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Abstract

The morphological plasticity of microglia has fascinated neuroscientists for 100 years. Attempts to
classify functional phenotypes are hampered by similarities between endogenous brain microglia
and peripheral myeloid cells that can enter the brain under pathological conditions. Recent
advances in single cell -omic methodologies have led to an explosion of data regarding gene
expression in microglia. Herein, we review the diversity of microglial phenotypes in healthy brain,
aging and Alzheimer’s disease, identify knowledge gaps in the body of evidence and suggest

areas where new knowledge would be useful. Data from human samples and mouse models are
compared and contrasted. Understanding the molecular complexity of the microglial response
repertoire will suggest new avenues for therapeutic treatments in Alzheimer’s disease.
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INTRODUCTION

Identification of Microglia

Discrimination of microglia, the resident immune cells of the brain, from other myeloid

cells biochemically has been challenging historically. Initially this was thought to represent
common mesodermal embryonic origins. However, fate mapping in mice has shown

that microglia originate from erythromyeloid progenitors from the yolk sac in a Pu.1
(transcription factor) and Irf (interferon regulatory factor)-8-dependent and Myb (proto-
oncogene transcriptional factor)-independent mannerl-2, with Tgfb1 expression essential for
microglial development and maintenance. The original identification of microglia was based
on morphology after silver stains of brain sections3 and electron microscopy?. Cellular stains
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based on cell surface markers revealed that microglia and myeloid cells of the monocyte/
macrophage lineage share many of the same phenotypic markers. Functional similarities
between microglia and other myeloid cells such as phagocytosis may underlie these
similarities in marker expression®. Attempts to identify markers to discriminate microglia
from myeloid cells have been intense since at least the 1980s. Ibal, F4/80 and Cd-68

(ED-1) were are all markers originally believed to be macrophage specific, but were later
shown to stain microglia®’. By analogy with polarization of T cell or macrophage activation
responses, attempts to classify the types of up-regulated proteins and their functions along
two general pathways termed pro-inflammatory or M1 vs anti-inflammatory or M2 sparked
significant research effort®. Refinement of this schema included subtypes of M2 activation
patterns and recognition that multi-dimensional activation occurred, with M1 and M2
representing the most widely divergent responses along a continuum. The utility of the
M1/M2 classification has been questioned because it fails to capture the complexity of
microglial responses to aging, injury and disease, and because single stimuli can induce both
M1 and M2 responses®.

Some success in discriminating brain myeloid populations was obtained using markers with
different magnitudes of expression. Staining for Cx3crl (Cx3c chemokine receptor 1) is
more intense on microglial cells compared with myeloid cells, while Cd45 is more intense
on myeloid cells1%, Microglia can be identified using flow cytometry as Cx3cr1+/Cd45 low
or moderate, while myeloid cells are generally Cx3crl low or negative/Cd45 high. However,
these low vs high staining intensities are difficult or impossible to discriminate on tissue
sections with traditional immunostaining methods. Fluorescent reporter mice were generated
using some of these markers, such as Cx3cr1-GFP to label microglial! and Ccr2 (chemokine
receptor 2)-RFP to label peripheral monocyte/myeloid cells'2. While these mice have been
useful for elucidating roles of different cell populations, it is clear that the markers are
expressed in multiple cell populations'3. Finally, peripheral monocytes and/or macrophages
infiltrating into the brain are reported to adopt expression of microglial selective genes®.
These factors complicate interpretation of central vs peripheral contributions to brain
myeloid cell populations.

Isolation of Microglia and Profiling Methodology

Two recent advances appear to have solved these difficulties. First, mechanical and/or
enzymatic methods to dissociate adult brain into intact cells or nuclei have been
developed4. Dissociation of intact cells requires unfrozen, unfixed (fresh) tissue, but intact
nuclei can be obtained from frozen tissue. Once isolated, dissociated cells may be selected
or sorted based on expression of cell surface molecules. Microglia have been selected or
sorted based primarily on Cd11b or Cx3crl expression to datel>17. Positive cell selection
utilizes cell surface protein immunostaining to couple antigen expression with magnetic
beads, retention of cells in a column under a strong magnetic field, followed by release

of cells after removing columns from the magnetic field. A wide variety of products for
dissociation, positive and negative selection are available from multiple companies. Cell
sorting requires immunostaining cell populations with fluorescently tagged antibodies and a
sorting instrument. Most universities and research centers operate core facilities with sorting
capacity based on multiple fluors and options, but bench-top instruments are available
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also. Transcriptomic, proteomic or single cell RNA sequencing (RNAseq) techniques may
be applied to the sorted or unsorted cells (Table 1). Some caveats about the populations

of cells/nuclei that result should be mentioned. First, neurons with large processes and
complex morphology, such as pyramidal neurons, are damaged by physical dissociation
methods, so recovered populations of neurons probably over-represent smaller neuronal
morphologies. Isolation of nuclei circumvents this problem. Comparative cell vsnuclear
single cell RNAseq studies report similar transcript identification, although the nuclear RNA
includes more pre-processed, unspliced sequences819. On the other hand, the small size of
microglial nuclei makes it challenging to discriminate them from debris and cell fragments.
It is also conceivable that cells or nuclei already damaged by aging or disease are less likely
to be physically isolated in these methodologies.

Transcriptomics methodologies using these cell/nuclei separation techniques have been
booming in the last 2 years with the ultimate aim to decipher cell behavior using single-
cell RNA sequencing and network analyses. Mouse and human data have identified

many microglial and inflammatory genes associated with AR plaques, but also with tau
protein, underscoring the significance of genes associated with innate immunity as risk
factors for late-onset AD. By comparing expression changes identified in whole (bulk)
homogenates to previously published normative gene or protein expression in specific cell
types2021 gene expression can be attributed (imputed) to specific cell types. In this way,
changes in gene or gene set expression may be attributed to microglia if the markers

in question are known to arise from microglia. These types of analyses will continue

due to the large banks of existing archival Alzheimer tissue. However, single cell/nuclei
sequencing technologies are improving rapidly and will see increasing utilization in the
foreseeable future. Recently, spatial transcriptomics, cytometry by time of flight (CyTOF)
and multiplexed fluorescent in situ hybridization have emerged to correlate changes in gene
expression with neuropathology, allowing the identification of different cell populations and
brain regions susceptible to neurodegeneration.

