′; Invitrogen, Carlsbad, CA, USA) as previously described 

(Clapcote & Roder, 2005). One or two male and female embryos per litter were used for the 

analyses.

Protein determination

Protein was determined according to Lowry et al. (Lowry et al., 1951), using bovine serum 

albumin as a standard.

Statistical analysis

All results are expressed as the mean ± SEM. Statistical analyses were performed with 

Graphpad Prism 9 (San Diego, CA, USA) and two-way ANOVA followed by Bonferroni’s 

post-hoc test was used to determine significance in all experiments. A p value of <0.05 was 

considered significant.
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Results

Acute effect of prenatal LPS treatment on maternal brain and plasma

To evaluate the effect of moderate immune activation on KP metabolites during pregnancy, 

mice received a single injection of 0.1 mg/kg LPS on GD15. Assessed 24 h later, 

this treatment did not influence maternal body weight or the number of embryos (data 

not shown), confirming that the dose of the endotoxin used does not affect pregnancy 

(Chlodzinska et al., 2011).

Kynurenine, KYNA, 3-HK and QUIN were analyzed in the maternal brain 4 and 24 h after 

LPS treatment (Figure 2). Kynurenine levels increased after 4 h (12.8 ± 0.3 vs. 7.4 ± 0.3 

pmol/mg protein in saline-treated mice; p < 0.05) but returned to control levels after 24 h 

(main effect of treatment: F(1,10) = 5.81, p < 0.05; interaction: F(1,10) = 6.17, p < 0.05). No 

significant changes in the maternal brain levels of 3-HK, KYNA or QUIN were observed 

at either time point, though the elevation in 3-HK (from 536.8 ± 29.9 in control mice to 

901.1 ± 157.6 fmol/mg protein) 4 h following LPS administration approached statistical 

significance (p = 0.07).

LPS treatment induced no significant changes in kynurenine levels in maternal plasma after 

either 4 or 24 h. In contrast, we observed significant increases in the circulating levels of 

both KYNA and 3-HK after 4 h (p < 0.05). Although the concentration of both metabolites 

tended to remain higher than endogenous levels after 24 h (main effect of treatment: F(1,10) 

= 10.54, p < 0.01 for KYNA; F(1,10) = 9.65, p < 0.05 for 3-HK), neither effect reached 

statistical significance after post-hoc analysis. No significant changes in QUIN levels were 

observed in maternal plasma at either timepoint (Figure 3).

Acute effects of prenatal LPS treatment on placenta and fetal brain

Prenatal LPS administration on GD 15 did not cause significant changes in the levels of 

kynurenine, KYNA, 3-HK or QUIN after 4 or 24 h in the placenta (Suppl. Figure 1).

However, prenatal LPS treatment affected KP metabolism in the fetal brain (Figure 4). 

Compared to the control group, the tissue levels of kynurenine were elevated after 4 h (p < 

0.01). A trend in the same direction was also seen at 24 h, although the effect did not reach 

statistical significance after post-hoc analysis (main effect of treatment: F(1,10) = 17.47, p < 

0.01). The levels of KYNA and 3-HK, too, increased 4 h after the administration of LPS (p 

< 0.01 and p<0.05, respectively), and trended back toward endogenous levels by 24 h (main 

effect of treatment: F(1,10) = 22.90, p < 0.001 for KYNA; F(1,10) = 15.19, p < 0.01 for 3-HK). 

No significant changes in QUIN levels were observed at either time point. Notably, prenatal 

LPS induced similar changes in the brain of male and female embryos (Suppl. Figure 2).

Long-term effects of prenatal LPS treatment and effects of an additional LPS challenge in 
adulthood

Body weight—The long-term effects of prenatal LPS administration were studied in 

separate cohorts of animals. Compared to control dams, treatment with 0.1 mg/kg LPS on 

GD 15 did not induce significant changes in maternal body weight until birth or alter the 
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number of pups (data not shown). Moreover, prenatal LPS treatment did not affect the body 

weight of the offspring at PND 1, 21 or 56 (data not shown).

To investigate if prenatal treatment altered the response to an acute LPS challenge in 

adulthood, we administered 0.1 or 1 mg/kg LPS to offspring of dams treated prenatally with 

saline (“prenatal saline”) or LPS (“prenatal LPS”). Irrespective of prenatal treatments, we 

observed a significant decrease in body weight in both male and female mice receiving 1 

mg/kg LPS 24 h later (p < 0.0001 and p < 0.01, respectively; Two-way Anova followed by 

Bonferroni’s post-hoc test). The lower dose of LPS (0.1 mg/kg) did not affect body weight 

in either group (data not shown).

