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Abstract

Correlated motions in proteins arising from the collective movements of residues have long 

been proposed to have fundamental importance to key properties of proteins, from allostery and 

catalysis to evolvability. Recent breakthroughs in structural biology have made it possible to 

capture proteins undergoing complex conformational changes, yet intrinsic correlated motions 

within a conformation remain one of the least understood facets of protein structure. For many 

decades, the analysis of total X-ray scattering held the promise of animating crystal structures with 

correlated motions. With recent advances in both X-ray detectors and data interpretation methods, 

this long-held promise can now be met. In this perspective, we will introduce how correlated 

motions are captured in total scattering and provide guidelines on data collection, interpretation, 

and validation. As structural biology continues to push the boundaries, we see an opportunity for 

gaining atomistic insight into correlated motions using total scattering as bridge between theory 

and experiment.
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Introduction

The past decade has seen remarkable developments in structural biology that were once 

simply unimaginable. A confluence of hardware and software advances in cryo-electron 

microscopy (cryo-EM) has now made it possible to determine structures that were 

previously considered unattainable1. In the X-ray field, the emergence of 4th generation 

light sources2,3 has led to a renaissance of room-temperature studies at both X-ray free 

electron lasers (XFELs)4 and synchrotrons5. The past year also witnessed a breakthrough 

in the accuracy of protein structure prediction by machine learning algorithms6. On all 

fronts, structural biology techniques have reached a new level of sophistication. We are 

arguably experiencing the second major watershed since the “Big Bang”7 of protein X-ray 

crystallography.

The goal of structural biology has always been to relate structure to function. Yet since the 

beginning, it has been known that protein function can be better deduced by visualizing a 

change in structure. The seminal structures of hemoglobin in different states were critical 

in revealing how conformational change can be interpreted as inter-subunit allostery and 

explain cooperative oxygen binding8. Likewise, comparisons of lysozyme structures with 

and without inhibitor bound were the first example in which the active site of an enzyme 

and its interactions with a ligand were deduced with minimal prior knowledge9,10. These 

foundational studies laid out an extremely successful template for structural biology – if 

multiple structures of a protein can be solved, we can deduce much about its specific 

function by careful inspection of the changes. Today, the development of novel approaches 

to visualize proteins in action is at the forefront of structural biology. In crystallography, 

there has been a concerted effort to probe room-temperature dynamics either kinetically in 

response to a perturbation11–13 or at equilibrium by modeling multiple conformers14–16. In 

cryo-EM, we have seen the development of techniques not only aimed at classification of 

single particles in different conformations17,18 but also in the estimation of a continuous 

manifold that describes a protein’s structure18–21. We expect these recent advances, 

especially in cryo-EM, to revolutionize structural analyses of large-scale conformational 

changes, such as domain motions.

What remains to be done? Although much can be learned from observing changes in 

structure, there are collective structural fluctuations within a single conformation, known 

as correlated motions, that are difficult to visualize but are important to understand. In the 

context of allostery, subtle correlated motions are implicated in sensing local changes, such 

as ligand binding, and propagating a signal through the protein to alter its activity. For many 

proteins, like hemoglobin, the outcome of signal propagation is a large-scale conformational 

change that can be interpreted to explain changes in activity22. However, even when high-

resolution structures of different allosteric states are known, the mechanism by which 

small-scale changes generate a global change is not readily apparent. Moreover, there is 
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a phenomenon known as “dynamic allostery” or “fluctuation-induced allostery” which does 

not invoke any conformational change. First described by Cooper and Dryden23, it was 

argued from statistical mechanics that allosteric signaling can occur solely through different 

movement patterns within a protein without any discernible changes to the average structure. 

To date, various instances of dynamic allostery have been identified experimentally, such 

as inter-subunit communication in catabolite activator protein (CAP)24 and tuning of ligand-

binding affinity by a peripheral alpha helix in PDZ domains25.

Furthermore, the potential roles of subtle protein motions in catalysis has been one of the 

greatest debates in modern enzymology26–32. For the structural biologist, it is useful to 

consider how motions may contribute to different parts of the rate constant as described 

by transition-state theory26. In this framework, the reactant and transition state are in a 

quasi-equilibrium, such that the rate constant is proportional to a Boltzmann distribution that 

has an exponential dependence on the activation free energy. The pre-exponential factor in 

the rate constant includes the transmission coefficient, which can account for phenomena 

such as quantum mechanical tunneling in reactions that involve the transfer of light particles. 