In this paper, we review significant recent findings regarding phenotypic diversity of
microglial cells in healthy, aging and Alzheimer’s disease (AD) brain. Attempts to review
this field are challenging due the rapid release of large data sets. This article will highlight
similarities and differences between human and mouse studies. By understanding the state of
knowledge in the field, major gaps will be elucidated, allowing development of a roadmap
for directing future work.

“HOMEOSTATIC” MICROGLIA

Differentially Expressed Genes in Microglia: Species and Region Effects

Microarray and single cell RNA sequencing experiments have revealed that microglia are
defined by a unique molecular signature, known as their homeostatic signature, which is
driven by the expression of the transforming growth factor (Tgf)-p1 cytokine?2. Numerous
transcriptomic studies on isolated murine cells have identified genes specifically associated
with microglia when compared to other cell populations of the brain, myeloid cells or
peripheral macrophages consistent with a homeostatic signature of microglia (Table 2). The
Immunological Genome (ImmGen) consortium revealed 65 mRNA transcripts increased by
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five-fold or more in microglia relative to macrophage populations, with an additional of

13 mRNA transcripts encoding transcription factors up-regulated by twofold or more23.
This study identified Sig/ech (sialic acid-binding immunoglobulin-type lectin) and Cx3cr1
as selectively present in microglia. The selectivity of Cx3cr1 was called into question

as its expression has been observed on monocytes, macrophages, dendritic cells, T cells,
and natural killer (NK) cells24. However, Cx3cr1 is clearly enriched in murine and

human microglia2>26, In a whole mouse brain transcriptome study, 29 genes specifically
distinguished microglia relative to both CNS cell types and other myeloid populations, with
the most specific microglial genes being O/fm/3 (olfactomedin-like protein 3), 7mem119
(transmembrane protein 119) and Siglec/?’. Seven genes, Tmem119, Fecrls (Fc receptor-
like molecule), P2ry12 (chemoreceptor for adenosine diphosphate), P2ry13, Gpr34, Gpr&4
and //1awere identified as highly expressed and enriched in microglia, with 7mem119
found to be microglia-specific in both mouse and human?®. Interestingly, a study identified
specific microglial genes associated with surface molecules “surfaceome” which included
ion transporters, molecules involved in lipid metabolism, a potential efflux marker, the
co-stimulatory molecule CD40 and non-fully characterised surface markers2?, whereas
another group highlighted genes that constitute the microglial sensing apparatus known as
the “sensome”30, A meta-analysis of 5 datasets revealed 143 genes enriched in microglia
relative to macrophages, including P2ry12, Tmem119, Slc2a5and Fcris?®.

Despite differences in methodology and source of microglia between these experimental
studies, 17 genes were repetitively identified associated with microglia, with the transcripts
classified into purinergic receptors (P2ry12, P2ry13, Adora3, Gpr34, Entpdl); cytokines and
chemokines or their receptors (7gforl, Cx3crl1, Ccrl2); Fc receptors (Fcrls); endogenous
ligands, receptors and transporters (Siglech, Gpr84, Slcod4al, Hexb); potential sensome
proteins (7mem119), developmental proteins (O/fml3, SallZ) and some with unknown
function (Csmd3). In contrast, genes associated with non-microglial myeloid cells in

brain include CD14, Fegrl, Mertk, Ctsdand Fert28L, while genes selective for peripheral
macrophages include Emilin2, Gda, Hpand SelP> or Fnl, Cxcl13and Ednrt®?. The markers
typically used for immunohistochemical identification of microglia, including A/fZ (1bal)
and Cd68(Cd68), are generally poor at discriminating microglia from myeloid cells23:25,
Proteomic confirmation of microglial specific markers includes P2ry12, Tmem119, Fcrls
and Slc2a5%°. These proteins are predicted to be expressed on the microglial cell surface,

so future studies could select or sort microglia based on markers more specific than

Cd11b or Cx3crl to identify novel patterns of co-regulated gene expression. Similarly, a
number of putative microglial genes identified in mouse models were confirmed at the gene
and/or protein level in humans such as TMEM119, P2RY12, CX3CR1, CCR2 and Fcy
receptors1516.22,28.33-38 ' AJthough similarities in homeostatic gene constituents were noted
above, different groups find different numbers of genes in the homeostatic panel.

Microglia in different brain regions vary in gene expression, especially in genes associated
with bioenergetic pathways and immunoregulatory pathways. Microglia from cerebellum
and to a lesser extent hippocampus appear to exist in a more “immune vigilant” state
compared with microglia from cerebral cortex or striatum3°. Similarly, sex differences have
been reported in both mouse and human%-43. Consequently, the homeostatic signature may
be modulated by many biological variables. Additional confirmation and harmonization of
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a panel of genes accepted by multiple investigators would help to define this population in
more detail.

