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Abstract

A twinning bare bones particle swarm optimization(TBBPSO) algorithm is proposed in this

paper. The TBBPSO is combined by two operators, the twins grouping operator (TGO) and

the merger operator (MO). The TGO aims at the reorganization of the particle swarm. Two

particles will form as a twin and influence each other in subsequent iterations. In a twin, one

particle is designed to do the global search while the other one is designed to do the local

search. The MO aims at merging the twins and enhancing the search ability of the main

group. Two operators work together to enhance the local minimum escaping ability of pro-

posed methods. In addition, no parameter adjustment is needed in TBBPSO, which means

TBBPSO can solve different types of optimization problems without previous information or

parameter adjustment. In the benchmark functions test, the CEC2014 benchmark functions

are used. Experimental results prove that proposed methods can present high precision

results for various types of optimization problems.

Introduction

The particle swarm optimizer (PSO) has evolved into a group of algorithms since it was first

introduced by Kennedy and Eberhard in 1995. The PSOs belong to the classical evolutionary

algorithm, which is inspired by the behavior of birds flocking and fish schooling. Based on the

PSOs, more and more swarm evolutionary algorithms are proposed, like as artificial flora algo-

rithm [1], artificial bee colony algorithm [2], fish swarm algorithm [3], firefly algorithm [4],

cuckoo search algorithm [5]. The inspiration for these algorithms comes from the migration

and reproduction processes of the swarm. In general, the PSO algorithms specialize in solving

nonlinear non-stationary problems and have been widely used in parallel computing [6], pat-

tern recognition [7], automatic control [8], transportation engineering [9] and other fields.

For example, Shen [10] designs an effective gas cyclone method by using a hybrid PSO and dif-

ferential evolution algorithm, and shows that the method with higher efficiency and low cost.

Sung [11] proposes a method to increase the accuracy of user positioning in indoor environ-

ments using wireless-fidelity (Wi-Fi). The core point lies in the PSO algorithm and the selec-

tion of its initial weight, and the experiments have demonstrated that the method can achieve
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higher positioning accuracy. Li [12] presents a novel PSO-based method for hybrid wind tur-

bine towers which is able to reduce the direct investment, labor cost, mechanical cost, and

maintenance cost.

Many interesting variants of the standard PSO algorithm have been derived, like the com-

prehensive learning particle swarm optimizer (CLPSO) [13], the cooperative particle swarm

optimizer (CPSO) [14], the hierarchical particle swarm optimizer (HPSO) [15], the unified

particle swarm optimizer (UPSO) [16], and the bare bones particle swarm optimizer (BBPSO)

[17]. Among them, the BBPSO algorithm as one of its typical mutated versions has also

attracted a lot of attention and has been successfully applied to power systems, chemical test-

ing, disease diagnosis, etc. For instance, Zhang [18] presents a hybrid improved BBPSO algo-

rithm to solve dynamic economic dispatch problems. Zhang [19] proposes two evolutionary

BBPSO-based feature optimization. Overall, the BBPSO algorithm is simple and easy to imple-

ment, just like other swarm algorithms, to find high-precision results for benchmark

functions.

The PSO algorithm and its variants have performed relatively well in solving different types

of practical problems. However, many researchers still work to overcome the defects of the

PSO algorithm like the curse of dimensionality [14], the collapse of the swarm, the premature

convergence, the complex multimodal problems, and so on [15]. Meanwhile, in academia and

industry areas, a huge number of complex real-world problems are waiting to be solved.

Therefore, the variant of PSO algorithms with superior performance is always needed.

Related works

Researchers try to use different evolutionary method like [20–23]. By reviewing the literature,

we can summarize that there are roughly three types of variants of PSO algorithms. The first

type of variant focus on the initial weights. Since the original PSO algorithm did not have an

inertia weight, Shi [24] proposed a modified PSO algorithm by adding an inertia weight and

achieving a faster convergence. Subsequently, a constriction factor was added to the conver-

gence behavior of the PSO algorithm [25]. Some references [15, 26] confirmed that this

improved approach has effective results on the large collection problems. In the course of engi-

neering practice, the inertia constant is typically taken to be 0.9 [27].

The second type of variant is concerned with the optimal performance of the particles.

