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Abstract

Microfractures (cracks) are the third most common cause of tooth loss in industrialized countries. 

If they are not detected early, they continue to progress until the tooth is lost. Cone beam 

computed tomography (CBCT) has been used to detect microfractures, but has had very limited 

success. We propose an algorithm to detect cracked teeth that pairs high resolution (hr) CBCT 

scans with advanced image analysis and machine learning. First, microfractures were simulated 

in extracted human teeth (n=22). hr-CBCT and microCT scans of the fractured and control teeth 

(n=14) were obtained. Wavelet pyramid construction was used to generate a phase image of the 

Fourier transformed scan which were fed to a U-Net deep learning architecture that localizes 

the orientation and extent of the crack which yields slice-wise probability maps that indicate 

the presence of microfractures. We then examine the ratio of high-probability voxels to total 

tooth volume to determine the likelihood of cracks per tooth. In microCT and hr-CBCT scans, 

fractured teeth have higher numbers of such voxels compared to control teeth. The proposed 

analytical framework provides a novel way to quantify the structural breakdown of teeth, that was 

not possible before. Future work will expand our machine learning framework to 3D volumes, 

improve our feature extraction in hr-CBCT and clinically validate this model. Early detection of 

microfractures will lead to more appropriate treatment and longer tooth retention.
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1. INTRODUCTION

Epidemiologic studies report that cracked teeth are the third most common cause for tooth 

loss in industrialized countries, after caries and periodontal disease.1 This trend is expected 

to continue to increase as the US population ages2 and retain their teeth longer. Recently 

reported data also shows that cracked teeth are more common in under-served populations.3 

Histological studies demonstrate that all cracks are colonized by bacteria, which can cause 

pulpal and periapical disease,4,5 both of which cause intense pain which is the most common 

reason why patients seek emergency dental care.6,7 If left undetected, cracks continue to 

progress and ultimately result in tooth loss.

Cracked teeth are extremely hard to detect. The clinical symptoms, such as pain upon 

biting and sensitivity,8,9 are often discontinuous with periods of remission. 2D intraoral 

radiographs and CBCT scans are imaging tools used to detect cracks but also have 

significant limitations. Radiographs are often insufficient to detect non-displaced cracked 

teeth because (1) when cracks are not aligned with the x-ray beam they do not result in 

feature contrast and (2) superimposition of overlying structures and the 3D nature of the 

cracks limits contrast and hampers interpretation. CBCT adds the advantage of capturing 

3D structures but is subject to partial volume effects. Even with the recent developments 

that offer small Field of View (FOV), high resolution modes for endodontic use in CBCT, 

challenges still exist for the detection of cracks such as those arising from qualitative and 

subjective human evaluation.10,11

These motivations drove the development of the work presented here, in which we invented 

an algorithm to provide an enhanced detection and visualization approach by coupling 

hr-CBCT with advanced image analysis methods and machine learning. Early detection 

and localization of cracks in a non-invasive, data-driven, quantitative way is of utmost 

importance in ensuring appropriate treatment and in preventing tooth loss.12

2. DATA

2.1 Fracture simulation

Our ex-vivo sample consists of 36 extracted human premolars, first molars and second 

molars. We simulated stress microfractures in a subsample of the total (n=22), while the 

other sound teeth were used as controls (n=14). In order to simulate microfractures, the 

teeth were placed in resin trays and stabilized using dental wax to simulate the periodontal 

ligament (figure 1.a.).

A customized compression insert was fit into the central grooves of the teeth to evenly 

distribute forces onto the occlusal surfaces just as would happen in the mouth (1.b.). 

A continuous force (⩽ 400N) was exerted on the grooves using an INSTRON E3000 

Electropuls. All the teeth were then examined with and without transillumination by 

two masked investigators (1.c.). The presence/absence of superficial micro cracks, their 

location, extent and orientation was recorded. Before image analysis, we confirmed that 

our standardized method induces cracks in extracted teeth in a reliable manner (p=0.017) 

via Chi square. From that superficial evaluation, cracks are mesio-distally oriented and 
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propagate from the crown towards the root of the tooth, which mimics the common clinical 

presentations of stress induced dental cracks.

2. Micro CT

All teeth were scanned using a desktop microCT imaging system (Bruker Skyscan 1172, 

Belgium) at a pixel size of 11.97 μm, with an exposure set at 1500 ms and voltage at 60 

kV, 167 μA, equipped with a 0.5mm Al filter. Scan settings were set at a 0.30 rotation 

step with a frame averaging value of 8. Reconstruction was performed with a minimum 

compressed-sensing (CS) value of 0.00000 and maximum CS value of 0.142390.