Homeostatic Microglial Subpopulations

Identification of a set of genes exclusively expressed in microglia has allowed
unprecedented discrimination of cellular responses of peripheral myeloid cells and central
microglia that was not possible a decade ago. However, emerging evidence suggests
considerable diversity even within homeostatic microglia that remains to be elucidated
and harmonized. T-distributed stochastic neighbor embedding (t-SNE) analyses allow
clustering of cells based on gene expression similarities among individual cells of a
population. Phenotypic diversity of microglia revealed by these recent analyses suggests
the presence of several microglial populations within the same brain in physiological
conditions in both rodents and humans. However, naming standards have not developed,
so clusters are given random numbers or color discriminations that vary between groups,
publications and analysis packages. Therefore, a consensus has not formed regarding

the classification of microglial subtypes nor the gene sets that would unambiguously
define these subpopulations. Clusters range from 44 to 1526 microglial clusters using
different models and analyses. Nine microglial subtypes, based on their gene expression
profiles, were identified from microglia sourced from 15 donors who underwent surgery
for tumor or epilepsy?8. Single-cell RNAseq and mass cytometry revealed differences
across the transcriptional spectrum of microglia with a core set of homeostatic genes such
as TMEM119, CX3CRI1, CSFR1, PZRY12, P2RY13, SELPL G (P-selectin glycoprotein
ligand-1) and MARCKS (myristoylated alanine-rich C-kinase substrate) expressed by

all microglial populations. These different clusters reflected microglial populations with
subtypes characterised by: major histocompatibility (MHC) class Il and antiviral immunity
genes HLA-DRA (human leucocyte antigen), CD74 and /F/44L (interferon induced
protein 44 like); integrin receptor binding protein and metabolism genes, SPPI (secreted
phosphoprotein 1, also known as osteopontin), APOE (apolipoprotein E) and LPL
(lipoprotein lipase); and chemokines and pro-inflammatory cytokines genes such as CCL2
(chemokine C-C motif ligand 2) and /L 1B (interleukin 1B)26. Interestingly, using several
antibodies against myeloid markers, distinction between grey vswhite matter microglia
was observed. Despite the presence of a common core signature for grey and white matter
microglia comprising P2RY12, TMEM119, ADGRGI, P2RY13, SLC2A5and GRP34,
grey matter microglia expressed higher levels of homeostatic proteins, while microglia
isolated from the white matter tended to be more involved in antigen presentation (MHCII
genes), inflammation and lipid metabolism (APOE)28. Another study combined antibody
detection followed by mass spectrometry analysis on isolated microglia from post-mortem
tissue. This methodology allows identification of microglial phenotypes based on protein
rather than gene expression. This confirmed the phenotypic homeostatic signature of
microglia as previously reported in mice and human transcriptomic studies with P2RY 12
and TMEM119 markers*®. The findings were also consistent with both proteins specific
to microglia, distinguishing these cells from other myeloid cells. Of note, the authors
identified four subsets of microglial phenotype distributed differently between brain areas.
Subset 1, characterised by higher expression of activation markers CD11C, CCR5, CD45,
FCGRI (CD64), CD68, CX3CR1, EMR1 (EGF-like module-containing mucin-like hormone
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receptor-like 1) and HLA-DR, was mainly present in the subventricular zone and thalamus.
High levels of proliferation markers (cyclin A, cyclin B1 and KI67) were associated with
subset 1, implying a more activated, potentially primed, microglial phenotype. Subsets 2
and 3 were mainly detected in frontal and temporal cortical regions, with remarkably,

both phenotypes associated with expression of the mannose receptor CD206, a known
perivascular macrophage marker#4. Subset 4 was the most challenging to detect, being

less abundant than the other subsets, but was more prominent in temporal than in frontal
cortex®. Similarly, another group identified regional phenotypic signatures of microglia
within the human brain, in line with mouse and human studies34:3%, Single cell RNAseq
performed on CD45+ FACS-sorted cells revealed the presence of 4 major microglial
clusters in healthy human brain from resected tissue without evidence of pathology*5,

with some of their findings overlapping the gene expression the same group identified

in adult mouse microglia. Clusters 1 and 2 were characterised by the expression of

CST3 (cystatin C protein) and the purinergic receptor P2RY13, while cluster 4 displayed
expression of chemokines (CCL4, CCL2), zinc transcription factors (EGR2, EGR3)and

a marker of mature dendritic cells (CD83). Interestingly these studies support evidence

for four microglial populations co-existing in the healthy brain, but their differential gene
expression muddles our understanding of microglia. To add to the complexity, another
group identified 14 clusters of microglia assumed to represent distinct states of the cells,
emphasizing the complement components as important effectors of microglia, (e.g. CIQA,
CI10B, C1QCand GPR34)*'. Interestingly in this paper, cluster 1 was present in all brains
and thus was considered as the homeostatic microglial cluster, while clusters detected only
in the older individuals were associated with an interferon response, in accordance with the
expression of more inflammatory genes with aging (see below). At the present time, it is
not known whether these microglia subtypes represent true subpopulations or phenotypic
diversity. Clustering analyses effectively discriminate populations that are highly divergent,
but appreciating gradual transitions is more challenging.

Comparison of Mouse and Human Data

Regulation of microglial homeostasis remains incompletely understood, but knowledge
starts to emerge, mainly from mouse studies. Overall, gene co-expression analysis confirmed
that microglia transmit “resting” signals to neurons via Cx3Cr1, Trem2 and Tyrobp initiate
phagocytosis, purinergic receptors P2RY x signal neuronal injury, and Csfrl induces cell
survival or proliferation#®. This remains to be determined in humans at the protein level for
some of the genes*?, as methodology used to isolate microglia can impact expression of their
transcriptome®0. Although many homeostatic genes are conserved across species, as many
as 50% of the genes may vary in mice vs humans, with human specific homeostatic genes
including APOC1, MP2L 1, SORL 1, CD58, ERAP2, GNLY and S100A12%. Discrepancies
could be due to the source of the human tissue (resected tissue from surgery vs. autopsy
brain), methodology applied to isolate and analyse microglia (mixed populations composed
of microglia, perivascular macrophages, meningeal macrophages, monocytes), brain region
investigated (cortex, hippocampus, grey/white matter) and/or clinical information not always
reported such as the age of the patients, post-mortem delay, cause of death, and the presence
of comorbidities or treatment. All these different elements add to the challenges in getting a
clear consensus of the microglia landscape in healthy conditions.
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Nonetheless, a consensus is emerging to acknowledge regional microglial heterogeneity and
phenotypes. It is recognised that microglia adapt to their environment8, potentially providing
an explanation for the different microglial populations detected. However, the environmental
culprit behind the regional phenotypes, and as a consequence, their significance remains
unclear. Could they be explained by highly specialised functions performed by the neurons
in selected brain regions? Could these populations reflect different functions of microglia
within the same brain? Indeed, microglia express receptors for most of the neurotransmitters,
and thus responses to a specific neurotransmitter might direct microglial function and
transcriptomic expression, adding to their heterogeneity®2. Do the grey vswhite microglia
originate from the same pool? It remains controversial whether myeloid cells that are
recruited to brain in response to injury or disease can acquire expression of microglial
selective genes®22, Nevertheless, these disparities could have implications regarding brain
vulnerability in the context of neurodegenerative diseases in brain areas prone to pathology
development and/or neurodegeneration.

