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Abstract

The development of pulmonary hypertension (PH) is common and has adverse prognostic 

implications in patients with heart failure due to left heart disease (LHD), and thus far there 

are no known treatments specifically for PH-LHD, also known as Group 2 PH. Diagnostic 

thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and 

therefore present a challenge for basic and translational scientists actively investigating PH-LHD 

in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, 

although pulmonary vascular remodeling is thought to result from (1) increased wall stress due 

to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in 

the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury 

to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk 

factors. To ultimately be able to modify disease, either by prevention or treatment, a better 

understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities 

in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications 

(including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here 

we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential 

biological mechanisms underlying this disorder, and pressing questions yet to be answered about 

the pathobiology of PH-LHD.
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INTRODUCTION

Left heart disease (LHD) affects nearly 10% of the population over the age of 20 years 

in the United States with coronary disease as the leading cause of death.1 Heart failure 

(HF), the end result of LHD, has a prevalence of 5.4% in the US with a growing burden 

of disease with the aging of the population.2, 3 HF as a clinical syndrome is divided into 

two primary classifications, HF with preserved ejection fraction (HFpEF) in which the left 

ventricular ejection fraction (LVEF) >40% and HF with reduced ejection fraction (HFrEF) 

in which LVEF is ≤ 40%.4 There is a growing move to subgroup patients with LVEF 

41–49% as HF with mildly reduced (HFmrEF), although this population (particularly those 

with LVEF >45%) has been included in the epidemiologic, pathophysiologic, and clinical 

trial studies of HFpEF.. Of hospitalized patients with HF, HFpEF is at least 40%, and 

approximately half of the HF population in the community has HFpEF.5–10 HF is a highly 

morbid and mortal syndrome; both HFpEF and HF with reduced ejection fraction (HFrEF) 

are associated with a strikingly high 35% one-year mortality and HF readmission rates range 

from 18–30%.11–13 The development of concomitant pulmonary hypertension (PH) marks 

a significant event in the HF disease process with important survival implications.14 LHD, 

and specifically HF syndromes, make up the majority of patients with PH, comprising up 

to 80% of cases.15, 16 The most common etiologies of PH associated with LHD (World 

Health Organization Group 2 PH) in contemporary clinical practice are HFpEF and HFrEF, 

whereas mitral stenosis, in which Group 2 PH was initially described, is now relatively 

rare in developed countries. We therefore focus on Group 2 PH associated with HFpEF and 

HFrEF (PH-LHD). Despite the high prevalence of HF, the pathobiology of PH-LHD is not 

well understood, and preclinical models of PH-LHD typically do not investigate the full 

spectrum of hemodynamic PH-LHD phenotypes. Here we review the various hemodynamic 

phenotypes in patients with PH-LHD, the potential biological mechanisms underlying this 

disorder, and the highest priority unanswered questions.

DEFINING GROUP 2 PULMONARY HYPERTENSION

The 2018 World Symposium on PH updated the hemodynamic definitions of disease with 

a focus on the location of disease in the pulmonary vascular bed.17 The recommendations 

incorporated hemodynamic thresholds for defining PH based on normative data rather than 

expert opinion by reducing the mean pulmonary arterial (PA) pressure (mPAP) indicative of 

PH to ≥20mmHg.17, 18 In addition, the 2018 World Symposium highlighted the facts that 

pre-capillary pulmonary hypertension (defined as pulmonary vascular resistance [PVR] ≥ 

3 Wood units) occurs in patients with PH-LHD and that combined pre- and post-capillary 

PH (Cpc-PH) represents a relatively common hemodynamic phenotype in clinical practice. 

Currently Group 2 PH is defined in two forms: (1) Cpc-PH (previously termed PH “out of 

proportion” to LHD) identified as a mPAP ≥20mmHg, PVR ≥3 Wood units, and PA wedge 

pressure (PAWP; a surrogate for left atrial [LA] pressure) >15 mmHg and (2) predominant 

pulmonary venous hypertension also known as isolated post-capillary PH (Ipc-PH), in which 

mPAP is ≥20mmHg, PAWP is >15 mmHg but PVR is less than 3 Wood units (Table 1).17

The recent evolution of the definition of Group 2 PH is an improvement; however, several 

gaps in our understanding of its diagnosis remain. The 2018 diagnostic criteria use PAWP 
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as the primary measure of left sided filling pressures and indicator of hemodynamic 

congestion. Clinically PAWP and LV end diastolic pressure (LVEDP) have historically been 

used interchangeably; however, multiple studies have shown that the two measurements 

frequently differ, and the 2 hemodynamic indices have different meanings.19–22 Variable 

agreement between LVEDP and PAWP is demonstrated by only a moderate correlation 

(R2=0.42) and impacted by the presence of atrial fibrillation, a comorbidity often seen in 

clinical practice.21 The reliability of the measures of hemodynamic congestion are essential 

to the diagnosis of pre- versus post-capillary PH, and the ultimate implementation of 

therapies.20 Rather than using these hemodynamic values interchangeably it is important 

to recognize that these two values measure different entities, even in the absence of mitral 

valvular disease or arrhythmia. Although LVEDP is often considered the gold standard 

for the hemodynamic diagnosis of LHD during the evaluation of patients with PH, PAWP 

reflects the health of the LA and is a more accurate representation of what pressures the 

pulmonary capillary bed sees over time. A true PAWP (as opposed to a partially damped 