2.3 High-resolution CBCT

To increase the similarities with its clinical presentation, the teeth were placed in a human 

jaw and stabilized with wax(figure 2.a). The teeth were randomly arranged so that each jaw 

contained 2 molars and 1 premolar, and each set of teeth had 2 fractures and 1 control. The 

jaws were placed in water to mimic soft tissue (figure 2.b). All hr-CBCT volumes were 

acquired with the Planmeca ProMax 3D Mid ProFace, located at the Oral and Maxillofacial 

Radiology Clinic at the University of Texas Health San Antonio with acquisition parameters 

FOV 40 × 50 mm, 90 kV, 12.5 mA, 15 s, endodontic resolution mode, 75 μm voxels.

3. METHODS

Our method computes imaging features specific to tooth microfractures based on advanced 

image processing methods and 3D wavelets. These features are then used to train and run a 

U-Net to enhance the detection of those lesions in teeth.

3.1 Registration and Segmentation of ex-vivo sample

In order to facilitate the detection of fractures in CBCT, we registered the microCT volumes 

to the CBCT data using the external geometry of the tooth. First, the microCT tooth was 

segmented using Otsu thresholding13 followed by an opening operation and a fill holes 

filter to segment the whole tooth (pulp, dentin and enamel). The geometry in the CBCT 

was obtained from a fixed threshold (see figure 2.c). The microCT (figure 3.d) was first 

aligned to the CBCT by a known transform that is custom for the pre, first or second molar 

locations and then refined using iterative closest point14 to register the microCT volume and 

segmentation into the CBCT space (see figure 3.a).

3.2 Feature computation

Our feature extraction pipeline (figure 4.a) includes the following steps: image pre-

processing, computation of wavelet pyramid based on the signal present in the input image, 

monogenic signal generation, phase analysis, and inverse wavelet pyramid construction 

(spatial reconstruction).

3.2.1 Image pre-processing—Each tooth is cropped from the scan by computing the 

smallest bounding box that includes the whole tooth geometry. This volume is then padded 
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until all dimensions are multiples of 256 in order to facilitate the wavelet decomposition so 

different spatial bands do not overlap.

3.2.2 3D Isotropic Wavelets—Wavelets provide a signal decomposition framework 

that allows for good localization in both the spatial and frequency domains. There is an 

abundant amount of theoretical work in this field15–17 that has been applied to research in 

areas such as theoretical physics, seismology and image processing. Wavelets are similar 

to a windowed Fourier Transform, but with the advantage that the spatial resolution can be 

modulated, localizing imaging features based on both their frequency and location in space.

Wavelet decomposition: Consider the following wavelet decomposition for a signal 

f, ∀f ∈ L2 ℝd , where s represents the number of levels and l represents the number of 

high-pass bands.

f(x) = ∑
s ∈ ℤ

∑
l ∈ ℤd

f, ψs, l ψs, l(x) (1)

The family of functions {ψs,l} is a wavelet frame (equation 2), constructed by means of 

translations and dilations of the mother wavelet function ψ.

ψs, l(x) = a−d ⋅ s/2ψ asx − l (2)

Each dilation, defined by the dilation matrix A, squeezes or stretches the mother wavelet, 

acting as a change of scale. In equation (2) we consider A = aId to be a diagonal matrix 

with the same dilation factor a in all dimensions. The translation operator l moves and 

centers the location of the mother wavelet ψ, which must have finite energy ψ ∈ L2 ℝd , i.e 

∫−∞
∞ ψ(x)2dx < ∞.

Wavelet pyramid: In image processing, the practical implementation of the wavelet 

transform is called wavelet pyramid construction.18–20 This involves passing an image 

through successive levels of filters where at each level the image is down-sampled 

and multiple non-overlapping band-pass filters are applied to capture different ranges of 

frequency components of the input image. Figure 5.a shows the model of the wavelet 

pyramid construction process. By changing the number of high-pass bands, we can capture 

wide range of frequencies responsible for smooth and sharp edges. By changing the number 

of levels, we can generate multi-scale versions of an image, where certain scales can capture 

specific imaging features better than others. The ultimate result of the wavelet pyramid 

is a set of wavelet coefficients (in figure 5, see ds,h, where s ∈ {1,…,Levels}, and h ∈ 
{1,…,HighPassSubBands}).