“AGED” MICROGLIA

Homeostatic Genes

Reduced expression of homeostatic genes during aging is reported by multiple, but not all,
authors (Table 3). Note that this reduction is not accompanied by increased gene expression
of macrophage selective genes3?. Genes identified as belonging to the TGF signaling
pathway were down-regulated in aged human microglia, highlighting perturbation of
microglial homeostasis in response to aging3®. Similarly, genes involved in early microglial
development (RUNXI, IRFS8, and PUI1)were also identified as master regulators for an
age-dependent microglia module, implying a role for them in microglial homeostasis during
aging“8.

Genes Associated with Primed Microglia

Cognitive performance of aged relative to younger mice is impaired in association with
pro-inflammatory transcriptomic and microglial changes, and studies on isolated microglia
indicate an exacerbated pro-inflammatory state®3:54, Experimental evidence suggests that
microglia undergo priming during aging, defined as an exacerbated microglial response
induced by an acute inflammatory stimulus on microglia already in an activated status
caused by repetitive inflammatory stimuli®>56, Importantly, the priming stimulus is critical;
microglia in aged mice responded to the cytokines Tnfa + II1p+ 1112 with larger gene
inductions than did young mice, but responses to the anti-inflammatory cytokines 114+ 1113
were lost with aging®’. In a study of microglial depletion and repopulation with new and
unprimed microglia in aged mice (16-18 months old), expression of 127 genes normally
modified with age were reversed following microglial repopulation, with no difference
from the adult control mice®8. These included the age-associated increased genes A2m,
Apoe, Bmpé, Olrl, Sorll, and Tgfb2i, or decreased genes Cdknla, DenndZc, and Socs3.
Interestingly, the age-associated inflammatory profile of microglia (C3, Clec7a, 1fi44l, 1115,
111, Mrel, TIr8) was not affected by the microglial depletion and repopulation. Gene
expression changes in this category were closer to the adult control mice but not fully
restored. Indeed, the response by the new microglia to inflammatory challenge was still

Alzheimers Dement. Author manuscript; available in PMC 2023 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Boche and Gordon

Page 8

higher than compared to adult mice (6-8 weeks old), associated with a primed profile. This
study emphasized that the microenvironment influences microglial profile®8. Successive
immune stimuli may result in immune memory with microglia reprogramming, which
predisposes the cells to either an exaggerated (primed) or absence (tolerant) response to
inflammatory stimuli®9:60,

Several reports highlight age-related increases in genes associated with innate immune
activation in microglia in both mouse and human (Table 3). Analysis of gene expression
profiles of immune- and inflammation-related genes conducted across a range of ages in
normal and AD human brain found that the major changes in gene expression occurred
during the course of cognitively normal aging (64 to 84% of the immune genes, depending
on the region) rather than in AD (6% of the genes altered in AD relative to age-matched
controls)#C. Changes were associated with up-regulation of genes reflecting microglial
activation including: (i) the complement components CIQA, C1QB, C1QC, C1S, C3, C3a
receptor 1 (C3ARI), C4a, C4B, C5, C5a receptor 1 (C5ARI); (ii) factors modulating
complement activation [factor H (CFH), CFH-related 1 (CFHRI) and CLU (Clusterin; a
risk factor for AD)]; (iii) Toll-like receptors 7LR1, TLR2, TLR4, TLR5, TLR7, TLR8and
MYDB8E8 with some regional variation; (iv) inflammasome-related genes such as CASPI
(caspase-1), /L1B, IL18, but not NRLP3or PYCARD (ASC protein); (v) Fcry receptors
CD64, CD32, CD16and FCER1A (Fc fragment of IgE receptor for alpha polypeptide); and
(vi) up-regulation of the classical MHC Class | and 11 genes, but also of the non-classical
MHC Class I, interpreted as an inhibitory feedback to down-regulate microglial activation0.
A study from a different group observed that aged microglia (subjects >50 years old)
expressed increases in a number of inflammatory genes with low CX3CR1 and high
expression of integrin receptor-binding protein and metabolism genes such as SPP1, APOE
and LPL25. Reductions in genes associated with anti-inflammatory M2 microglial profiles
(/GF1, PDGFB, PDGFC, TGFB1, CCL13 CCL14, CCL17, CCL22, CCL23, CCL24,
CCL26, FN1, ILIRN, RETNLB) were also observed, consistent with a switch towards

a more pro-inflammatory profile of microglia during aging*®. Of note, these changes

were observed mainly in the early adult lifespan (<50 years old). Chemokine ligands and
receptors presented disparate results, with CCR1, CXCL5and CXCL16 genes up-regulated,
while CXCL12and CXCL 14 gene expression decreased with aging. CD163 gene, the
haptoglobin-hemoglobin receptor, was up-regulated in aging. Interestingly, while CD163
protein is specifically expressed by macrophages normally, microglia presented CD163

in the presence of hemoglobin in the parenchyma as observed after blood-brain barrier
breakdown®2, Therefore, CD163 expression could reflect blood-brain barrier dysfunction
with aging and/or the impact of systemic immunity on the brain. This supports evidence
from animal studies that age per se predisposes to inflammation, a concept that has

been coined “inflammaging”®2, with up-regulation of the innate immune system, including
genes coding for inflammasome signaling, Fc-gamma receptors and HLA. Therefore, this
concept resonates in the context of microglia, as demonstrated by altered mMRNA expression
of inflammation-related genes in middle-aged human and mouse brain®, and could be
considered a phenomenon associated with “normal” aging.
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Genes Associated with Pathogen Recognition, Motility and Phagocytosis