PA pressure tracing) is easily confirmed during right heart catheterization if PAWP blood 

oxygen saturation is equal to systemic arterial oxygen saturation. When measured properly, 

PAWP is therefore a more inclusive assessment of chronic hemodynamic congestion 

reflecting the reaction of the LA to chronic pressure load, LA remodeling, and changes 

in LA compliance that develop over time.23

The LA response and adaptation to hemodynamic congestion is not universal between 

HF syndromes; HFpEF demonstrates a greater degree LA stiffness while HFrEF results 

in predominantly eccentric LA remodeling.24 LA dysfunction is associated with the 

development of PH and right ventricular dysfunction in both HFpEF and HFrEF.24 

Impairment of LA function has prognostic value in the HFpEF population, marking an 

inability of the LA to buffer the pulmonary circulation against changes in LV pressure.19, 25 

LA strain is impaired in both HFpEF and HFrEF.26 Clinically, LA strain, which is emerging 

as an easy-to-measure, reproducible measure of LA function that may have clinical and 

research utility, is divided into 3 phases: reservoir (LA filling during LV systole), conduit 

(LA passive emptying into the LV during early LV diastole), and booster (LA contraction at 

LV end-diastole).27, 28 Clinically LA dysfunction and congestion likely determines treatment 

responses to pulmonary vasodilators, as increased blood flow through the pulmonary bed 

may result in increased pulmonary congestion in the setting of a stiff, non-compliant LA. 

Decongestion with diuretics and systemic afterload reduction may help offset increased 

blood flow into the LA but ultimately degree of LA remodeling when pulmonary vasodilator 

therapies are implemented may prohibit significant symptomatic benefit especially given LA 

dysfunction is seen early in the left heart disease process.29 Other than treatment of atrial 

arrhythmias and anticoagulation, therapeutic options of LA dysfunction are non-existent 

at the present time.30 Atrial arrhythmias are clearly associated with worse outcomes and 

RV function in HFpEF.31, 32 Restoration of sinus rhythm by atrial fibrillation ablation 

has morbidity and mortality benefit in HF, but it is unclear what effect restoration of 

sinus rhythm has on development and severity of pulmonary hypertension, particularly 

when treatment of atrial arrhythmias only improves electrical function and not mechanical 

function of the LA.33–35 A more complete understanding of alterations LA structure and 
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function in response to HFpEF and HFrEF is essential to determining risk for development 

of PH, differences between hemodynamic PH subtypes in HF, and potential therapeutics.

The diastolic pressure gradient (DPG), calculated as the difference between PA diastolic 

pressure and PAWP, and transpulmonary gradient (TPG), calculated as the difference 

between mPAP and PAWP, were previously key to PH diagnosis in patients with LHD 

and remain relevant despite their absence from the most recent diagnostic criteria in 

consensus guidelines. Elevated TPG and PVR in end-stage HF indicate worse prognosis 

and can prohibit cardiac transplantation.36 The differentiation between Ipc-PH and Cpc-PH, 

or “reactive” versus “fixed” PH in end stage HFrEF is a critical part of the cardiac transplant 

evaluation. Often a systemic vasodilator study is recommended for those patients with PA 

systolic pressure ≥50 mmHg, TPG ≥15mmHg, or PVR ≥3 WU if systemic systolic blood 

pressure is >85 mmHg to determine severity of PH and improvement in these indices with 

reduction in systemic afterload.37 Assessment of the degree of pulmonary vascular disease 

can be especially problematic in patients with severe, concomitant right-sided HF, where the 

right ventricle is unable to mount significant pulmonary pressures. Presumably the use of 

PVR partially overcomes this issue by incorporating the cardiac output into assessment of 

the pulmonary vascular disease; however, hemodynamic loading, congestion, and pulmonary 

vessel recruitment can all impact the TPG and DPG, although DPG less so.38 None of 

the currently used variables provide a complete understanding of the degree of pulmonary 

vascular disease present in PH-LHD, and these nuances in the diagnostic criteria of PH-LHD 

are not typically considered in pre-clinical models of PH-LHD.

HEMODYNAMIC PHENOTYPES OF PH-LHD

Theoretical pathophysiologic models of PH-LHD often show the LHD process (with both 

HFpEF and HFrEF combined) as a continuum of advancing severity of disease that starts 

with Ipc-PH and evolves into a pre-capillary component due to vascular remodeling and/or 

vasoconstrictive response to hemodynamic loading. This load occurs when hemodynamic 

congestion, an increase in LVEDP and LA pressure, progresses to pulmonary congestion 

with an increase in extravascular fluid in the lungs, and systemic congestion in series.39 The 

current progressive model of PH-LHD does not have clear longitudinal hemodynamic data 

to support it, and evidence has emerged that patients with Cpc-PH have overlapping features 

with PAH.40, 41 This overlap may indicate that some patients have an accelerated course that 

leads to Cpc-PH or have a predisposition to develop pre-capillary disease simultaneously 

with LHD. Proposed phenotypes of PH-LHD, and their relatedness to each other, are 

outlined in Figure 1.