Angeline [28] proposed an entirely different approach by introducing a form of selection

mechanism that allows some good particles to replace some less effective ones. The multiple

neighborhoods are applied to the particle population and each neighborhood keeps its own

local best solution [29]. This method is not prone to get trapped in local minima but usually

has a slow convergence rate. To address this drawback, cooperative methods were introduced

into distributed architectures [14]. In [30], Rui and James argued that each individual is influ-

enced not only by the best performer among its neighbors but also by the success of all its

neighbors, based on which they designed a fully informed particle swarm optimizer and con-

firmed its effectiveness using a benchmark function.

The third type of variant centers on making the PSO algorithm simpler. BBPSO is probably

the simplest of all PSO variants and has the potential to solve single-objective unconstrained

optimization problems. Details can be found in Eq 1 and Algorithm 1.

a ¼
ðpbestðxtiÞ þ GbesttÞ

2

b ¼ jpbestðxtiÞ � Gbesttj

xtþ1
i ¼ GDða; bÞ

ð1Þ
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where the pbestðxtiÞ is the personal best position of the particle i in (t)th generation, Gbestt is

the personal best position of the global best particle in (t)th generation, xtþ1
i is the candidate

new position for particle i in (t + 1)th generation, GD(α, β) is the Gaussian distribution with a

mean α and a standard deviation β.

Algorithm 1 BBPSO
Require: Max iteration time, T
Require: Fitness function, F
Require: Search Space, R
Require: Particle swarm X = x1, x2, . . . xn
1: Randomly generate the initial position of X
2: Calculate the Pbest_value, personal best value of particles
3: the Pbest_position, personal best position of particles
4: Record the Gbest_position, global best position of the swarm
5: Record the Gbest_value, global best value of the swarm
6: t = 0, t stands for the iteration times
7: while t < T do
8: t = t + 1
9: for i in range (1, n) do
10: Chose a new position for xi by Eq (1)
11: end for
12: Update Pbest_value
13: Update Pbest_position
14: Update Gbest_value
15: Update Gbest_position
16: end while
17: Output Gbest_value
18: Output Gbest_position

However, it has the disadvantage of being close to collapse. In [31], Tim proved that a col-

lapse-free condition can be obtained by including the motion of the informant, i.e., allowing a

small random search over the entire search space at any stage of the optimization. Zhang [18]

designed an adaptive interference factor and a new genetic operator was incorporated into the

improved BBPSO. Experimental results showed that the improved method has enhanced its

searchability. Mauroas [32] proposed a new method that the positions of the particles are cho-

sen from a multivariate t-distribution and obey the rules adapted to their scale matrix. In [33],

Li proposed a new BBPSO-based method, in which the behavior of the particles should obey

the principle of the first-order difference equation.

Our team has been focused on improving BBPSO. In the beginning, we design BBPSO-

based method that two particle work in pair [34]. In this algorithm, two particles form as a pair

and are placed in different sets of evolutionary strategies. Then, we combined a local search

strategy with the BBPSO in [35]. In the same way, we use a dynamic allocation strategy to

enhance the search ability of BBPSO in [36]. In recent research work, we have adopted a fis-

sion-fusion strategy aimed at partitioning the search space [37]. Base on it, we proposed a fis-

sion-fusion hybrid bare-bone particle swarm optimizer (FHBBPSO) algorithm, which

combines the fission strategy and the fusion strategy, and the particles are assigned to different

local groups to sample the corresponding regions.

Proposal of the twinning bare bones particle swarm optimization

algorithm

In this paper, only minimum problems will be discussed, hence a better position in this paper

stands for a position with a smaller fitness value. When several positions are discussed, a
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position with the smallest fitness value is defined as the best position. The particle with a better

position is defined as a better particle.

The twinning bare bones particle swarm optimization algorithm (TBBPSO) is proposed in

this section. In TBBPSO, two particles will form a twin and perform collaborative computing

across iterations. The TBBPSO is combined by two main operators, a twins grouping operator

(TGO) and a merger operator (MO). The TGO aims at dividing the particle swarm into several

sub-groups and the merger operator aims at merging the sub-groups. Particles search around

the global best particle and their team leaders in different generations.