The forward wavelet pyramid outputs a set of wavelet coefficients with information about 

each scale. A steerable filter18,20,21 can be applied to select the orientation where the feature 

of interest is maximum. We use the Simoncelli steerable filter with 3 scales and 3 high-pass 

filters.
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Monogenic signal and Phase analysis: The monogenic wavelet22 is an n-D generalization 

of the 1-D analytical wavelet signal.23 Instead of using the Hilbert transform to convolve 

the wavelet coefficients, it uses the Riesz transform to generalize the computation to higher 

dimensions and thus it is well suited for image analysis. The monogenic signal allows for 

the decomposition of multidimensional signals f ∈ L2 ℝd  into phase and amplitude. We can 

define the monogenic signal as the d + 1 dimensional vector

fm(x) = f(x), R1f(x), …, Rdf(x) (3)

Where Ri denotes the Riesz transform to the dimension i. The phase of the monogenic signal 

is defined as

αf = arctan
R1f2 + … Rdf2

f
(4)

This phase contains information about the signal structure and it is resistant to local image 

changes in brightness due to artifacts.

Spatial reconstruction: Finally we compute the inverse wavelet pyramid to reconstruct 

the phase images into the spatial domain (see Figure 5.b). Reconstructing the multiscale 

coefficients from the phase provides a feature image that enhances microfractures and 

filaments.

3.3 Fracture detection

The next step consists of using the phase images for the detection of microfractures (figure 

4.b) using machine learning. To do this, we use a standard U-Net architecture24 taking 

128×128 images as input with 7 convolutional layers and 7 up-sampling layers. The network 

is trained using a selection of axial slices from 9 each microCT images of teeth with cracks 

manually annotated.

Because the cracks are so small in volume relative to the size of the image, we start training 

by dilating the annotations and using a cross entropy loss which is heavily weighted toward 

reducing false negatives at the expense of the false positive rate. As the network is trained, 

the annotation dilation is reduced from 7 to 4 to 0 pixels and the cross entropy weighting is 

moved from weighing false negatives 100× more importantly to weighing them evenly.

The output of the U-Net is an image where each pixel is the probability that a crack is 

present. For a new 3D volume, we run each axial slice through the network individually 

and reconstruct a full probability volume. We then threshold this volume at 0.5 and look at 

connected components (CC) remaining in the volume image. In this image, cracks tend to 

show up as long, thin connected components in the axial slices. Images that have no cracks 

have fewer, smaller connected components relative to those that have cracks present.
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4. RESULTS

The probabilistic maps obtained from our machine learning algorithm, described in section 

3.3, were first thresholded at 0.5 from a range of [0,1]. The number of CC per tooth varied 

from 315 to 1000. Cracked teeth have a broader spread of number of CC (between 315 and 

1000) than control teeth (between 408 and 751). In addition, the range of the largest CC in 

cracked teeth (range from 125 to 1336 voxels) is also a little broader than that of control 

teeth (range from 149 to 1210 voxels), suggesting a higher variability in cracked teeth 

samples. In microCT images, cracks tend to show up as long, thin connected components. 

Images that have no cracks have fewer, smaller connected components relative to those that 

have cracks present.

In order to detect cracks in teeth, we chose distance-weighted discrimination (DWD)25 

as our detection method and validated the results with direction-projection-permutation 

(DiProPerm)26 hypothesis tests. DWD was developed as an improved version of support 

vector machines (SVM) for linear classification.25 DiProPerm is a permutation-based 

hypothesis test that assesses the chance that the observed degree of separation happened 

as a result of expected random variation. It was developed with DWD in mind as an area of 

application, but it represents a general framework of nonparametric hypothesis testing built 

to discern visually discovered typical and atypical behavior in high-dimensional settings.

Figure 6.a and b show the results of classifying the CC elements found in the 14 control 

(blue dots) and 31 cracked (red dots) teeth imaged with microCT, illustrated by projecting 

each tooth in the DWD and its orthogonal principal component directions (OPC1).27 Kernel 

density estimates of the data projected onto the DWD separating hyperplane show no clear 

separation between control and cracked teeth. Thus, DiProPerm confirms no significance 

separation between the two groups (see Figure 6.b p = 0.74). Further analysis into hr-CBCT 

images suggests that this lack of separation seems to be caused by more limited detection 

ability that results from many more false positives despite the elevated component numbers.

Detailed analysis into the acquisition parameters of the hr-CBCT revealed that the 

endodontic mode often uses smoothing filters intended to provide visually appealing images 

without the presence of artifacts. These filters are useful to better perceive the gross tooth 

structure and generate 3D reconstructions but can destroy fine features like microfractures. 