Since in the initial World Symposium on PH, much of the subgrouping, phenotyping, and 

implementation of therapy has been made under the assumption that patients have PH of one 

type or the other (pre-capillary vs. post-capillary) in isolation. In clinical practice rare is the 

patient who presents to the clinic or the hospital with isolated pre-capillary PH without other 

risk factors for LHD. The prevalence of obesity, sleep apnea, atrial fibrillation, hypertension, 

tobacco use, and diabetes, even in those younger than 50, means a significant proportion 

of the population inevitably has one or two risk factors for LHD.42–44 The pervasiveness 

of these risk factors in the general population indicate that PAH and LHD cannot be 
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mutually exclusive, especially in patients with connective tissues diseases that are potent risk 

factors for both LHD and PAH. The reliance on one set of (variable and relatively poorly 

understood) hemodynamic data, taken almost in isolation without consideration of pre-test 

probability and overlapping disease processes has resulted in very strict definitions of those 

patients that are offered therapy for PAH. There is clear data of demographic, hemodynamic, 

and genetic similarities between populations of patients with PH-LHD (particularly the 

Cpc-PH phenotype) and PAH.40, 41 PH-LHD patients with evidence of pulmonary vascular 

disease (PVR≥3 Wood Units) have worse prognosis, and as such these changes in pulmonary 

vascular function and structure may be markers of divergent pathophysiology and may serve 

as potential therapeutic targets.16 Subgrouping PH-LHD into those with PAH risk factors 

may help differentiate a population of patients distinct from those with primarily congestion-

driven PH. Figure 1 summarizes the 2 divergent theoretical models of PH-LHD (progressive 

continuum vs. risk factor overlap), which is relevant to the basic and translational scientific 

investigation of PH-LHD.

STRUCTURAL AND FUNCTIONAL CHANGES IN PULMONARY 

HYPERTENSION

Chronic hemodynamic congestion is believed to progressively drive structural and functional 

changes in the LA and pulmonary vasculature. In response to pressure and volume overload 

the LA dilates, and alterations in cardiomyocyte structure and mechanical function occur, 

which result in LA mechanical dysfunction. Ultimately, LA stiffness increases, and the 

function of the LA as a pressure and volume buffering reservoir between the LV and 

pulmonary circulation is impaired.24, 45 Loss of LA function (particularly loss of LA 

reservoir function—the ability of the LA to fill from the pulmonary veins during ventricular 

systole) correlates with lower PA compliance and higher PVR in the setting of HF46 (Figure 

2), with loss of LA compliance precipitating increases in PA stiffness.24 PA stiffness directly 

correlates to the severity of right ventricular dysfunction, indicative that right ventricular 

dysfunction in this population is impacted by both afterload (PVR) and pulsatile load (PA 

stiffness), of which pulsatile load appears to have a larger impact.47, 48 These changes 

effectively switch the pulmonary vasculature from a low pressure, high compliance system 

to relatively high-pressure, low compliance system. However, some data departs from 

this theory as Cpc-PH had less severe cardiac structural remodeling on echocardiography 

compared to Ipc-PH in a large electronic health record-based cohort.40 Patients with Cpc-PH 

had smaller LA and ventricular dimensions and less LV hypertrophy (smaller LV mass and 

lower LV thickness) on echocardiography compared to Ipc-PH.16, 40 The lesser severity 

of these structural changes raise the question of a potential predisposition or increased 

sensitivity of the pulmonary vasculature to congestive stress, where small changes in 

diastolic function have a larger impact in Cpc-PH patients. Alternatively, in some Cpc-PH 

patients, elevated PVR may occur first, thereby resulting in reduced blood flow to the 

LA and LV, and PAWP increases later due to LHD risk factors. Finally, misdiagnosis is 

also a possibility in retrospective electronic health record-based cohorts, which may have 

explained the aforementioned findings.
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Molecular, functional, and structural changes in the pulmonary vasculature in response 

to reduced LA compliance and the resultant increase in hemodynamic stress is initially 

adaptive, but continued pulmonary vascular wall stress appears to drive maladaptive and 

pathologic changes. Changes in PA compliance coincide with loss of elastin and expansion 

of the extracellular matrix in both animal models of PH-LHD patients.49, 50 These structural 

changes are suspected to be related to “stress failure” or pressure injury of the capillary 

wall.51 Edema-driven injury to this alveolar-capillary interface in animal models activates 

matrix metalloproteinases, reducing the strength and increasing the permeability of the 

vascular endothelium.52, 53 Patients with acute cardiogenic pulmonary edema have elevated 

circulating levels of pulmonary surfactant proteins that leak across a stressed or disrupted 

alveolar-capillary interface.54, 55 Despite treatment and resolution of acute pulmonary 

edema, circulating pulmonary surfactant proteins remain elevated for up to 2 weeks 

indicating a persistent disruption of the alveolar-capillary interface.56 Along with pulmonary 

surfactant, circulating tumor necrosis factor-α (TNF-α) is elevated in acute pulmonary 

edema and similarly persist beyond clinical resolution. These findings suggest that injury to 

the capillary-alveolar interface persists past resolution of cardiogenic pulmonary edema due 

to LHD and may have the potential to trigger systemic inflammation.