Changes in sensome transcripts with aging in mice included down-regulation for
endogenous ligand recognition (most notably changes in P2ry12, P2ry13, Adora3, TremZ,
Siglech, Dap12, Ccr5, and Ifngrl) and up-regulation for the ligands involved in microbe
recognition and host defense (7/r2, Cd74, Ltf, Clec7a, Cacl16, and /fitm family), with

an overall shift towards an alternative neuroprotective priming state30. The sensing genes
involved in phagocytosis (Cd11b, Cd14, Cd68 and Icam) as well as in sensing microbial
ligands were not affected, suggesting that microglia properties in clearing endogenous
debris/pathogens are not altered by aging. The gene expression profile of purified microglia
from aged human post-mortem parietal cortex identified changes in cell adhesion molecules
and cell surface receptors (/ICAM3, ROBOZ, SEMAS3C, SEMA7A), genes involved

in actin cytoskeleton dynamics (7LN1, PFN1, EVL, ARPCIA, ARPCIB, COROIA,
CAP1, CTNNA2) and sensome genes (P2RY12, IL6R, TLR10), implying diminished cell
motility’6, an essential physiological function of homeostatic microglia®*. Genes with
higher expression during aging encompassed the integrin modulators DOCKI and DOCKS5,
the receptors CXCR4, CD163 and /GFZR, the growth factor VEGFA and the transcription
factor RUNX3. RNA expression was then confirmed at the protein level from isolated
human microglial®. Remarkably, these changes shared limited overlap with the microglial
genes regulated during aging in mice. Only 14 increased (e.g. CXCR4, VGFA, TNFAIPZ,
GP2) and nine decreased (e.g. £7S1, SEMA7ZA, MRCZ2, PSTPIP1, EMPZ)in both species.
Lack of concordance between mice and humans could be explained by intrinsic differences
between species, but also by differences in life duration and the presence of infectious
events affecting microglia in humans leading to immune memory compared to the specific
pathogen free environment of animal houses.

Other Pathways and Risk Factors for Alzheimer’s Disease

Analysis of three independent microarray gene expression data sets from human post-
mortem frontal cortex tissue were used to generate gene co-expression modules. Within

the microglial module, decrease was reported as an age-related effect for surface receptors
associated with neuron crosstalk (e.g. CX3CRI1, P2RY12, TREMZ, TYROBP) and TLRs*S,
Although reduced CX3CR1 was also reported by other investigators2®, Cribbs et al*0
reported that CX3CR1 was not altered with aging, but its ligand fractalkine (CX3CL 1) was
down-regulated, suggesting a disrupted/malfunctioning communication of microglia with
neurons, promoting microglia to respond excessively to environmental changes associated
with aging. A recent study investigating the transcriptomic atlas of aging human microglia
from the frontal cortex from 10 participants of two prospective studies of aging (> 50

years old, mean at death 95 years old) identified 1054 microglia enriched-genes revealing
pathways associated with DNA damage, telomere maintenance, phagocytosis and TGFp
signaling as part of the aged human microglial signature36. The data were confirmed by

a proteomic profile consisting of 640 proteins and consistent with the transcriptome. This
study indicates that microglial aging manifests as both loss of function and gain of function
changes given a unique aged-related microglia phenotype3®. Notably, the identified profile
of aged microglia was enriched in susceptibility genes for AD but interestingly, independent
from the main risk factor APOEA4.
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Overall, the studies are consistent with microglial profile modified with aging towards an
increase in baseline inflammation, in both mice and humans despite some contradictions in
human studies. Gene changes consistent with reduced motility, phagocytosis and beneficial
neuron cross talk are reported. In general, homeostatic genes appear reduced during aging.
Discrepancies are potentially explained by differences in the methods utilized due to the
availability of quality human tissue.

“ALZHEIMER’S” MICROGLIA
The DAM/MGNnD/ARM Phenotype in Mice

Several investigators reported changes in gene expression in transgenic mouse models
displaying Alzheimer-like amyloid pathology (Table 4); these cells were referred to as
disease associated microglia (DAMs)8, microglia associated with neurodegenerative disease
(MGND)5 or activated response microglia (ARM)?*2. These activated cell populations
increased in number with age, associated with reduced expression of homeostatic genes
such as Cx3crl, P2ry12, P2ry13, and Tmem119, along with increased expression of genes
associated with endocytosis, lysosomal/phagocytic pathways and regulation of immune
response such as Apoe, Clec7a, Spp1, and /tgax. Increased expression of Apoe specifically
in microglia is a key feature of the transition. Also notable were changes in gene expression
for multiple other genes affecting immune function identified by GWAS that are associated
with risk of late onset AD, such as Sig/ech (possibly an ortholog of CD33 in humans),
TremZ2and Binl. This pattern of gene expression changes does not recapitulate microglial
gene expression changes in response to lipopolysaccharide (LPS)*6. Notably, 7rem2,
Tyrobp, Ctsd and Hiflawere increased in the DAMSs but decreased after LPS. DAMSs

and MGnDs were localized to amyloid and neuritic plaques, respectively, in human AD
specimens. Conversion from the homeostatic to the DAM phenotype was attributed to a
two-step process, one of which was dependent upon Trem285. Although details of the
proposed mechanisms differ, changes in gene expression in response to amyloid deposition
depend strongly on 7rem2 expression38:66, Transition from homeostatic microglia to the
MGnD phenotype occurred after injection of apoptotic neurons into mouse brain through a
Trem2-ApoE-mediated mechanism® and ARMs cannot form in the absence of Apoe*2. A
recent review provides more details®’.