This factor is thought to be sensitive to fluctuations in the donor-acceptor distances30. For 

the best-studied system of dihydrofolate reductase (DHFR), a diverse set of experimental 

and theoretical tools has been applied that suggest that a network of residues undergo 

sub-angstrom to angstrom-scale correlated motions that are relevant to catalysis33–37 and 

that this network is preserved throughout evolution33,38,39. Yet it has also been argued 

that the dominant contribution to enzymatic rate enhancements comes from the structure 

itself, i.e. that the polar environment of the active site is pre-organized in a way that water 

molecules are not40.

To achieve a physical understanding of the unique properties of proteins, it is clear that 

correlated motions must be investigated in addition to structure (Fig. 1). Thus far, a number 

of computational approaches have been developed to predict networks of residues that 

may display correlated motion22. These include sequence-based methods that infer the 

coevolution between residues from multiple sequence alignments (MSA)41, as well as 

the physical modeling of structural dynamics by elastic network models (ENM)42–44 or 

molecular dynamics (MD) simulations45 and graph-theory analysis based on proximity 

and bonding between residues in protein structures46,47. Direct measurements of correlated 

motions, on the other hand, are challenging, and thus far, largely limited to nuclear magnetic 

resonance (NMR) spectroscopy, where different methods can be applied to cover a wide 

range of time scales from ps to s48.

In this perspective, we will focus on a new approach to X-ray crystallography that provides 

a direct measure of correlated motions: the analysis of total scattering from protein crystals. 

The total scattering signal contains both Bragg diffraction and diffuse scattering, from 

which both atomic detail and correlated motions can be obtained49. The measurement is 

unique in that data for both the average structure and its fluctuations can be collected 

in a single experiment on the same sample, and thus, the two can be compared directly 

in a self-consistent manner. Furthermore, the total scattering signal provides a powerful 

restraint for bridging the gap between experiment and theory. Here, we will begin with a 

brief introduction on how atomic displacements are represented in protein crystallography 
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(B-factors) in order to explain how information on correlated displacements is contained 

in diffuse scattering. We will then provide guidelines on data collection, processing, and 

interpretation. Finally, we will discuss grand challenges and opportunities, particularly in 

emerging areas of interest, such as relating correlated motions to sequence and evolution.

Understanding conformational disorder in terms of correlated motions

In crystallography, structure determination relies on the integrated intensities of the Bragg 

reflections – the bright spots that are captured in diffraction images (Fig. 2A). This dataset, 

which we call “Bragg diffraction,” reports on the mean electron density of the unit cell 

of the crystal, where the average is over time and space. Although the lattice imposes 

more orderliness on proteins than if they were completely free in solution, the inside of 

a protein crystal is a crowded but watery environment with non-covalent contacts between 

neighboring molecules. As a result, individual molecules in a protein crystal sample a 

conformational ensemble that share similarities with the ensemble in solution50. Often, 

evidence for distinct conformations can be seen in the mean electron density and modeled 

by accounting for their partial occupancies51. In addition, apparent fluctuations in atomic 

positions result in a local blurring of the electron density. This blurring is quantified 

during structure refinement by fitting atomic B-factors that specify the width of a Gaussian 

probability distribution for each atom’s displacement from the average position52.

Crystallographic B-factors often display a distinct pattern along a polypeptide chain that, 

for a given protein crystal, is largely reproducible from experiment to experiment (Fig. 

2B). Thus, although Bragg data contain no information about displacement correlations, 

B-factors can help identify potential regions of flexibility and mobility in a protein55,56. 

In addition, motions may be inferred from more sophisticated disorder models applied 

during crystallographic structure refinement, including normal mode57, TLS58, and multi-

conformer14 approaches. In computational studies of allostery and correlated motions, 

B-factors are often used for experimental validation59. B-factors are particularly relevant 

to ENMs, whose normal modes naturally predict Gaussian-distributed fluctuations that 

can be compared directly with experiment60–62 (Fig. 2C). B-factors are also commonly 

compared with mean-squared fluctuations in MD simulations, both for validation and for 

benchmarking force fields63.

However, there are two major limitations to B-factors. First, although B-factors are used 

to restrain dynamical models, they are not a particularly powerful restraint. In fact, very 

different models can account for B-factors equally well, making interpretation ambiguous. 