Histologic structural modifications in the pulmonary vasculature occur frequently in PH-

LHD, similar to vascular findings first described in severe mitral stenosis patients which 

manifested as pulmonary arteriopathy and venopathy.57, 58 Autopsy specimens of lung 

parenchyma in chronic HF patients show evidence of “congestive vasculopathy” with 

vascular remodeling across the spectrum of the pulmonary vascular bed.59, 60 Venous, 

capillary, and arterial remodeling are a result of LA hypertension and driven by adaptive 

and maladaptive pathways in the lung vasculature.61, 62 Wall stress is increased in pressure-

loaded vasculature and drives structural changes in the vessels to accommodate stress, 

resulting in vasodilation and increased vessel wall thickness. Autopsy specimens from 

patients with PH-LHD demonstrate increased intimal and medial thickness in pulmonary 

arteries and veins compared to healthy controls but less structural changes than those seen 

in pulmonary veno-occlusive disease (Figure 3).60 More severe elevation of PA systolic 

pressure in PH-LHD correlated with greater degrees of arterial and venous remodeling 

with a greater percentage of arterialized veins in PH-LHD compared to pulmonary veno-

occlusive disease (Figure 3). A separate examination of muscular arteries in patients with 

PH-LHD (defined as PA systolic pressure >30 mmHg or mPAP ≥19 mmHg) in patients with 

HFrEF who had undergone cardiac transplantation showed increased medial thickness in 

all patients without significant intimal fibrosis, although medial thickness did not correlate 

with post-transplant hemodynamics.59 A study of HFrEF patients with lung biopsy at time 

of LV assist device (LVAD) demonstrated increased volume of vascular media, intima, and 

adventitia in arteries and veins compared to controls.50 In some cases, the LVAD PH-LHD 

patients had media and intimal remodeling that nearly occluded the lumen indicative of the 

severe structural vessel changes that may occur in the setting of PH-LHD.

The differentiation between adaptive and maladaptive structural changes in PH-LHD is not 

well defined. The LA is sensitive to pressure and volume elevations and responds quickly to 

these hemodynamic derangements. A canine model of HFpEF demonstrated early adaptive 

response of the LA to pressure and volume stress with LA dilatation and augmented 
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contractile function.63 However, with continued hemodynamic stress the pressure-volume 

relationship of the LA changes and LA compliance decreases, at which time these responses 

shift to maladaptive.63 These LA changes result in atrioventricular uncoupling and impaired 

cardiac output due to reduced LV stroke volume. Reduction of LA compliance impairs its 

reservoir function which buffers the pulmonary vascular bed from increased LV pressures; 

the resultant elevation in LA pressure results in a shift of the PVR/pulmonary arterial 

compliance (CPA) relationship to a state where compliance is lower at any given PVR. 48 

Early mitigation of LA hypertension can modify these vascular changes, preventing the 

histologic pulmonary vascular remodeling and changes in pulmonary hemodynamics.64 The 

exposure of the pulmonary vascular bed exposure to hemodynamic stress drives pulmonary 

venous, capillary, and arterial remodeling, with impaired endothelial function, fibrosis, and 

smooth muscle proliferation. 60 These changes prove to be maladaptive, as even with relief 

of LA hypertension the abnormalities in PVR and CPA persist.64

There is evidence of genetic overlap between PAH and the Cpc-PH subset (but not Ipc-

PH) that may contribute to the severity of pulmonary vascular disease. Single nucleotide 

polymorphisms (SNPs) resulting in increased lung gene expression of various proteins 

that have been identified in PAH have also been demonstrated in Cpc-PH.40 These SNPs 

encode modifications of extracellular matrix, basement membrane structure, as well as 

modifications in actin binding and structural molecular activity. These genetic variants were 

not found in Ipc-PH, suggesting that there may be a separate genetic subgroup predisposed 

to the Cpc-PH pattern of PH-LHD. These findings suggest the potential for a “two-hit 

hypothesis” where development of pre-capillary PH in the setting of LHD requires a second 

insult (e.g., genetic, metabolic, or hormonal) that predisposes to pulmonary arteriopathy. 

Below we outline the data surrounding potential influential contributors to pulmonary 

vascular disease in the setting of PH-LHD disease.

ANIMAL MODELS OF PH-LHD

Few animal models of PH-LHD exist, in HFpEF specifically the variability of human 

disease has made it difficult to create similar animal phenotypes (Table 2).

A Zucker (ZSF1) rat model of PH-HFpEF was created by inducing metabolic syndrome 

via a defect in leptin receptor combined with vascular endothelial growth factor receptor-2 

antagonist Sugen 5416 (SU5416) which essentially layered features of the well-known 

SU5416-hypoxia model of PAH over the obese metabolic syndrome found in HFpEF. 65, 67 

The SU5416-exposed obese ZSF1 rats had normal LVEF but developed elevated right and 

left sided pressures as well as higher PVR and pulmonary vascular remodeling compared 

to lean rats.65 Recently, a combined obesity and hypertensive stress (high fat diet plus 

L-NAME) has been utilized to produce a HFpEF phenotype in mice that mimics the human 

HFpEF phenotype. The db/db (leptin receptor-deficient) mouse is another model that mimics 

the HFpEF phenotype, albeit with less pulmonary congestion. SU5416 could theoretically be 

overlayed on top of these models to mimic the CpcPH phenotype of PH-HFpEF.