The twins grouping operator

The TGO is used to divide the particle swarm into several twins. Each twin contains two parti-

cles. Inside a twin, the particle with a smaller fitness value will be pointed as the main particle,

and the other one will be the side particle. The next position of a main particle is selected by

Eq 2.

g ¼
ðpbestðmaintÞ þ GbesttÞ

2

d ¼ jpbestðmaintÞ � Gbesttj

pbestðmaintþ1Þ ¼

GDðg; dÞ; if ðFðGDðg; dÞÞ < FðpbestðmaintÞÞÞ

pbestðmaintÞ else

8
<

:

ð2Þ

where the pbest(maint) is the personal best position of the main particle in (t)th generation,

Gbestt is the personal best position of the global best particle in (t)th generation, pbest(maint+1)

is the new position for the ZZmain particle in (t + 1)th generation, GD(γ, δ) is the Gaussian

distribution with a mean γ and a standard deviation δ, F is the target test function.

The side particle of a twin is designed to search around the main particle, hence the next

position of a team member is selected by Eq 3.

y ¼ jpbestðmaintÞ � pbestðsidetÞj

φ ¼
ðpbestðmaintÞ þ pbestðsidetÞÞ

2

pbestðsidetþ1Þ ¼

GDðy;φÞ; if ðFðGDðy;φÞÞ < FðpbestðsidetÞÞÞ

pbestðsidetÞ else

8
<

:

ð3Þ

where the pbest(sidet) is the personal best position of the side particle in (t)th generation, the

pbest(maint) is the personal best position of the main particle in (t)th generation, pbest(sidet+1)

is the new position for the side particle in (t+ 1)th generation, GD(θ, φ) is the Gaussian distri-

bution with a mean θ and a standard deviation φ, F is the target test function. The pseudo code

of the TGO is described in Algorithm 2.

Algorithm 2 TBBPSO-Grouping
Require: Fitness function, F
Require: Search Space, R
Require: Particle swarm X = x1, x2, . . ., xn
Require: Number of particles, n, n should be an even number
1: Randomly generate the initial position of X
2: Calculate the Pbest_value, personal best value of particles
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3: Calculate the the Pbest_position, personal best position of
particles
4: Record the Gbest_position, global best position of the swarm
5: Record the Gbest_value, global best value of the swarm
6: NLG = 0, NLG is short for number of local group
7: while X 6¼ ⌀ do
8: Take two particles xi and xj out of X
9: xi and xj are defied as a twin
10: if Pbest_value(i) < Pbest_value(j) then
11: Chose a NewPosition for xi by Eq 2
12: Chose a NewPosition for xj by Eq 3
13: NLG = NLG+1
14: else
15: Chose a NewPosition for xi by Eq 3
16: Chose a NewPosition for xj by Eq 2
17: NLG = NLG+1
18: if New positions of any particles out of R then
19: Chose a new randon position for them in R
20: end if
21: end if
22: end while
23: for i = 1, i <= n do
24: if F(NewPosition(i)) < Pbest_value(i) then
25: Pbest_value = F(NewPosition(i))
26: Pbest_position = NewPosition(i)
27: if F(NewPosition(i)) < Gbest_value(i)
28: Gbest_value = F(NewPosition(i))
29: Gbest_position = NewPosition(i)
30: i = i + 1
31: end if
32: end if
33: end for
34: Select a twin as the main local group (MLG)
35: Other twins are sub local groups (SLGs)

Merger operator

The merger operator (MO) is proposed in this section. After grouping, particles were gathered

into several local groups including one main local group (MLG) and several sub-local groups

(SLGs). In each iteration, the MLS will merge one SLG until no SLG exits. During this process,

particles will keep playing as the team leader and the team member. In the MLG, the best parti-

cle will be the team leader and others will be members. For all particles, leaders and teammates

evolve with the same equations from TGO. The pseudo-code of the MO is given in Algorithm

3.