For example, it has been questioned whether the correlation between B-factors and ENM 

displacements is physically meaningful, or if it merely reflects the tendency for greater 

disorder on the surface of a protein compared with the core64. Second, B-factors contain 

contributions from multiple sources of disorder, and thus, without accounting for these other 

sources, they overestimate the atomic motions arising from protein motions. As we will 

describe below, the contribution of non-protein dynamics cannot be treated as a constant, 

and thus, the use of so-called normalized B-factor55 is insufficient.
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Fortunately, diffraction images contain a second signal called “diffuse scattering” (Fig. 2A). 

This signal is a direct consequence of disorder: photons lost from the high-resolution Bragg 

reflections are scattered instead, leaving a faint pattern everywhere in the diffraction image, 

between and underneath Bragg peaks. As a result, diffuse scattering is directly related 

to B-factors, but the information content differs. While B-factors come from the average 

electron density, diffuse scattering depends intimately on how atomic displacements are 

correlated with each other49. The two are thus complementary. By analyzing the diffuse 

scattering and Bragg diffraction simultaneously (total scattering analysis), a more complete 

view of the structural fluctuations in a crystal can be gained54.

Historically, protein diffuse scattering was difficult to measure accurately, especially in the 

vicinity of intense Bragg peaks65. The use of a direct detector recently enabled the first clear 

measurement of the three-dimensional diffuse scattering from a protein crystal, allowing 

for a detailed analysis of the various contributions to the signal (further described below 

and in Fig. 3)54. Importantly, intense near-Bragg features were resolved for the first time, 

which revealed that the crystals contained phonon-like displacement waves extending over 

hundreds of angstroms. A key take-away is that lattice disorder resulting from displacement 

waves accounted for the bulk of the B-factors in the most-ordered atoms in the protein. 

Thus, it was necessary to subtract this lattice contribution from the B-factors to reveal the 

true contribution from protein motions.

Now that historical limitations have largely been overcome, we expect biological 

applications of total scattering to become increasingly common. Thus, it will be important 

to establish guidelines and best practices to ensure data quality and robust interpretations, as 

occurred with crystallography, small-angle X-ray scattering, and cryo-EM. In the following, 

we outline the issues based on our experience so far, both to guide design of future 

experiments and to help evaluate published results.

How to measure total scattering

With modern detectors, total scattering experiments can be measured in much the same 

way as conventional, single-crystal diffraction. It may even be possible to extract diffuse 

scattering patterns from conventional diffraction images deposited in public databases66,67. 

However, without optimizing the experiment, the kind of quantitative, total scattering 

analysis we describe here will be difficult. One reason is that proper treatment of 

background is extremely important for diffuse scattering as it competes with the signal 

of interest. Unlike in conventional diffraction experiments, total scattering measurements 

require a separate measurement of the background or its effective elimination. Furthermore, 

most diffraction data are currently collected at temperatures of 100 K to mitigate radiation 

damage. Although cryo-cooled crystals also exhibit diffuse scattering66,68, room temperature 

is preferred for dynamic studies as the conformational ensembles best resemble the 

physiological state15. Additionally, the cryo-cooling process may add strain to the crystal 

lattice69–71, which increases mosaicity and constitutes an additional perturbation to be 

accounted for. As we detail here, high-quality data can be obtained without cryocooling if 

extra care is taken in sample selection and experimental setup.

Xu et al. Page 5

Biochemistry. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first and most obvious consideration is signal-to-noise ratio. In terms of the number of 

photons recorded, diffuse scattering is actually comparable to Bragg diffraction65. However, 

the diffuse signal is much weaker because those photons are spread over the entire detector, 

while Bragg diffraction is concentrated in sharp peaks. Moreover, much of the diffuse 

signal is isotropic and relatively featureless, with the more informative signal present as 

small rapidly varying features. Crystal scattering also competes with background from other 

sources that can be a challenge to eliminate, such as air in the beam path, liquid on the 

crystal surface, and other mounting materials like loops and capillaries. Finally, if the 

data are collected at room temperature, the total exposure budget is severely limited by 

susceptibility to radiation damage72,73. For all of these reasons, it helps considerably if the 

crystals are large by current standards. While excellent Bragg data may be collected from 

small (< 50 μm) crystals using cryo- or serial crystallography, room-temperature diffuse 

scattering practically requires larger crystals (smallest dimension > 100 μm). The possibility 

of using XFELs for total scattering from microcrystals is revisited in the final section.