A similar mouse model was developed by observing the hemodynamics effects of a high 

fat diet in 36 strains of mice.66 Of the strains investigated the AKR/J, NON/shiLtJ, and 
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WSB/EiJ developed hemodynamic changes consistent with PH-LHD. OF those strains the 

AKR/J mouse findings were the most reliably reproduced with the high fat diet inducing 

metabolic syndrome and the mice developing elevated right ventricular systolic pressures, 

LV end diastolic pressures, with biventricular hypertrophy compared to those fed a regular 

diet.66 This mouse model also showed higher PVR and pulmonary vascular remodeling, and 

these hemodynamic abnormalities progressed with continuation of the high fat diet. These 

metabolic models more closely approximate clinical disease than previous models of aortic 

banding in which increased LV afterload induces higher LV filling pressures, elevated mPAP, 

and PVR.68 While the aortic banding animal model is the most commonly used model 

in PH-LHD (specifically to model PH-HFpEF), this model does not mirror the metabolic 

syndrome component found in humans with HFpEF, and this model progresses to overt LV 

systolic dysfunction (HFrEF), which is not seen in the vast majority of patients with HFpEF 

who are followed longitudinally (i.e., in HFpEF, LVEF remains preserved over time and 

does not progress to HFrEF).

Similar models focusing on induction of HF without consideration of the metabolic features 

the co-exist in PH-LHD have been the basis of PH-LHD animal studies. Although aortic 

banding is the most widely used, several other models exist. Mouse models of transverse 

aortic constriction create phenotypes similar to aortic banding with development of HFpEF 

and pulmonary hypertension, although it also induced severe pulmonary fibrosis, which 

is not typically found in humans with HF.69 Pulmonary venous outflow obstruction by 

pulmonary vein banding or creation of left atrial stenosis have also been use to pressure 

load the pulmonary vascular bed in animal models, and induce PH and RV failure in rats 

and large animal models.70–72 The primary modality of inducing HFrEF in animal models 

has been coronary artery ligation to induce an ischemic cardiomyopathy, and this model 

can induce mild-to-moderate PH associated with low cardiac output and congestion, but 

infarct size is difficult to control, and the survival rates post-induced myocardial infarction 

can be low.73, 84–86 The mechanical, pressure overload models of PH-HFpEF do not mirror 

phenotypes seen in clinical practice, rather the metabolic-driven models are closer to human 

phenotypes.

PROPOSED PATHOBIOLOGIC CONTRIBUTORS TO PH-LHD

The pathophysiology of Group 2 PH and contributing factors to disease severity and 

development of PH-LHD are not well understood, especially in HFpEF. There is emerging 

evidence of underlying inflammatory, hormonal, and metabolic derangements that appear 

to contribute to pulmonary vascular disease in LHD. Figure 4 summarizes our current 

understanding of the pathobiology of PH-LHD, as explained in detail below.

Endothelial Injury and Dysfunction

Both HF and PH are independently associated with systemic endothelial dysfunction in 

venous and arterial beds.87, 88 Animals models of HF have demonstrated evidence of 

pulmonary endothelial dysfunction.89–91 Multiple endothelial vasoactive mediators have 

been implicated in this dysfunction with overlap in both PH and LHD; however, the 

initial insult has been difficult to elucidate. Shear stress is the mechanical force on the 
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endothelium caused by blood flow and is instrumental in both vascular homeostasis as 

well as development of disease.92 Reduced shear stress is a known driver of endothelial 

dysfunction in the systemic vasculature and plays a role in atherogenesis.93 Reductions in 

shear stress also correlate with higher PA pressures in patients with PAH 94, 95 Changes in 

shear stress stimulate endothelial responses to adapt to alterations in pressure and flow; in 

endothelial dysfunction this response in muted or maladaptive. Here we describe a variety of 

mediators of endothelial function that have potential involvement in PH-LHD.

Caveolae and Caveolin-1—Changes in shear stress are sensed by endothelial cells, 

resulting in alterations in cellular signaling, in which caveolae and caveolin-1 expression 

and activity are key drivers.96 Caveolae are plasma membrane invaginations that sense and 

convert hemodynamic changes in the vasculature into intracellular signals. Caveolin-1 is 

the main structural membrane protein within caveolae that enacts messaging across the cell 

membrane, with roles in intracellular calcium signaling, regulation of nitric oxide (NO) 

production, and activation of PA smooth muscle cell (PASMC) proliferative pathways.97 

Changes in caveolin-1 signaling are present in HF and PAH. Chronic beta-adrenergic 

stimulation, which occurs in HF as well as hypoxia, reduces caveolin gene expression.98, 99 