Algorithm 3 TBBPSO-Merger
Require: Fitness function, F
Require: Search Space, R
Require: Particle swarm X = x1, x2, . . ., xn
Require: Number of local groups, NLG > 1
Require: Main-local-group, MLG
Require: Sub-local-group, SLG
1: while NLG 6¼ 1 do
2: Merge one SLG with the MLG
3: Find the main particles in the MLG
4: Other particles in the MLG are side particles
5: In the MLG
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6: Chose a NewPosition for xmain by Eq 2
7: Chose a NewPosition for xside by Eq 3
8: In each SLG
9: Chose NewPosition for xmain by Eq 2
10: Chose NewPosition for xside by Eq 3
11: NLG = NLG − 1
12: end while
13: for i = 1, i � n do
14: if F(NewPosition(i)) < Pbest_value(i) then
15: Pbest_value = F(NewPosition(i))
16: Pbest_position = NewPosition(i)
17: if F(NewPosition(i)) < Gbest_value(i) then
18: Gbest_value = F(NewPosition(i))
19: Gbest_position = NewPosition(i)
20: i = i + 1
21: end if
22: end if
23: end for

Complete process of TBBPSO

To describe the TBBPSO more clearly, the schematic diagram of TBBPSO is given in Fig 1, the

flowchart of TBBPSO is shown in Fig 2, the pseudo-code of the TBBPSO is given in Algorithm

4.

Algorithm 4: TBBPSO-main
Require: Fitness function, F
Require: Search Space, R
Require: Particle swarm X = x1, x2, . . ., xn

Fig 1. Schematic diagram of TBBPSO. Phase 1: All particles are in a same group, TGO is used to generate twins; in each twin, one particle is the group

leader and the other one is the teammate; one twin will be selected as the MLG; go to Phase2. Phase 2: In each iteration, the MLG will merge one twin using

MO. When all twins are in the MLG, go to Phase 1.

https://doi.org/10.1371/journal.pone.0267197.g001
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Require: Number of local groups, NLG
Require: Main-local-group, MLG
Require: Sub-local-group, SLG
Require: Max iteration times, T
1: t = 1, NLG = 1
2: while t < T do
3: if NLG = 1 then
4: Run Algorithm 2
5: else
6: Run Algorithm 3
7: end if
8: t = t + 1
9: end while
10: Output Gbest_value
11: Output Gbest_position

Experiments and results

Experimental methods

To verify the optimization ability of the TBBPSO, the CEC 2014 benchmark functions

(CEC2014BF) [38] are used in the experiments. Details of the CEC2014BF can be found in

Table 1. The, BBPSO [17], PBBPSO [34] and DLS-BBPSO [35] are selected into the control

group. To make a fair competition, all algorithms use the same population size, iteration times,

and best parameters in their original papers. All tests are repeated 31 times and the average

results are recorded to reduce accidental errors,. The population size for all algorithms is 100,

dimension is 50, max generation time is 1.000E+4. The Measurement Error (ME) is defined as

|final gbest value − Theoretically optimal|.

Fig 2. The flowchart of TBBPSO.

https://doi.org/10.1371/journal.pone.0267197.g002
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Experiments with top BBPSO-based method

The FHBBPSO [37], one of the top BBPSO-based methods is selected to compare with

TBBPSO. These two methods run on the Rotaten High Conditioned Elliptic Function 31

times, the population size of the two methods is 100, dimension is 50, max iteration times is

1000, and the mean MEs are shown in Table 2. It can be seen that at 100 and 200 iterations, the

results of the two methods are very close. After one 1000 iterations, the result of TBBPSO is

22.16% smaller than that of FHBBPSO. It can be assumed that TBBPSO has a clear advantage

in this set of experiments.

Experimental results with complete set of benchmark functions

MEs are displayed in Tables 3 and 4. In 30 benchmark functions, TBBPSO ranked first in 12

functions and ranked second in 12 functions. In each benchmark function, the algorithm with

Table 1. Experimental functions, the CEC 2014 benchmark functions, the search range for each function is

(-100,100) [38].