KP metabolites in the brain—No significant differences in the basal brain tissue levels 

of kynurenine, KYNA, 3-HK or QUIN were seen between either male or female offspring 

of dams which had received saline or LPS injections on GD15 (Figures 5 and 6). Analysis 

of the effect of an i.p. injection of LPS in adulthood revealed a main effect of treatment 

(F(2,18) = 4.65, p < 0.05 for males; F(2,24) = 6.15, p < 0.01 for females), but no significant 

changes after post-hoc analysis in the tissue levels of kynurenine 24 h following the injection 

of either 0.1 or 1 mg/kg LPS. KYNA and QUIN levels remained unaffected 24 h after the 

acute administration of either dose of LPS. In the same tissues, 3-HK levels were found to 

increase significantly after the administration of 1 mg/kg (but not after 0.1 mg/kg) LPS in 

male (p < 0.001 and p < 0.0001) and female (both p < 0.0001) offspring of both “prenatal 

saline” and “prenatal LPS” animals. Interestingly, however, while no sex differences were 

observed for kynurenine, KYNA and QUIN, the acute LPS challenge in adulthood raised 

3-HK levels more in the brain of male than in female offspring of both “prenatal saline” and 

“prenatal LPS” dams (p < 0.001 and p < 0.0001, respectively). Importantly, no significant 

differences in the levels of any of the KP metabolites were seen between adult offspring of 

“prenatal saline” and “prenatal LPS” dams after the administration of either dose of LPS in 

adulthood.

Discussion

In light of increasing evidence supporting a role of the KP in the pathophysiology of 

schizophrenia and other psychiatric diseases (Bryleva & Brundin, 2017; Erhardt et al., 2017; 

Ogyu et al., 2018; Schwarcz et al., 2012; Zavitsanou et al., 2014) and the consensus that 

both prenatal infections and immune activation later in life are major risk factors in these 

disorders (Borrell et al., 2002; Brown, 2012; Conway & Brown, 2019; Kirkbride et al., 

2012; Rapoport et al., 2005; Stower, 2019), the present study was designed to provide 

translationally relevant new insights, using mice as the experimental animals. By measuring 

the levels of the key KP metabolites kynurenine, KYNA, 3-HK and QUIN, we first 

examined the short- and long-term effects of a single prenatal injection of the immunogen 

LPS on KP metabolism, and then investigated whether an additional LPS injection in the 

offspring of these prenatally treated animals has disproportionate, and possibly sex-specific, 

acute effects on cerebral KP metabolism. Applied at doses which are widely used in 

preclinical studies (Chlodzinska et al., 2011; Fricke et al., 2018), a single injection of LPS 

during pregnancy induced transient increases in the levels of kynurenine, KYNA and 3-HK 

– but not QUIN - in the fetal brain. However, this prenatal LPS treatment did not affect 
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basal KP metabolite levels and did not influence the response to a second LPS injection in 

the brain of the adult offspring, possibly due to a blunted immune response to the repeated 

stimulus, as previously observed (Clark, Notarangelo, et al., 2019). Interestingly, an acute 

challenge with LPS (1 mg/kg) in adulthood raised cerebral 3-HK levels significantly more in 

male than in female mice.

In experimental animals, systemic application of LPS or other immunostimulants rapidly 

promotes the formation of cytokines, which in turn activate IDO activity (Campbell et al., 

2014; Williams et al., 2017). In the present study, this effect likely accounted for the prompt, 

LPS-induced increase in cerebral kynurenine levels, and the rise in 3-HK and KYNA 

concentrations in the plasma, in the pregnant mouse following a single systemic injection 

of 0.1 mg/kg LPS on GD15. As the plasma levels of kynurenine, which readily enters the 

fetus from the maternal circulation (Goeden et al., 2017), did not change significantly in 

response to LPS, since KYNA does not cross the placental barrier (Goeden et al., 2017), and 

KP metabolites were not affected in the placenta (despite containing various KP enzymes 