Studying amyloid (APPswe/PS L166P) and tau (Tau22) transgenic models driven by
the same Thy-1 promoter, Sierksma et al (2020)%8 argued that the transition from

the homeostatic to the DAM/MGnD/ARM signature depends on amyloid more than
tau. Amyloid-depositing mice displayed increases in 80% of microglial specific genes,
dysregulation in genes associated with GWAS identified risk factors and increased
prevalence of DAM/MGNnD/ARM. In contrast, tau mice displayed more limited gene
expression changes, primarily decreased expression of neuron specific genes. Thus, it
appears that microglia respond to amyloid with a consistent program of gene expression
changes, at least in mouse models. This conclusion resonates with data that microglia
express cell surface receptors allowing internalization of oligomeric and fibrillar AB%,
inducing production of cytokines’®. On the other hand, RNAseq on pooled isolated
microglia from a more severe tauopathy model (rTg4510) revealed up-regulation of many
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microglial genes associated with immune activation and GWAS identified risk factors,
including Apoe, Trem2, Clec7a, complement components and scavenger receptors’?.
Another technical challenge is the extraction of microglia clustered around A deposits
which may make them under-represented in the analyses.

However, conversion from the homeostatic to the activated phenotype does not appear

to be a stochastic process, but a continual one. Transition or intermediate populations

have been described. Subtypes of DAMs were suggested, with “proinflammatory” DAMs
identified by increased expression of Cad44, //11b, Nfkb, Statl and TIr2emerging earlier,

and “anti-inflammatory” DAMs identified by increased expression of Apoe, Atfl, CxcrA4,
lgf1and Lxra/b more prominent at later disease stages’2. The localization of DAMs/
MGnDs/ARMs to amyloid deposits suggests that this cell population is important for
Alzheimer’s etiology. An excellent review of DAMs’3 underscores the linkage between
gene expression changes in DAMs and multiple AD risk alleles to argue that the DAM
phenotype reduces Alzheimer pathology. However, DAMs/MGnDs/ARMSs have now been
identified in normal aging and many neurodegenerative disease models, suggesting that this
phenotype is not uniquely associated with AD. Because sporadic AD affects individuals
late in life, there could be no evolutionary natural selection pressure to shape microglial
reactivity to cope with Alzheimer-type neuropathology. On the other hand, synaptic pruning
of exuberantly produced synapses and neuronal number during development did shape
microglial functions. Consequently, it is not surprising that microglia can mount a general
response to neurodegeneration, that is not exquisitely tuned to respond directly to amyloid or
tau pathology’4.

Other subpopulations of activated microglia are also starting to be delineated. A meta-
analysis of microglia/myeloid cell profiles from different mouse models of diseases
(ischemic, infectious, inflammatory, tumor, demyelination and neurodegeneration) revealed
45 modules of co-regulated genes, which could be clustered into 7 prominent groupings
related to [1] microglial specific (homeostatic) genes, [2] proliferation (primarily in response
to tumor and virus) [3] core neurodegeneration, [4] interferon response, [5] endotoxin
response, [6] macrophage and [7] neutrophil/monocyte’®. These authors confirmed the
presence of DAMs in 5XFAD brains, demonstrating that DAMS increase expression of core
neurodegeneration module genes and decrease expression of homeostatic genes. Additional
clusters of microglia were detected, mainly associated with an interferon-related module,

a proliferation module and a module consisting of the immediate early genes Fosand
EgrI’>. The proliferation and interferon modules were also described by others#2:68.76,
Several investigators argue that these microglial subpopulations exist in all individuals,

but the relative sizes of the populations change as amyloid and tau pathology increase.
Consequently, they have chosen the ARM nomenclature to indicate an activation state

that is not necessarily disease specific. Others argue that the DAMSs are restricted to
pathological conditions®®:7>, The newer studies have examined more cells/reads so it is
possible that earlier studies missed rare populations. However, this important point needs
further attention. It is also not known whether conversion to the DAM/MGnD/ARM
phenotype is stable or if cells can shift from one cluster to another. Based on trajectory
analyses, Sala Frigerio et al (2019)#2 argue that homeostatic microglia transition to either the
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ARM or the interferon-related cluster (IRM), but one activation state does not transition to
the other.

Replication of these specific activation profiles in humans remains to be ascertained.
Friedman et al (2018)7° argue that the core neurodegeneration, LPS and neutrophil/
monocyte modules are increased in AD, but their data are based on bulk RNA measurements
with imputed microglial expression. The rapid proliferation of single nucleus RNAseq from
human specimens will be needed to answer this question definitively.

Human Studies—Transcriptomic analysis of nuclear RNA indicated that all major cell
types are affected at the transcriptional level by AD pathology38:76. Comparison of early
(pathology with no cognition problem) vs. no pathology subgroups revealed that large-scale
transcriptional changes occur before individuals develop severe pathological features and in
a similar pattern to those observed between the no-AD vs. AD pathology groups. A cell
population (Micl) was found with increased expression of AD risk genes (APOE, TREM?Z,
MEF2C, PICALM, HLA-DRBIand HLA-DRB5), many of them expressed in microglia,
and associated with AD pathology’6. The Mic1 microglial subpopulation was also distinct
from a population identified in aged microglia and thus appeared to be AD-specific’®.