Types Function Theoretically

Optimal

Unimodal Functions f1 = Rotaten High Conditioned Elliptic Function 100

f2 = Rotated Bent Cigar Function 200

f3 = Rotated Discus Function 300

Simple Multimodal

Functions

f4 = Shifted and Rotated Rosenbrock’s Function 400

f5 = Shifted and Rotated ACKLEY’s Function 500

f6 = Shifted and Rotated Weierstrass’s Function 600

f7 = Shifted and Rotated Griewank’s Function 700

f8 = Shifted Rastrigin’s Function 800

f9 = Shifted and Rotated Rastrigin’s Function 900

f10 = Shifted Schwefel’s Function 1000

f11 = Shifted and Rotated Schwefel’s Function 1100

f12 = Shifted and Rotated Katsure Function 1200

f13 = Shifted and Rotated HappyCat Function 1300

f14 = Shifted and Rotated HGBat Function 1400

f15 = Shifted and Rotated Expanded Griewank’s plus

Rosenbrock’s Function

1500

f16 = Shifted and Rotated Expanded Scaffer’s F6 Function 1600

Hybrid Functions f17 = Hybrid Function 1 (N = 3) 1700

f18 = Hybrid Function 2 (N = 3) 1800

f19 = Hybrid Function 3 (N = 4) 1900

f20 = Hybrid Function 4 (N = 4) 2000

f21 = Hybrid Function 5 (N = 5) 2100

f22 = Hybrid Function 6 (N = 5) 2200

Composition Functions f23 = Composition Function 1 (N = 5) 2300

f24 = Composition Function 2 (N = 3) 2400

f25 = Composition Function 3 (N = 3) 2500

f26 = Composition Function 4 (N = 5) 2600

f27 = Composition Function 5 (N = 5) 2700

f28 = Composition Function 6 (N = 5) 2800

f29 = Composition Function 7 (N = 3) 2900

f30 = Composition Function 8 (N = 3) 3000

https://doi.org/10.1371/journal.pone.0267197.t001
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the first rank will get 1 point, the second rank will get 2 points, the third rank will get 3 points

and the fourth rank will get 4 points. The average rank point of TBBPSO is 1.900, the best of

the four optimization algorithms. The Friedman statistic test [22] is also implemented and

average rank results are shown in Table 4.

Specifically, numerical analyses are listed below:

• In f1, TBBPSO gains the first rank, the results of TBBBOS are 12.88% better than results

from DLS-BBPSO, the second-best algorithm.

• In f2, TBBPSO gains the second rank, the results of TBBBOS are 44.87% worse than results

from PBBPSO, the best algorithm.

• In f3, TBBPSO gains the second rank, the results of TBBBOS are 86.22% worse than results

from BBPSO, the best algorithm.

• In f4, TBBPSO gains the fourth rank, the results of TBBBOS are 25.40% worse than results

from BBPSO, the best algorithm.

• In f5, TBBPSO gains the first rank, the results of TBBBOS are 0.04% better than results from

DLS-BBPSO, the second-best algorithm.

• In f6, TBBPSO gains the second rank, the results of TBBBOS are 9.68% worse than results

from BBPSO, the best algorithm.

• In f7, TBBPSO gains the second rank, the results of TBBBOS are 71.43% worse than results

from DLS-BBPSO, the best algorithm.

• In f8, TBBPSO gains the first rank, the results of TBBBOS are 1.01% better than results from

PBBPSO, the second-best algorithm.

• In f9, TBBPSO gains the second rank, the results of TBBBOS are 8.63% worse than results

from DLS-BBPSO, the best algorithm.

• In f10, TBBPSO gains the third rank, the results of TBBBOS are 12.87% worse than results

from PBBPSO, the best algorithm.

• In f11, TBBPSO gains the first rank, the results of TBBBOS are 2.70% better than results from

BBPSO, the second-best algorithm.

• In f12, TBBPSO gains the first rank, the results of TBBBOS are 15.77% better than results

from BBPSO, the second-best algorithm.

• In f13, TBBPSO gains the first rank, the results of TBBBOS are 8.03% better than results from

DLS-BBPSO, the second-best algorithm.

• In f14, TBBPSO gains the first rank, the results of TBBBOS are 19.11% better than results

from BBPSO, the second-best algorithm.

• In f15, TBBPSO gains the second rank, the results of TBBBOS are 0.68% worse than results

from DLS-BBPSO, the second-best algorithm.

Table 2. MEs of TBBPSO and FHBBPSO.

Function 100 iterations 200 iterations 300 iterations 500 iterations 1000 iterations

FHBBPSO 1.208E+09 4.273E+08 2.305E+08 1.251E+08 5.5299E+07

TBBPSO 1.196E+09 3.315E+08 1.724E+08 9.117E+07 4.3047E+07

https://doi.org/10.1371/journal.pone.0267197.t002
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Table 3. Experimental Results, ME of BBPSO, PBBPSO, DLS-BBPSO and TBBPSO for f1–f15. Mean is the mean value from 31 independent runs, STD is the standard

deviation of the 31 runs, Rank is the rank of 4 algorithms.