(Manuelpillai et al., 2005; Murthi et al., 2017; Suzuki et al., 2001), the observed increase in 

the levels of these two metabolites in the fetal brain was probably due to local events within 
the fetus. Although controversial (Brown et al., 2019; Fricke et al., 2018), this may have 

involved the transfer of LPS itself into the embryo or, more likely, the trans-placental influx 

of LPS-induced maternal cytokines and the subsequent stimulation of fetal KP metabolism 

(Oskvig et al., 2012; Simoes et al., 2018; Williams et al., 2017). This would also explain 

the observed increase in 3-HK levels in the fetal brain, though enhanced influx from the 

maternal blood, where 3-HK was elevated following the LPS treatment, may have played 

a role as well (Goeden et al., 2017). The molecular dynamics of these processes, and the 

finding that QUIN levels in the fetal brain remained unaffected by LPS, clearly need to 

be elaborated in greater detail, keeping in mind qualitative differences in the regulation of 

cerebral KP metabolism at different stages of early development and lifespan (Gramsbergen 

et al., 1997; Notarangelo et al., 2019; Notarangelo & Pocivavsek, 2017; Walker et al., 1999). 

Moreover, brain cytokines were not measured in this study and further experiments are 

needed to clarify their specific relationship with KP metabolism activation and behavior.

In line with previous studies in mice, we observed a significant increase in brain 3-HK 

levels, but no changes in KYNA, after a single administration of LPS in adulthood (Larkin 

et al., 2016; Larsson et al., 2016; Walker et al., 2013). Moreover, as in the fetal brain, and 

possibly due to its rapid conversion to NAD+ (Moffett et al., 2020), LPS treatment did not 

raise brain QUIN levels acutely in the adult animals, as also previously reported (Clark, 

Notarangelo, et al., 2019). However, in contrast to other reports, and possibly related to 

strain differences, the serotype of the LPS used, and/or the fact that only a single timepoint 

(24 h) following LPS administration was examined (Migale et al., 2015; Murakami & Saito, 

2013; Parrott et al., 2016; Piirsalu et al., 2020), only a non-significant trend toward elevated 

kynurenine levels was detected. Also of possible relevance in this context, the effect of 

systemically applied LPS on KP metabolites differs at various doses and between brain 

regions (Parrott et al., 2016; Tao et al., 2020). These variables should be evaluated to fully 

characterize the role of altered KP metabolism on cognitive function and kept in mind in 

the design of follow-up studies exploring the role of KP-related redox processes (Gonzalez 

Esquivel et al., 2017) and the formation of the neuroactive downstream KP metabolites 
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xanthurenic acid and cinnabarinic acid (Fazio et al., 2017), which were not examined in 

the present study. Moreover, genetic vulnerability should be considered (Beggiato et al., 

2018), and repeated or chronic immune activation either during pregnancy or later in life, 

too, may have functionally relevant, detrimental impacts on brain KP metabolism (Larsson 

et al., 2016; Saito et al., 1992).

These considerations could also be relevant for explaining the significantly larger increase 

in brain 3-HK levels that we observed in male compared to female animals. Though sex 

differences in LPS-induced immune responses and behavior have been documented in 

rodents (Cai et al., 2016; Chlodzinska et al., 2011; Foley et al., 2015; Kuo, 2016), it is 

worth noting that links to cerebral KP metabolism have so far been predominantly examined 

in males (Larkin et al., 2016; Larsson et al., 2016; Tao et al., 2020; Walker et al., 2013), and 

that greater effects of immune activation in male mice (Cai et al., 2016; Kuo, 2016) may be 

related to the fact that females are more resilient due to the modulating effect of estrogen on 

cytokine gene expression (Dimayuga et al., 2005).

Our study design was based on – and is in line with – an extensive body of literature 

separately linking immune changes or abnormal KP metabolism during the prenatal period 

with adverse consequences in adulthood (Haddad et al., 2020; Notarangelo & Pocivavsek, 

2017). Specifically, and in accordance with the popular “two-hit” hypothesis of psychiatric 

disorders (Maynard et al., 2001), our goal here was to evaluate the relationship between 

these two phenomena by focusing on acute immune-stimulations and their short-term effects 

on KP metabolism. In this context, we were especially interested in a possible role of 

KYNA, an established neuromodulator, which can inhibit α7nACh and NMDA receptor 

function in the adult brain (Pocivavsek et al., 2016) and has been shown to significantly 

affect progenitor cell proliferation, differentiation, and survival of human cortical cells 