The second consideration is diffraction quality. It is sometimes assumed that diffuse 

scattering requires poorly diffracting crystals. While the diffuse signal is most obvious when 

Bragg peaks are weak74, the evidence so far is that all protein crystals produce strong diffuse 

scattering49, even those that diffract to exceptionally high resolution54. Poor diffraction 

quality often results from high mosaicity, a kind of macroscopic disorder often described 

in terms of distortions and misalignment of so-called mosaic blocks70, as opposed to the 

microscopic lattice disorder measured by diffuse scattering. Mosaicity broadens both Bragg 

peaks and diffuse scattering features, setting a fundamental limit on how finely the diffuse 

map can be sampled. Thus, although a mosaicity of 1° is sometimes tolerable for Bragg 

datasets, it would be problematic for diffuse scattering. The highly detailed diffuse maps 

from triclinic lysozyme54 benefited from the low apparent mosaicity of ~0.02°. In a similar 

vein, X-ray sources optimized for high flux often have high energy bandwidth and beam 

divergence and therefore produce a similar broadening effect75.

The final consideration is data collection strategy. The diffuse map results from merging 

individual diffraction images, which represent slices through the 3D reciprocal space in 

different orientations. The merging process is an opportunity to estimate and correct for 

uncontrolled variables in the measurement, such as the volume of the crystal in the 

X-ray beam and variations in response across the detector. As in anomalous diffraction 

experiments, the best collection strategy is to aim for high redundancy76, so that regions 

of reciprocal space are observed multiple times independently. Collecting from several 

different crystals or tilting the spindle axis also helps fill in blind spots in reciprocal 

space caused by Ewald sphere curvature and physical gaps between detector panels. 

The background scattering from the diffraction instrument should also be measured and 

subtracted from each image. It may be necessary to collect backgrounds as a function of 

spindle angle if the mounting materials cast a shadow on the detector54. Some background 

scattering can also be removed computationally during merging, as long as it is isotropic and 

present in only some rotation angles54.

The internal consistency of the data (i.e. 3D diffuse map) can be assessed using metrics 

commonly in use for Bragg data such as CC1/2, the correlation coefficient between random 
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half-datasets binned by resolution shell77. The map quality sets an upper limit on model-data 

agreement, and this can be calculated from CC1/2 using the CC* estimate54,77. Note that 

statistics such as CC1/2 depend on how finely the map is sampled, which is not an issue for 

Bragg data, so care must be taken to always specify the sampling and to compare datasets 

sampled on the same grid.

How to interpret total scattering

As described above, one set of diffraction images produces two datasets: the integrated 

Bragg intensities and the 3D diffuse map. For total scattering analysis, the datasets first 

need to be placed on the same intensity scale relative to each other. Both datasets can 

then be placed on an absolute intensity scale of electron units16,54. The inelastic scattering 

component, which contains no structural information, can then be subtracted from the 

diffuse map, leaving the elastic scattering for the remainder of the analyses (Fig. 3A).

The resulting diffuse map can be further divided into different components. The most 

noticeable feature is a broad ring-shaped background at ~3 Å resolution (Fig. 3A), 

which arises from both the disordered solvent and from the protein78. Although it is 

potentially informative and useful for evaluating dynamical models, it can be subtracted 

for visualization purposes. Once the background is “turned off,” the fine features become 

visible. The most intense are typically found close to the Bragg peaks and are associated 

with lattice disorder. With sufficient sampling, halos with distinctive three-dimensional 

shapes can be observed (Fig. 3B). Different physical processes produce distinct intensity 

profiles49. For example, if the intensity decays away from the Bragg peak with a power-law 

exponent of −2, then acoustic phonon-like vibrations are a likely source54. Far from the 

Bragg peaks, it is common to see a cloudy pattern (Fig. 3C), which includes the scattering 

from collective motions of the protein79. After these initial inspections, the diffuse map 

can be interpreted by rigorous comparison with the simulated scattering from atomistic 

simulations.

Building an accurate model of the lattice disorder is the key to total scattering interpretation. 