Concordance between genes differentially expressed in human AD and the mouse DAM/
MGnD/ARM signature is poor. Only 28 of the 229 genes of the DAM profile were identified
in humans, including APOE, SPP1 and TYROBP, while 49 AD-associated genes were
specific to humans including complement components, HLA components and MS4A6A
(membrane spanning 4-domains A6A)76. The dichotomy between the mouse and human
data was consistent with another study investigating autosomal-dominant and sporadic
AD’. Similarly, although some DAM/MGnD/ARM profile genes were up-regulated in

AD dorsolateral prefrontal cortex (APOE, CD68, MHCII, TREMZ), others were not
changed ( 7YROBP), not detected (CST7) or even decreased (SPPI)38. Using CD11B to
select myeloid cells from post-morterm human brains, instead of exploring AD-associated
transcriptome in all brain cells, a similar lack of overlap with the DAM profile was
reported, with APOE being the only common gene significantly increased in humans,
maybe reflecting the difference in the innate immune response between humans and

mice’8. Human specific gene changes included up-regulation of PLXNCI (plexin C1),
TGFB1, ADAMS (disintegrin and metalloproteinase domain-containing protein 8) and
APOE, and down-regulation of SERPINFI (serpin family F member 1, also known as
pigment epithelium-derived factor [PEDF])”8 or up-regulation of A2M, CHI3L1, SORL 1,
and genes associated with iron homeostasis3®. In addition, none of the homeostatic
microglial genes (e.g. P2RY12, CX3CRI) were down-regulated’8 or were even increased

in AD (CX3CR1, IRF8, P2RY12, TMEM119)38. Instead, a human Alzheimer’s microglia
(HAM) population was defined’?, and included a mixture of age-associated gene expression
changes reported as “enhancing aging” (CECRZ2, IGSF10, HIST2HZBA, MOV10L 1,
PDCD6IPPZ, TLNZ, SELENBP1, MEIS1, TNFRRSF21, ZNF662, ASTNI, SERPINFI,
ZNF532, ANKRD26P3), consistent with previous studies'>16, and an age-independent

AD specific disease-related phenotype (ADAMTS13, ULK3, ZNF843, GYPC, APOE,
KCNJ5, SMAD?7, LSR, SLC38A7, STEAP3, ZNF703, TMISF1, CLDN15, ARSA, PTPRG,
ZNF696, TTYH3, ATOH8)'®.
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An important question in the field of AD, based on animal data, is whether the changes

in microglial profile detected in disease are specific to the disease pathogenesis or simply
reflect the ongoing neurodegeneration, and thus potentially common to neurodegenerative
diseases. A recent study evaluated protein co-expression modules in AD, frontotemporal
dementia-TDP43, progressive supranuclear palsy, corticobasal degeneration, Parkinson’s
disease, Parkinson’s disease dementia, amyotrophic lateral sclerosis, and multiple system
atrophy89. Three modules were detected specific to AD (synaptic processes, immune
response [astrocytes] and cell-cell interaction [microglia/endothelial cells]) and three other
modules associated with diagnosis independently of the disease (electron transport chain
[GABAergic neuron], MAPK signaling, protein localization and transport). Focusing on
the early (pathology with no cognitive problem) vs. late AD cases, up-regulation of

two glial modules was reported early in the disease: the immune response (astrocytes)

and cell-cell interaction (microglia/endothelial cells), consistent with the transcriptomic
analyses. These two modules, independently of the severity of the cases, were positively
associated with pathology, negatively correlated with cognitive status, and up-regulated in
all neurodegenerative conditions with dementia, but not in Parkinson’s disease, amyotrophic
lateral sclerosis and multiple system atrophy where dementia is not a key features.

A recent meta-analysis of coexpression network analysis of 9 human published datasets
highlighted the high variability within the human studies in terms of number of genes
identified, with no common genes detected8!! Using gene-coexpression based analysis, the
authors identified a core human microglial signature of 249 genes centered around CX3CRJ,
AlF1, and CSFR1, and containing APBB1/P (amyloid beta precursor protein binding family
B member 1 interacting protein), AB/3, FCERIG (high affinity IgE receptor), ARHGDIB
(rho GDP dissociation inhibitor beta), TLR signaling (7LR1, TLRZ2), complement pathway
(C3AR1, C1QA, C2), TYROBP signaling (TREMZ, TYROBP), cytoskeletal organization
(CAPG, WAS), and the homeostatic genes GPR34, PZRY 12, P2RY 13, and TMEM119.

In the context of AD, another set of 165 microglial-associated genes was identified co-
expressed with the core signature, related to cell activation, wound healing, angiogenesis,
apoptosis, and immune defense response. Taking in consideration publications on microglial
cell numbers and state activation (based on the vulnerability of the regions to aging and
AD), 52 genes were reported differentially expressed in AD vsage-matched controls,

when the younger cases were excluded (<60 years). These genes were related to cell
activation [PYCARD (ASC), PIK3CG], wound healing (A2M, SERPINGI), innate immune
response [ TLR5, ITGAM, PYCARD (ASC)], and pathways associated with phagocytosis,
TLR cascade, cell activation linked with neuronal survival and TYROBP signaling pathway
(SAMSNI, SIRPBZ, CD37, IL10RA, PIK3CG, and BIN2). Only 11 of the 52 genes were
microglia specific including LYZ (lysozyme), RPS6KAI, and SLA (Src like adaptor). The
homeostatic genes were down-regulated, consistent with the animal models, whereas other
genes were up-regulateds?.

Overall, the transcriptomic studies highlight that the underlying pathophysiological pathway
leading to AD appears to be different from the one associated with aging. A consensus has
not emerged delineating a microglial activation response specific to Alzheimer’s disease.
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CONCLUSIONS

Since the GWAS studies identifying microglia as a key component of disease onset and
progression in AD82786 technological advances have allowed recent single cell -omic
analyses of microglia under homeostatic conditions and with aging and AD-associated
pathology (Figure 1). Transcriptomic studies have identified a core signature of genes
specifically associated with non-activated microglia in the healthy brain. Despite surprising
heterogeneity, there are 7 genes that repeatedly appear in mouse microglia, including
Cx3crl, Gpr34, Gpr84, OIfml3, Salll, Siglech and Tmem119. Proteomic analyses have
confirmed only a small fraction of these markers (P2ry12, Tmem119, Fcrls and Slc2a5)2°.
Although some homeostatic genes are conserved across species (CX3CR1, TMEM119),
overall concordance is not high and there appear to be human-specific homeostatic genes
(APOC1, MP2L1, SORL1, CD58, ERAP2, GNLY and S100A12)°1. Aging is associated
with increased gene expression for genes associated with innate immune activation and
reduced gene profiles believed to underlie homeostatic functions, motility, phagocytosis and
neuronal “calming” signals. A gene expression pattern resulting from neurodegeneration
has emerged in mouse models with Alzheimer-like pathology, but a consensus has not yet
developed whether a specific gene set can identify Alzheimer’s disease associated microglia.
Gene expression changes responsible for morphological phenotypes remain elusive. It is not
known whether microglial phenotypes identified by transcriptomics can be accommodated
within the M1 vs M2 concept. Despite the amount of data generated from mouse and human
brains, these cells retain their mysteries.