To validate this finding, we tested our algorithm on a previously published dataset of 

synthetically generated cracks in hr-CBCT.28

Figure 6.c and d show the results of classifying the CC elements found in the 19 

synthetically cracked (red dots) and 6 control (blue dots) hr-CBCT images, showing 

appropriate separation of CC obtained from control and cracked teeth using a similar plane 

projection. DiProPerm also showed a significant separation result (see Figure 6.d p = 0.026) 

even for this small sample size. Results with this data suggest that our approach can be 

applied to hr-CBCT (clinically) when the images are not over-processed. In future stages of 

this project all images will be acquired without additional filters moving forward.

It is important to mention that thresholding for the presence of large connected components 

has the added benefit of flagging potential cracks. This provides the clinician with the ability 
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to visually inspect the images and determine if the highlighted area is a crack or not. Figure 

7 shows an example of how the probability maps can guide the physician to the crack. The 

probability maps also give an opportunity to the physician to evaluate the severity of the 

crack, as illustrated in 8

5. DISCUSSION

We have proposed a method that can enhance the diagnostic accuracy of dental professionals 

by using the phase images resulting from wavelet analysis to train a deep learning classifier 

that creates probabilistic maps for microfractures. The proposed wavelet framework presents 

a superior flexibility and computational performance compared to other methods used for 

filament-like feature detection, such as Frangi’s vessel enhancement algorithm.29 This is 

possible due to the combination of a highly customizable isotropic wavelet backbone that 

can be configured to be sensitive to features in any orientation and scale.

We are aware that the hr-CBCT currently yields very limited detection ability and does 

not demonstrate the advantage of using wavelet analysis for this task. Detailed analysis 

into the acquisition parameters of the hr-CBCT revealed that the endodontic mode often 

uses smoothing filters intended to provide nice looking images without the presence of 

artifacts. These filters are useful to better perceive the gross tooth structure and generate 3D 

reconstructions but can destroy fine features like microfractures. To validate this finding, we 

tested our algorithm on a previously published dataset of synthetically generated fractures in 

hr-CBCT.28 We were able to correctly detect all but one fracture in this data, showing that 

our approach can be applied to CBCT when the images are not over-processed.

Future work will focus on validating the ability of the algorithm to localize the fracture, 

studying the effectiveness of different types of wavelets and classifiers to detect different 

microfracture types, changing the orientation of the Reisz transform, and validate the 

algorithm in clinical hr-CBCT images.
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Figure 1. 
Simulation of fractures in ex-vivo teeth: (left) Preparation of extracted teeth in resin trays; 

(center) Instron machine and custom insert that simulates intraoral occlusal forces; (right) 

Confirmation of superficial cracks via transillumination

Vicory et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
High-resolution CBCT acquisition of our ex-vivo simulated data. a) Dry mandible without 

teeth placement; b) Acquisition set up; c) Volume rendering of present geometry in scan.
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Figure 3. 
Imaging modalities for ex-vivo data. a) hr-CBCT; b) registered microCT ; c) registered 

microCT geometry.
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Figure 4. 
Algorithm workflow. (a) Feature computation, in blue (b) Fracture detection, in green (c) 

Analytical assessment, in red.
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Figure 5. 
Example of wavelet pyramid for two-level pyramid with two high pass sub-bands. (a) 

Forward transform: The wavelet coefficients d are the result of applying high-frequency 

band-pass filters (HP) to the input image in the frequency domain. The process is recursive 

for the desired number of scales after applying a low-pass frequency filter and a down-

sampling operator (D). (b) Inverse transform (spatial reconstruction)
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Figure 6. 
DWD classification of connected component analysis obtained from our machine learning 

algorithm for a) microCT and for c) synthetically generated hr-CBCT. Each data sample 

is projected onto the DWD direction as well as the orthogonal principle component 1 

(OPC1) direction. Kernel density estimates of the data projections onto the DWD separating 

hyperplane and permutation tests using DiProPerm for b) microCT and for d) synthetically 

generated hr-CBCT. Demonstrates a significant separation of the two groups using synthetic 

hr-CBCT but not microCT.
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Figure 7. 
Axial slices of a) a microCT tooth scan with a crack in the lower right and the resulting 

probability map that highlights the crack; b) a CBCT tooth scan with a spurious detection 

that can be dismissed due to appearance in the image.
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Figure 8. 
a) Original tooth volume with two arrows indicating a subtle crack (right) and a strong crack 

(left). B) Probability map overlay, with values interpolating from 0 (red) to 1 (purple). The 

larger crack is shown in purple indicating a strong probability (value = 1), while the subtle 

crack is shown in green (value = 0.6).
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