The reasons are twofold. First, it allows for the lattice component of the B-factors to be 

estimated and subtracted (Fig. 3D, top). Because lattice dynamics involve rotations (not 

just translations) of molecules80, its contribution to the B-factors cannot be assumed to 

be a constant value. Second, it allows the short-ranged correlations associated with lattice 

motion to be accounted for when analyzing the cloudy pattern. Thankfully, lattice vibration 

models have relatively few degrees of freedom that can be fit using even just a subset of 

intense three-dimensional halos54. In contrast to previous methods, which relied on cloudy 

scattering exclusively49,68, refining the lattice model to the halos allows for unambiguous 

separation of lattice motion from internal motion.

Once the lattice disorder is understood in detail, we can focus on the continuous cloudy 

pattern, which extends throughout reciprocal space and is associated with the correlated 

motions of atoms within the unit cell. Separating the contributions from lattice and internal 

motion to the cloudy pattern in reciprocal space is difficult. However, by calculating the 

Fourier transform of the diffuse scattering intensities, i.e. the “diffuse Patterson map”54, the 

Xu et al. Page 7

Biochemistry. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data are transformed into a readily interpretable form (Fig. 3D, bottom left). The diffuse 

Patterson represents electron density fluctuations as a function of pairwise distance between 

atoms. The part of this map near the origin (e.g. smaller than the size of the protein) is 

affected by correlations that are short-ranged, while further from the origin, the correlations 

between unit cells predominate. To reveal the correlations from protein dynamics, one 

option is to simulate the diffuse Patterson from the lattice dynamics model (Fig. 3D, bottom 

center) and subtract it from the experimental Patterson. However, this must be done very 

carefully, as any errors in the model could produce spurious signals. A safer approach is 

to simulate internal motions riding on top of lattice motions (Fig. 3D, bottom right) and 

to check whether adding internal motions improves agreement in this central region of the 

Patterson. Importantly, model-data agreement should be checked with both datasets, Bragg 

and diffuse. Thus, the combination of internal and lattice motions should agree with the 

B-factors.

Fitting a dynamical model to diffuse scattering and B-factors simultaneously is a long-

standing goal of this field81 that has yet to be realized in a robust way. However, it is 

generally possible to derive several realistic candidate models of protein dynamics from 

the B-factors corrected for lattice disorder and rank them according to agreement with the 

diffuse Patterson. Such an approach has the additional advantage of illustrating how well 

the data discriminate between candidates. Although there is not yet an unbiased indicator 

to prevent overfitting that is comparable to Rwork/Rfree in conventional crystallographic 

refinement, we can employ the dynamical equivalent of the omit map by testing whether 

model refinement with certain motions of interest suppressed worsens the model-data 

agreement54.

As in conventional crystallography, multiple metrics should be used for assessing model 

accuracy. In using model-data correlations (CCs), it is important to note that the intense 

halos will dominate the statistics. One way to put lattice and internal motion on a more 

equal footing is to focus on the central part of the Patterson only for computing CCs54. 

Although CCs are useful, they are normalized by the variance in each resolution shell, and 

thus it is important to verify that the model correctly predicts the signal strength (variance) 

vs. resolution68. It should be noted that diffuse scattering patterns tend to correlate with the 

molecular transform, and therefore even a very crude model can easily obtain CCs of ~0.549. 

Substantially better agreement is needed to establish the accuracy of a model.

Challenges and Opportunities for the Future

Over the past several decades, the importance of correlated motions in protein function has 

become increasingly apparent. However, as with all areas of protein science, the information 

we can obtain by examining the properties of one specific protein sequence is limited. In 

truth, all proteins have evolutionarily related counterparts, which may display similar yet 

divergent behaviors. Thus, an emerging trend is to use evolution as an additional dimension 

to understand protein functions by comparing sequences that share the same evolutionary 

origin82,83. In the context of enzyme catalysis, the utility of this approach is exemplified by 

studies on DHFR, where coupled networks of residues were identified by mixed quantum/

classical MD simulations of the hydride transfer reaction and correlated with sequence 
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conservation across multiple organisms33. In a later study39, a curated MSA of DHFR was 

constructed in order to identify rare events that demark changes from one invariant sequence 

motif to another. The dynamic pattern of the active-site Met20 loop from one species was 

engineered into that of another by substituting divergent sites with evolutionary significance 

identified in this way39. Statistical coupling analysis (SCA)38 of an MSA of DHFR also 

revealed coevolving residues that form a contiguous network in the structure and show 

strong correlation with residues identified by NMR to be involved in millisecond dynamics 

during the catalytic cycle35.