Caveolin-1 knock-out mice develop dilated cardiomyopathy with associated PH and exhibit 

pulmonary vascular pathologic changes similar to PH-LHD.100, 101 In the vasculature, NO 

availability is partly controlled by the interaction between caveolin-1 and endothelial NO 

synthase (eNOS).102 Caveolin-1 binds to eNOS rendering it inactive and unable to produce 

NO, a potent regulator of vascular tone.103, 104 Caveolin-1 expression is lost in structurally 

normal arteries in PAH but upregulated in PASMCs surrounding remodeled arteries.105 

While caveolin-1 has been implicated in PH, the role of caveolin-3 is less clear, with 

inconsistent changes in HF. Murine models of HF show selective reduction in expression 

of caveolin-3 expression rather than caveolin-1 or 2.106 Overexpression of caveolin-3 in 

rodent models reveals reduction in hemodynamically driven cardiomyocyte hypertrophy.107 

Conversely, increased expression of caveolin-3 is present in a canine pacing-induced HF 

model.108

At the present time, it is not clear how caveolin expression and function contribute 

to PH-LHD; decreased expression in some instances appears to modify cardiomyocyte 

adaptive responses, whereas caveolin gene expression is variable in pulmonary vascular 

disease and it is unknown whether these changes are reactive to or independent of LA 

hypertension. Nevertheless, caveolae and the caveolin proteins are essential to signal 

transduction responses to shear stress (and therefore the endothelial cellular response to 

hemodynamic alterations); therefore, further investigation of the role of caveolae PH-LHD is 

worth pursuing.

Nitric Oxide—NO is well known to be deranged in the setting of HF. Peripheral venous 

dysfunction is associated with imbalance in NO synthesis and degradation (resulting in 

reduced NO bioavailability), and increased NADPH oxidase superoxide generation, which 

are both also regulators of pulmonary vascular homeostasis.109, 110 Peripheral endothelial 

dysfunction occurs in HFpEF, where response to flow mediated vasodilation correlates 

with higher PVR on invasive hemodynamics.111 NO-mediated endothelium-dependent 
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vasodilation in chronic HFrEF is also impaired and has also been attributed to reduction 

in NO synthesis, increased degradation, and reduced vasodilatory responsiveness.112–115 

The beneficial pulmonary vascular effects of NO also include reduction in smooth muscle 

hypertrophy and proliferation.116 A rodent model of HF showed impairment of alveolar-

capillary endothelial function and absence of NO synthesis in response to mechanical 

and chemical stress driven by impairment of endothelial calcium handling.91 Notably, the 

expression of eNOS was not different from controls; rather, activation of eNOS by calcium 

was reduced. NO production and NO-dependent pulmonary vasodilation are impaired in 

PH-LHD, although it is unclear to what degree the vascular response is mediated through 

hemodynamic-driven changes in biochemical signaling and NO synthesis or scavenging 

mechanisms are causal or consequential.117 Furthermore, restoring NO-cyclic guanosine 

monophosphate signaling via phosphodiesterase-5 inhibition and soluble guanylate cyclase 

stimulation has not proven beneficial in PH-LHD (especially in PH-LHD due to HFpEF, 

which has been studied extensively in clinical trials).118–124

Endothelin-1—Endothelial cells secrete endothelin-1 (ET-1) with the primary receptors 

located on vascular smooth muscle cells through which ET-1 acts as a potent vasoconstrictor 

and pro-proliferative agent.125, 126 The ET-1 peptide is important for maintenance of 

vascular tone and has mitogenic effects on endothelial and vascular smooth muscle cells.127 

Balance between vasoconstrictive and vasodilatory effects are modulated by concentrations 

of ETA and ETB receptors, respectively, on vascular smooth muscle and endothelial 

cells.128, 129 Endothelin-1 levels are elevated in chronic HF and correlate with severity 

of PH and 1 year mortality.130–133 The downregulation of ETB receptors and upregulation 

of ETA receptors seen in chronic HF tips the balance into predominantly vasoconstrictive 

and smooth muscle cell proliferative ET-1 effects 117, 130, 134 Local administration of ETA 

receptor antagonist causes a dose-dependent reduction in PVR in patients with chronic 

HF owing to the integral role of ET-1 in pulmonary vasoconstriction.135 Additionally, 

ET-1 mediates pulmonary vascular remodeling in PH-LHD by inducing smooth muscle 

proliferation and hypertrophy as well as collagen production.136 The pulmonary vasculature 

is particularly rich in ET-1 production and sensitive to its effects.137

Despite the critical role of ET-1 in the pathogenesis of HF and PH-LHD, multiple clinical 

trials of endothelin receptor antagonists (ERAs) have failed to demonstrate benefit in the 

setting of PH-LHD. Vascular tone and smooth muscle tone is in part driven by the balance 

between ET-1 and NO activity as well as prostacyclin-, cyclooxygenase-, and thromboxane-

mediated vascular effects, which may explain the lack of benefit of ERAs in PH-LHD 

(Figure 4).138 ET-1 also reduces cardiomyocyte gene expression of natriuretic peptides,139 

which may counteract their beneficial vasodilatory and natriuretic effects. Indeed ERA-

induced sodium and fluid retention have been the Achilles heel of ERA therapy in patients 

with HF. For these reasons, strategies to selectively reduce ET-1 or block endothelin 

receptors in the pulmonary vasculature while preventing the natriuretic peptide reduction 

and avoiding adverse renal effects may be a fruitful endeavor in the future.