Function Number Data Tpye BBPSO [17] PBBPSO [34] DLS-BBPSO [35] TBBPSO

f1 Mean 7.519E+06 7.383E+06 6.432E+06 5.603E+06

STD 3.725E+06 4.026E+06 2.599E+06 2.618E+06

Rank 4 3 2 1

f2 Mean 2.689E+04 1.748E+04 2.668E+04 2.532E+04

STD 2.943E+04 2.104E+04 3.843E+04 2.424E+04

Rank 4 1 3 2

f3 Mean 1.420E+03 3.148E+03 3.379E+03 2.644E+03

STD 1.322E+03 2.732E+03 3.734E+03 3.464E+03

Rank 1 3 4 2

f4 Mean 5.621E+01 5.846E+01 6.059E+01 7.049E+01

STD 2.434E+01 2.435E+01 3.290E+01 3.537E+01

Rank 1 2 3 4

f5 Mean 2.112E+01 2.112E+01 2.111E+01 2.104E+01

STD 3.240E-02 3.240E-02 4.150E-02 5.360E+01

Rank 3 4 2 1

f6 Mean 3.476E+01 5.288E+01 4.043E+01 3.813E+01

STD 4.688E+00 1.600E+01 1.362E+01 6.719E+00

Rank 1 4 3 2

f7 Mean 6.500E-03 1.090E-02 3.500E-03 6.000E-03

STD 8.500E-03 1.260E-02 6.500E-03 6.800E-03

Rank 3 4 1 2

f8 Mean 1.137E+02 1.017E+02 1.048E+02 1.007E+02

STD 2.345E+01 2.116E+01 1.537E+01 1.970E+01

Rank 4 2 3 1

f9 Mean 2.471E+02 2.550E+02 2.154E+02 2.340E+02

STD 6.196E+01 7.284E+01 7.018E+01 6.264E+01

Rank 3 4 1 2

f10 Mean 2.025E+03 1.738E+03 1.847E+03 1.962E+03

STD 3.967E+02 4.929E+03 5.216E+02 4.781E+02

Rank 4 1 2 3

f11 Mean 7.509E+03 1.171E+03 1.078E+04 7.306E+03

STD 3.482E+03 3.953E+03 4.264E+04 2.791E+03

Rank 2 4 3 1

f12 Mean 2.942E+00 3.181E+00 3.202E+00 2.478E+00

STD 8.531E-01 2.635E-01 2.530E-01 7.542E-01

Rank 2 3 4 1

f13 Mean 5.539E-01 5.598E-01 5.518E-01 5.075E-01

STD 1.087E-01 8.210E-02 8.800E-02 8.530E-02

Rank 3 4 2 1

f14 Mean 5.391E-01 5.597E-01 5.933E-01 4.361E-01

STD 2.784E-01 2.851E-01 2.809E-01 2.441E-01

Rank 2 3 4 1

f15 Mean 1.553E+01 1.747E+01 1.381E+01 1.474E+01

STD 4.246E+00 4.542E+00 5.512E+00 4.344E+00

Rank 3 4 1 2

https://doi.org/10.1371/journal.pone.0267197.t003
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Table 4. Experimental Results, ME of BBPSO, PBBPSO, DLS-BBPSO and TBBPSO for f16–f30. Mean is the mean value from 31 independent runs, STD is the standard

deviation of the 31 runs, Rank is the rank of 4 algorithms. Average rank point is at the bottom of the table.