In addition to comparing extant sequences from different organisms, sequences resurrected 

by ancestral sequence reconstruction can be compared with extant homologs to track 

the evolutionary trajectory of correlated motions and their role in protein function84. For 

example, Zou et al.85 utilized MD simulations to compare the dynamics of a β-lactamase 

specific for penicillin degradation with its ancestral counterparts, which show promiscuity 

but no substantial structural differences. They were able to identify regions with altered 

dynamics and key residues that contribute to the difference, signifying the importance of 

dynamics in the tradeoff between activity and specificity in the evolution of β-lactamase.

Conformational dynamics are also thought to be a key contributor to protein 

evolvability86,87, defined as the ability of proteins to adopt new functions through 

mutations. According to this view, protein fluctuations sample minor conformations 

that serve as precursors for new functions. To test such intriguing proposals, directed 

evolution of novel enzymes is of particular interest, where sequences from different 

iterations may be compared to elucidate the relationship between correlated motions and 

changes in traits83,88,89. As an example, variants of artificial retro-aldolases that were 

produced by directed evolution90 were later examined by MD89, and a population shift 

toward catalytically competent arrangement of active-site residues was observed along the 

evolutionary pathway, which interestingly, also included distal mutations. With a novel 

algorithm, residues exhibiting correlated motions were also inferred from the MD trajectory 

which further rationalized the conformational conversion. Recently, directed evolution 

of a bifunctional ancestor enzyme was demonstrated using a library of mutants with 

altered backbone dynamics generated by transposon-based random insertions or deletions 

(indels)91.

As evident from the examples above, the emerging interest in evolution of correlated 

motions relies heavily on the synergy between computational and experimental methods. We 

see several opportunities for advancing these studies with total scattering analysis. Perhaps 

the most critical area is in improving the accuracy of MD. With the recent advance in 

measurement, it has become clear that all-atom MD is not yet able to accurately predict 

correlated motions implied by diffuse scattering54. A major contributor to this discrepancy is 

the fact that the predictive ability of MD (RMSD of ~0.4 Å for triclinic lysozyme92) cannot 

match the coordinate precision of Bragg diffraction (~0.03 Å for PDB 6o2h93), which has a 

cascading effect on the ability of MD to predict the diffuse signal54. In the future, methods 

to restrain or otherwise improve MD using total scattering data will be of great importance, 

both for the accuracy of the simulation itself and for gaining atomistic insight into correlated 

networks in proteins. Integration of multiple experimental methods will also lead to a deeper 
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understanding of the information contained in different types of data. Of particular interest is 

combining total scattering analysis with solid-state NMR, which can both be performed on 

protein crystals94. Finally, the quest to understand the link between evolutionary sequence 

correlations and functional dynamics represents a grand challenge in molecular biophysics 

(Fig. 4). From sequence analysis, it is clear that selection pressure drives certain groups of 

residues to coevolve and that these groups can highlight areas of functional importance in 

a structure95. In the case of the PDZ domain, a deep double-mutational library of multiple 

homologs was experimentally characterized to show that the SCA matrix couplings can 

have thermodynamic interpretation95. However, a general connection between co-evolving 

residues and motion has not been established. Thus, direct comparisons between theory and 

dynamic experiments will play a crucial role in in gaining a precise understanding of how 

correlated motions can be predicted from sequence.

To bring total scattering analysis to a wider audience, several areas of development are 

of high priority. The first is to get around the issue of crystal size for room-temperature 

studies. Although we recommend maximizing signal to noise with large (>100 μm) 

crystals, inevitably, we will need to work with smaller ones in a serial fashion, i.e. by 

collecting one or a few frames of images from many crystals. We see no fundamental 

reason why such experiments cannot be done at synchrotrons or X-FELs today, however 

accurate measurement of total scattering has special requirements for the X-ray detector, 

properties of the beam such as divergence and energy bandwidth, and sample environment. 

The primary requirements for a detector are that photons are detected directly (i.e. via 

a semiconductor), that dynamic range is sufficient to measure Bragg peaks and diffuse 

scattering simultaneously, and that any variability in pixel response is well-characterized. 

We must also consider how to minimize background scattering and computationally correct 

for sources that can’t be eliminated. One promising experimental approach is to eschew 

X-ray windows and instead use humidified helium gas to prevent crystal dehydration97. 