Prostacyclin and Thromboxane A2—In the normal pulmonary circulation, prostacyclin 

(also known as prostaglandin I2 [PGI2]) is a key to contributor to vascular tone 
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via stimulation of cyclic adenosine monophosphate production-induced smooth muscle 

relaxation.140 Thromboxane-A2 (TXA2), a countermeasure to the vasodilatory and anti-

proliferative functions of PGI2, drives vasoconstriction and promotes platelet aggregation.141 

Both PGI2 and TXA2 are products of arachidonic acid metabolism by cyclo-oxygenase 

(COX) activity, and the balance of PGI2/TXA2 activity regulates vascular tone. This PGI2/

TXA2 ratio depends on many variables including the amount of COX isoform present 

with COX-1 favoring TXA2 and COX-2 favoring PGI2.142 In rat models of cardiovascular 

disease, angiotensin-II induces production and release of PGI2 from cardiac fibroblasts 

which in turn prevents TGF-β-induced upregulation of extracellular matrix genes and 

therefore functions as an anti-fibrotic.143, 144 In a canine model of HF, expression of arterial 

eNOS and COX-1 gene expression was reduced as was resultant NO production in response 

to vasodilators.145 Circulating PGI2 is increased in chronic HF and correlates with plasma 

renin and angiotensin-II concentrations.146 Conflicting data exist about the ability of TXA2 

to stimulate smooth muscle proliferation, although it appears that the presence of serotonin 

(5-HT) is synergistic with TXA2 producing a mitogen effect on smooth muscle cells.147

Platelet Bioenergetics—Platelet aggregation occurs at the site of vascular injury and 

platelet-derived factors influence vascular repair and remodeling at these sites utilizing 

peptide growth factors, two of which are serotonin (5-HT), and TXA2.148 Platelet 

aggregation and activation at sites of “stress failure” or shear injury in the pulmonary 

vascular bed specifically have not been well characterized. The pulmonary vasculature 

exhibits metabolic abnormalities in PH that favor glycolysis and alter electron transport 

chain function149, 150 Platelet metabolism and function in PH-LHD patients is similarly 

altered; mitochondrial maximal oxygen consumption rate and reserve respiratory capacity 

are both increased as is seen in Group 1 PAH patients.151 Reserve respiratory capacity 

the amount of ATP that can be produced via oxidative phosphorylation in the setting of 

an increased demand and is a marker of mitochondrial function. The increased reserve 

capacity in PH-LHD platelets appears to be in part due to increased fatty acid oxidation, 

as has been shown in PAH.152 Increased respiratory reserve capacity is associated with 

resistance to apoptosis and improved survival with oxidative stress.153 Platelet glycolytic 

rate, however, is not increased in PH-LHD patients in comparison with Group 1 PAH.151, 152 

These metabolic alterations do not correlate with PVR in PH-LHD, as in Group 1 

PAH, but are associated with worse right ventricular function.151 NO-induced platelet 

activation did not differ from healthy age-matched controls. Platelet function is altered in 

PH-LHD but it is unclear to what degree these differences are reactive versus pathologic. 

Furthermore, while prostacyclin analogues are one of the mainstays of therapy in patients 

with Group 1 PAH, their use in PH-LHD has not been well studied, though in a trial of 

an intravenous prostacyclin (epoprostenol) with severe HFrEF was associated with worse 

outcomes compared to placebo.154

Serotonin—Serotonin hormone is released by activated platelets, can induce pulmonary 

vasoconstriction and smooth muscle proliferation, and is metabolized in the lung, and has 

been studied extensively in PAH.155, 156 Local serotonin release is instrumental in platelet-

induced vasoconstriction, as shown in acute coronary syndromes.157 HF is associated with in 

enhanced platelet aggregation and activation in which the local serotonin release may drive 
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pulmonary vascular remodeling.158, 159 Notably, serotonin appears to have a substantial 

contribution to the stimulation of platelet induced-smooth muscle cell proliferation.160 

Circulating serotonin levels are elevated in patients with HF and the degree of elevation 

correlates with decompensation and worse functional class.161 Currently, it is unknown if or 

how much the serotonin pathway is involved in the development of PH-LHD.

Tumor Necrosis Factor-α and Interleukin-6—Tumor necrosis factor-α (TNF-α) is 

an inflammatory cytokine produced by macrophages and monocytes and upregulated in 

HF.162–164 Rodent models of pulmonary congestion in HF demonstrate increased circulating 

and pulmonary venous concentrations of Interleukin-6 (IL-6) and TNF-α which were 

exacerbated with increased pulmonary venous mechanical stretch used to simulate the 

distention that occurs in response to elevated LA pressure.165 In other animal models, higher 

levels of circulating TNF-α are associated with increased circulating ET-1 levels while IL-6 

induces C-reactive protein (CRP) production in the liver.166–168 Endothelin-1 and TNF-α 
are ultimately stimulated by CRP-induced complement activation, thereby creating and 

deleterious positive feedback loop.168, 169 Known as drivers of chronic inflammation, TNF- 