Function Number Data Tpye BBPSO [17] PBBPSO [34] DLS-BBPSO [35] TBBPSO

f16 Mean 2.074E+01 2.179E+01 2.128E+01 2.139E+01

STD 8.171E-01 1.069E+00 1.237E+00 7.566E-01

Rank 1 4 2 3

f17 Mean 1.119E+06 1.058E+06 1.128E+06 9.136E+05

STD 7.997E+05 6.223E+05 9.273E+05 5.381E+05

Rank 3 2 4 1

f18 Mean 6.771E+03 7.806E+03 7.029E+03 7.999E+03

STD 6.571E+03 1.152E+04 6.943E+03 1.145E+04

Rank 1 3 2 4

f19 Mean 3.596E+01 4.385E+01 3.401E+01 3.584E+01

STD 1.420E+01 2.421E+01 1.096E+01 1.485E+01

Rank 3 4 1 2

f20 Mean 7.135E+03 1.926E+04 1.790E+03 1.023E+04

STD 6.152E+03 1.586E+04 1.514E+04 9.197E+03

Rank 1 4 3 2

f21 Mean 4.630E+05 5.050E+05 5.290E+05 4.027E+05

STD 2.721E+05 4.460E+05 3.772E+05 2.398E+05

Rank 2 3 4 1

f22 Mean 1.192E+03 1.462E+03 1.134E+03 1.091E+03

STD 3.898E+02 3.851E+02 3.643E+02 2.788E+02

Rank 3 4 2 1

f23 Mean 3.370E+02 3.370E+02 3.370E+02 3.370E+02

STD 0.000 0.000 0.000 0.000

Rank 1 1 1 1

f24 Mean 2.633E+02 2.616E+02 2.631E+02 2.647E+02

STD 8.509E+00 1.178E+00 8.474E+00 0.522E+00

Rank 3 1 2 4

f25 Mean 2.009E+02 2.009E+02 2.009E+02 2.008E+02

STD 0.303E+00 0.275E+00 0.305E+00 0.273E+00

Rank 4 2 3 1

f26 Mean 1.005E+02 1.006E+02 1.005E+02 1.005E+02

STD 0.101E+00 0.071E+00 0.081E+00 0.107E+00

Rank 1 4 3 2

f27 Mean 1.269E+03 1.892E+03 1.407E+03 1.435E+03

STD 1.169E+02 3.309E+02 2.380E+02 2.206E+02

Rank 1 4 2 3

f28 Mean 3.934E+02 3.934E+02 3.867E+02 3.889E+02

STD 1.541E+01 1.579E+01 1.342E+01 1.455E+02

Rank 3 4 1 2

f29 Mean 2.246E+02 2.295E+02 2.267E+02 2.253E+02

STD 2.083E+01 2.708E+01 1.576E+01 2.032E+01

Rank 1 4 3 2

f30 Mean 1.320E+03 1.275E+03 1.203E+03 1.246E+03

STD 2.824E+02 3.359E+02 2.455E+02 3.227E+02

Rank 4 3 1 2

Average Rank 2.400 3.100 2.400 1.900

https://doi.org/10.1371/journal.pone.0267197.t004
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• In f16, TBBPSO gains the third rank, the results of TBBBOS are 3.13% worse than results

from BBPSO, the best algorithm.

• In f17, TBBPSO gains the first rank, the results of TBBBOS are 13.63% better than results

from PBBPSO, the second-best algorithm.

• In f18, TBBPSO gains the fourth rank, the results of TBBBOS are 18.13% worse than results

from BBPSO, the best algorithm.

• In f19, TBBPSO gains the second rank, the results of TBBBOS are 5.39% worse than results

from DLS-BBPSO, the best algorithm.

• In f20, TBBPSO gains the second rank, the results of TBBBOS are 43.42% worse than results

from BBPSO, the best algorithm.

• In f21, TBBPSO gains the first rank, the results of TBBBOS are 13.02% better than results

from BBPSO, the second-best algorithm.

• In f22, TBBPSO gains the first rank, the results of TBBBOS are 3.78% better than results from

DLS-BBPSO, the second-best algorithm.

• In f23, four algorithms give the same results, which means 4 algorithms are trapped by the

local minimal and unable to escape.

• In f24, TBBPSO gains the fourth rank, the results of TBBBOS are 1.18% worse than results

from PBBPSO, the best algorithm.

• In f25, TBBPSO gains the first rank, the results of TBBBOS are 0.06% better than results from

PBBPSO, the second-best algorithm.

• In f26, TBBPSO gains the second rank, the results of TBBBOS are 0.01% worse than results

from BBPSO, the best algorithm.

• In f27, TBBPSO gains the third rank, the results of TBBBOS are 13.05% worse than results

from BBPSO, the best algorithm.

• In f28, TBBPSO gains the second rank, the results of TBBBOS are 0.587% worse than results

from DLS-BBPSO, the best algorithm.

• In f29, TBBPSO gains the second rank, the results of TBBBOS are 0.32% worse than results

from BBPSO, the best algorithm.

• In f30, TBBPSO gains the second rank, the results of TBBBOS are 3.61% worse than results

from DLS-BBPSO, the best algorithm.