Second is the issue of data processing software. As with all structural techniques, the 

availability of user-friendly software packages will be important for bringing total scattering 

analysis to a wide audience. This is contingent on standardization in the field, and we hope 

that our recommendations for data collection, processing, and validation will accelerate this 

process. Finally, we foresee a potential for machine-learning methods in the future, either 

in data processing or in interpretation of total scattering data98. For example, it would be 

of great interest to use machine-learning to classify signals that are from different types 

of motion. Towards such a goal, we as a community must first produce the learning data, 

namely, a collection of total scattering datasets that are fully understood.

These are exciting times to be a structural biologist. With technical breakthroughs in 

cryo-EM and X-ray diffraction experiments, we have an unprecedented array of tools to 

address virtually any structural question. But perhaps more importantly, these methods give 

a new window into the correlated motions of proteins. We anticipate that in the coming 

decade, total scattering will provide a much-needed bridge between dynamics on short 

time scales from NMR and MD with highly precise structural measurements required for 

insight into chemical mechanism. Especially when combined with bioinformatic approaches 

to evolution, structural biology may finally answer the question that started the field: how 

does allostery work?
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ABBREVIATIONS

EM electron microscopy

XFEL X-ray free electron laser

MSA multiple sequence alignment

ENM elastic network model

MD molecular dynamics

CAP catabolite activator protein

DHFR dihydrofolate reductase

NMR nuclear magnetic resonance

TLS translation libration screw-axis

CC correlation coefficient

PDB Protein Data Bank

RMSD root mean squared distance

SCA statistical coupling analysis
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Figure 1. 
Combining theoretical and experimental approaches to determine how motions are 

correlated in proteins. Theoretical models include those based on sequence (represented 

by an MSA) and structure (represented by an ENM). Among experimental methods, total 

X-ray scattering from crystals stands out for its ability to measure high-resolution structure 

and correlated motions simultaneously. Shown on the right is a set of residues that was 

predicted to coevolve in DHFR (PDB: 1RX2) by statistical coupling analysis41 (shown in 

blue).
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Figure 2. 
Components of total scattering illustrated using the experimental X-ray structure of CAP 

(PDB: 1g6n53) with dynamics added using ENM simulations54 of one unit cell. (A) 

The simulated diffraction image contains two signals: Bragg peaks (left) that depend 

on the average structure, and diffuse scattering (right) that arises from correlated atomic 

displacements (in this case, vibrations of the ENM). (B) B-factors refined to experimental 

Bragg data vary along the polypeptide chain (blue to red). (C) Normal modes of the ENM 

seem to explain regions of high experimental B-factor. The reality of such collective motions 

can be verified by diffuse scattering analysis.
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Figure 3. 
Total scattering analysis separates motion into lattice and internal components54. (A) Three-

dimensional map of diffuse scattering from triclinic lysozyme shown as intersecting central 

slices. A movie showing this volume from multiple perspectives is available online. The 

scattering includes an intense isotropic ring that may be subtracted to better visualize the 

halo and cloudy features. (B) Around Bragg peaks are three-dimensional halos (shown here 

as transparent contours, blue to yellow) attributed to thermally excited lattice vibrations. 

(C) Cloudy features due to short-ranged correlated motion are most visible in sections 

mid-way between Bragg planes. (D) Total motion and correlations are quantified using 

B-factor (top, PDB 6o2h54) and diffuse Patterson maps (bottom), which report electron 

density fluctuations vs. inter-atomic vector, r. A lattice dynamics model fit to diffuse halos 

accounts for most of the B-factor for well-ordered atoms (total vs. lattice, top) and the 

correlated motions at large distances (total vs. lattice, bottom), but underestimates those at 

short distance (r < 10 Å, dashed circles). An ENM describing protein dynamics was fit to the 

residual B-factors (top right). The simulated diffuse Patterson of the protein dynamics model 

(bottom right) explains the remaining short-ranged correlations.
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Figure 4. 
Evolutionary and dynamic perspectives on residue-residue correlations. (Left) Evolutionary 

correlation according to SCA41 applied to an MSA of a hydrolase family that contains 

lysozyme (Pfam PF00062). (Right) Displacement correlations96 in lysozyme according to 

an ENM derived from total scattering analysis (Fig. 3). Establishing the connection between 

these two perspectives is necessary to fully understand protein function and allostery.
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