(Bagasrawala et al., 2016). Thus, acute prenatal elevation in KYNA levels can apparently 

affect normal brain development and, consequently, influence behavior later in life. Notably, 

even the normal, i.e. endogenous, brain concentration of KYNA, like that of several 

other KP metabolites, is substantially higher prenatally than postnatally (Beal et al., 1992; 

Beggiato et al., 2018; Cannazza et al., 2001; Ceresoli-Borroni & Schwarcz, 2001; Walker 

et al., 1999), and the fetal brain produces more KYNA from kynurenine than the maternal 

brain under ex vivo conditions (Notarangelo et al., 2019). Of special interest in the context 

of dysfunctions triggered by prenatal immune activation, the α7nACh receptor agonist 
choline (Albuquerque et al., 1998; Alkondon et al., 1999; Fayuk & Yakel, 2004), possibly 

by counteracting the adverse consequences of enhanced KYNA inhibition of this receptor, 

attenuates the undesirable long-term effects of maternal immune activation on anxiety- and 

cognitive-related behaviors in adulthood (Wu et al., 2015). Finally, and further supporting 

a physiological role of endogenous KYNA in brain development, KYNA’s synthesizing 

enzyme kynurenine aminotransferase II (Figure 1) is highly expressed in the germinal zones 

(Csillik et al., 2002; Song et al., 2018) and mediates oligodendrogenesis as well as cell 

proliferation in the subventricular zone (Clark, Mou, et al., 2019).

Like acute prenatal immune activation (see Introduction), experimentally induced increases 

in the levels of KP metabolites in the fetal brain have been consistently shown to be 

associated with dysfunctions later in life. These impairments, which include abnormalities 
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in synaptic transmission, imbalanced neurotransmitter functions and several translationally 

relevant behavioral deficits (Alexander et al., 2013; Forrest, Khalil, Pisar, Darlington, et 

al., 2013; Forrest, Khalil, Pisar, McNair, et al., 2013; Khalil et al., 2014; Pershing et al., 

2015; Pisar et al., 2014; Pocivavsek et al., 2014), may increase the risk of the offspring for 

developing major psychiatric disorders, including depression and schizophrenia.

The present results show that brief, transient maternal immune activation, while stimulating 

KP metabolism in the fetal brain significantly and rapidly, does not cause long-lasting 

changes in cerebral KP metabolism or disproportionate acute vulnerability of cerebral KP 

metabolism to a second immune challenge. Similar conclusions were recently drawn from 

experiments using prenatal treatment with poly I:C, a classic experimental tool for studying 

translationally relevant long-term effects of immune dysfunctions during pregnancy (Clark, 

Notarangelo, et al., 2019; Estes et al., 2020; Haddad et al., 2020).
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Figure 1: 
The kynurenine pathway of tryptophan degradation
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Figure 2: 
KP metabolite levels in the maternal brain 4 and 24 h after saline or LPS administration (0.1 

mg/kg, i.p.) on GD15. Data are the mean ± SEM (n = 3–4). * p < 0.05 (two-way Anova, 

followed by Bonferroni’s post-hoc test).
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Figure 3: 
KP metabolite levels in the maternal plasma 4 and 24 h after saline or LPS administration 

(0.1 mg/kg, i.p.) on GD15. Data are the mean ± SEM (n = 3–4). * p < 0.05 (two-way Anova, 

followed by Bonferroni’s post-hoc test).
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Figure 4: 
KP metabolite levels in the fetal brain 4 and 24 h after saline or LPS administration (0.1 

mg/kg, i.p.) on GD15. Data are the mean ± SEM (n = 3–4). * p < 0.05, ** p < 0.01 (two-way 

Anova, followed by Bonferroni’s post-hoc test).
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Figure 5: 
Brain kynurenine and KYNA levels in male (black) and female (grey) offspring of dams 

treated prenatally with saline or LPS 24 h after an injection of saline or LPS (0.1 or 1 mg/kg 

i.p.) in adulthood. See text for experimental details. Data are the mean ± SEM (n = 3–8).
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Figure 6: 
Brain 3-HK and QUIN levels in male (black) and female (gray) offspring of dams treated 

prenatally with saline or LPS 24 h after an injection of saline or LPS (0.1 or 1 mg/kg i.p.) 

in adulthood. See text for experimental details. Data are the mean ± SEM (n = 3–8). *** p < 

0.001, **** p < 0.0001 (two-way Anova, followed by Bonferroni’s post-hoc test).
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