Characterising the microglial phenotype in humans is challenging due to logistical (difficulty
in accessing healthy brain tissue) and technical (requirement for fresh tissue) methodology.
Transcriptomic and epigenetics have been performed on isolated human microglia sourced
from either resected brain tissue for treatment of epilepsy, brain tumors, multiple sclerosis,
or acute ischemia and from frozen samples!®:16:36 Therefore, the physiological status of

the cells isolated from a diseased tissue and after isolation could be questioned. Indeed,

one of the limitations of the human studies exploring isolated microglia from alive patients
(resected tissue) or post-mortemtissue has been the small number of subjects available to be
assessed. Consequently, tissue with different pathologies must be combined, making difficult
the identification of a clear disease-specific cluster. In addition, humans are exposed to

more environmental pathogens than are laboratory mice. These lifelong exposures activating
immune function could generate significant differences in microglial responses between
mice and humans. While many measures of cortical architecture are similar across species,
differences in cell composition, laminar distribution, and morphology contribute to species
differences in single nucleus RNAseq8’. Similarly, the neuropathological characteristics

of humans are not fully replicated in mouse models. The majority of amyloid-depositing
mice fail to show the significant neuronal death and brain atrophy observed in late stage
AD, although they do display synaptic dysfunction and loss. Finally, mice are usually
perfused to remove circulating myeloid cells prior to analyses, so it seems likely that human
specimens will include more circulating blood cells among brain myeloid populations.
Different cellular components would affect bulk RNA isolated from tissue more than single
cell measurements.
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Consequently, differences in the microglial profile between mouse and human, in the

tools and resources used, and the modest concordance between gene expression and
proteomic changes do not facilitate our understanding of the role of microglia. Many

key questions remain to be answered. Are microglia losing their protective function with
aging? How do microglia respond to early vs. late stage of the disease? Is microglial
response to protein accumulation and/or neurodegeneration a common pathway between
the neurodegenerative diseases or specific to the disease? Nevertheless, the identified genes
in mice and humans support a broad role for microglia in homeostasis (synaptogenesis,
chemotaxis, neurogenesis), host defense and response to injury, emphasizing that microglia
have specialised functions not performed by other CNS cells and myeloid populations. In
order to decipher the role of microglia in AD, additional transcriptomic research is needed.
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RECOMMENDATIONS FOR FUTURE RESEARCH

Consensus must be achieved regarding the number of microglial subtypes.
Harmonization of the gene sets characterizing these subtypes is necessary.
Only then may definitive studies of sources of biological variability such as
sex or brain region be integrated.

Longitudinal human studies are needed to identify the dynamic complexity of
microglial phenotypes over the Alzheimer’s disease trajectory.

Gene expression changes observed using bulk tissues must be confirmed at
the cellular level.

Transcriptomic changes may not change microglial function if they do
not drive changes in proteins. It will be essential to verify that detected
transcriptional changes reach the protein level.

Future studies should endeavour to use unbiased or alternative cell selection
methods.

Experiments to associate gene expression changes with Alzheimer-type
pathology and microglial morphology using digital spatial profiling,

mass cytometry (CyTOF), multiplexed single-molecule fluorescent in situ
hybridization or laser capture microdissection might allow identification of
disease-specific microglial phenotypes.
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RESEARCH IN CONTEXT
Systematic Review.

This Perspective reviews microglial gene expression profiles in healthy brain,

aging, Alzheimer’s disease and its mouse models. Published reports of microglial
transcriptomics were identified through traditional searches of archived data sets
(BioRxiv) and life sciences journal literature (PubMed and Web of Science). Special
attention is given to fundamental differences between mouse and human biology.

I nterpretation.

Microglia in the healthy brain express a homeostatic signature of canonical genes.
However, this signature is modulated by many biological variables, making it difficult

to develop a consensus set of defining genes. The microglial profile shifts with aging
towards an increase in baseline inflammation and a reduction in homeostatic genes. It is
not clear if changes in Alzheimer microglia result specifically from Alzheimer pathology
or from more general stimuli such as neurodegeneration.

Future Directions.

Harmonization of microglial subtypes must be achieved. Longitudinal human studies
are needed to elucidate the dynamic complexity of microglial phenotypes over the
Alzheimer’s disease trajectory. Finally, it will be essential to verify that detected
transcriptional changes reach the protein level to affect microglial function.
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Figurel.
Summary of select gene expression changes in health, aging and Alzheimer’s disease. The

circle represents gene expression. Data from mice are presented in the outer ring (light
shading), while data from human are presented in the interior circle (darkest shading). Gene
changes that are expressed by both human and mouse are presented in the middle ring with
medium shading. Genes associated with homeostatic microglia are presented within the blue
wedge (1) with the gene expression changes confirmed at the proteomic level indicated
with a grey check mark. Changes in gene expression accompanying aging are presented

in the beige wedge (2). Genes that are increased with aging relative to young adult are
indicated with red up arrows, while genes that decrease are indicated with green down
arrows. Changes in gene expression accompanying Alzheimer’s disease or Alzheimer-like
pathology in mouse models are presented in the green wedge (3). In humans, increases and
decreases compared with participants with no cognitive impairment are displayed in the
green inner ring with red up or green down arrows, respectively. Within the wedge and ring
for mouse models with Alzheimer-like pathology, the genes associated with the activated
microglial subtypes DAM®2, MGnD66, ARM*2 or IRM*2 are identified with color dots and
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the increase or decrease expression relative to the homeostatic profile indicated with red or
green arrows. Not all gene changes can be depicted in the diagram.
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