Compared with traditional methods, TBBPSO is more reliable and more robust. The MO

and the TGO work together to cross the local minimal and search for high precision results.

To perform the convergence situation across iterations, the ME in different iterations for

BBPSO, PBBPSO, DLS-BBPSO, and TBBPSO is shown in Figs 3–32. The scale on the vertical

axis represents the value of ME. The scale on the horizontal axis represents iteration times, 100

on the horizontal axis represents 10,000 iterations.

Discussion and future works

The main reason that TBBPSO can provide high precision results for test functions is that the

TGO divides the original swarm into several local groups. This process increases the diversity

of the swarm and enhances exploration. The MO makes the main local group merge one local
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group per iteration while the rest local groups can keep doing a local search. These processes

increase the exploitation.

The overall effectiveness (OE) [21] of TBBPSO and other algorithms in the control group is

computed by results in Tables 3 and 4. The OE is calculated by Eq 4.

OE ¼
N � L
N
� 100% ð4Þ

where N is the number of test functions, L is the number of times the target algorithm loses in

the competition. Results pf OE is shown in Table 5. Four algorithms tie in f23. It can be seen

that TBBPSO has the best performance.

Fig 3. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f1, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g003

Fig 4. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f2, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g004
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In the last iteration, all the particles are concentrated at one point, so it is impossible to find

a solution with a better position. How to maintain the diversity of the particle population even

after very long iterations will be the main direction of future work. The TGO-MO corporation

pattern works well in single-objective optimizations. Another direction of the future work is to

apply this work pattern to multi-objective optimization problems.

Conclusions

A TBBPSO is proposed in this paper to solve single-objective optimization problems. The

TBBPSO works by re-organizing the structure of the particle swarm. The TGO and MO

Fig 6. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f4, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g006

Fig 5. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f3, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g005
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cooperate to prevent the particle swarm from losing diversity too fast. The TBBPSO presents

high-precision results when handling CEC 2014 benchmark functions. The main reason is the

cooperation of the TGO and the MO. The TGO divides the particle swarm into several calcula-

tion units, the twins. Each twin contains two particles playing different roles. The particle with

a better personal best position plays as the team leader, the other one plays as the team mem-

ber. Different evolution strategies apply to different roles. Then one twin will be selected as the

main local group (MLG) and the other twins will be sub-local groups (SLGs). This strategy can

increase the diversity of the particle swarm and give the swarm more chance to escape from

local minimums. In the MO, the MLG will merge one SLG in every iteration. With the increase

of the population, the local search capability of the MLG is increased. At the same time, other

SLGs will search independently of each other to ensure the swarm keeps the ability to escape

from local minimums. When all SLGs are merged by the MLS, all particles are in the same

Fig 7. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f5, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g007

Fig 8. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f6, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g008
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Fig 10. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f8, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g010

Fig 9. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f7, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g009
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Fig 12. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f10, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g012

Fig 11. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f9, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g011
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Fig 13. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f11, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g013

Fig 14. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f12, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g014
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Fig 16. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f14, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g016

Fig 15. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f13, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g015
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Fig 18. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f16, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g018

Fig 17. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f15, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g017
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Fig 19. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f17, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g019

Fig 20. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f18, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g020
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Fig 21. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f19, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g021

Fig 22. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f20, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g022
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Fig 24. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f22, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g024

Fig 23. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f21, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g023
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Fig 26. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f24, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g026

Fig 25. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f23, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g025
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Fig 28. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f26, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g028

Fig 27. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f25, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g027
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Fig 30. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f28, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g030

Fig 29. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f27, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g029
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Fig 32. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f30, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g032

Fig 31. Comparison of convergence speed between BBPSO, PBBPSO, DLS-BBPSO and TBBPSO, f29, (a) iteration 0–6000, (b) iteration 6000–10000 the

unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0267197.g031

Table 5. OE Results of BBPSO, PBBPSO, DLS-BBPSO and TBBPSO.

Dimension BBPSO [17] PBBPSO [34] DLS-BBPSO [35] TBBPSO

OE 33.33$ 13.33% 23.33% 40.00%

https://doi.org/10.1371/journal.pone.0267197.t005
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group and the algorithm goes to the TGO. This process is simple and fast, no parameter, con-

gestion, or threshold is needed, and the time complexity is o(n).
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