α and IL-6 have increased expression in patients with HF.170, 171 Notably, IL-6 and TNF-α 
levels correlate with elevated PA pressures in HFrEF and HFpEF.172 If increased levels of 

inflammatory cytokines are drivers of pulmonary vascular disease, targeting inflammation 

would be a worthwhile therapeutic target. Indeed, autoimmune disease, which is associated 

with increased inflammation, is known to be major risk factor for PAH and likely plays a 

key role in the development of pulmonary vascular disease in LHD and supports the role 

of a dysregulated immune system in driving PH-LHD, particularly Cpc-PH. Alternatively, 

increased severity of HF (which is present in patients with elevated PA pressures and 

pulmonary vascular disease) is known to result in increased inflammation, which would 

mean that therapies targeting the immune system are unlikely to be successful in PH-LHD. 

Both scenarios are likely true, and targeted studies of both innate and adaptive immunity 

aimed at deciphering the role of the immune system in the development and progression 

of PH in LHD remains a worthwhile pursuit, with the hope of ultimately identifying 

therapeutic targets in specific phenotypes of PH-LHD.

Vascular Endothelial Growth Factor—Angiogenesis is dependent on vascular 

endothelial growth factor (VEGF), which, in turn is often stimulated by both mechanical 

and metabolic stress. 173 The VEGF-D subtype appears to be most altered in HF and is 

instrumental in lymphangiogenesis.174 Systemic VEGF-D levels are elevated in patients 

with pulmonary congestion on chest imaging, and circulating levels of VEGF-D are higher 

in PH-LHD.175 In HFrEF, higher PAWP and lower cardiac output are associated with 

higher VEGF-D levels.176 VEGF-D appears to be elevated in hemodynamic and pulmonary 

congestion, the presumptive precursors of PH-LHD, but the role of VEGF in development 

of PH in HF is not well characterized. Preclinical models of PAH and PH-HFpEF have used 

the VEGF receptor antagonist SU5416 in combination with hypoxia stimulus to recapitulate 

features of PH.177 However, clinical studies of PAH and PH-LHD demonstrate significant 

elevation of VEGF-D, with PH-LHD demonstrating the highest concentrations. 178, 179 This 

presents a paradox given VEGF antagonists in combination with hypoxia induce PH in 

murine models, yet in clinical studies elevations in VEGF levels are associated with more 
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severe PH. One study hypothesized that VEGF activity through the un-blocked VEGF3 

receptor (SU5416 antagonizes receptors VEGF-1 and −2) and change in expression of 

VEGF isoforms. In the lungs of SU5416/hypoxia rat PAH model there was increased 

expression of VEGF-C and VEGF-D as well as VEGF-3 receptor.180 Interestingly the 

addition of a VEGF-3 antagonist prevented but did not ameliorate structural changes and 

development of PH in the SU5416/hypoxia model. The SU5416 model blocks VEGF-1 

and VEGF-2, ultimately shifting activity to VEGF- C and VEGF-D, of which VEGF-D 

predominates on PH-LHD and PAH, isoforms and activation through available VEGF-3 

receptor. This VEGF-3 effect produces vascular changes and lumen obliteration driving 

pulmonary hypertension.180 However, VEGF-3 knockout mouse models are also associated 

with development of severe PH with hypoxia and VEGF-3 receptor expression is reduced 

in PAH and PH-LHD.181, 182 It has been hypothesized that knock-out of VEGF-3 receptor 

leads to increased VEGF-C signaling through VEGF-2 receptor. 183 VEGF-2 and VEGF-3 

receptors both play a role in the vascular endothelial mechanosensitive response to shear 

stress. 184 VEGF-C and VEGF-3 also play a primary role in lymphangiogenesis and there 

is increasing recognition of the importance of the lymphatic system in HF.185 A preclinical 

model of HFpEF demonstrated early increase in VEGF-C and VEGF-3 protein expression 

which then dropped with worsening HF and decompensation.185 VEGF antagonism results 

in PH and increased expression appears to have a protective effect, yet, in the presence of 

cardiovascular or pulmonary disease VEGF may promote cellular proliferation and vascular 

remodeling.87, 186 Further preclinical studies may take advantage of combining metabolic 

stress (e.g., high fat diet), hypertensive stress (e.g., L-NAME), and SU5416/hypoxia to 

create a model of Cpc-PH in HFpEF to better elucidate the role of VEGF and VEGF 

receptors in the disease process. This type of strategy has been employed successfully in 

rat models as well, by combining the Zucker diabetic rat (ZSF1) model of HFpEF with 

SU5416/hypoxia, as detailed above.187

Estrogen—There is an association between post-menopausal reduction in estrogen 

production and endothelial dysfunction, partly explained by estrogen modulation of NO, 

endothelin, and prostacyclin pathways.188–190 Female predominance in PAH had led 

to suspicion of sex hormone influence on pulmonary disease, but this association is 

incompletely characterized. In addition, estrogen appears to have some protective effects 

on RV function.191 Visceral adipose is a primary site of estrogen production, and estrogen 

modulates leptin production.192, 193 The influence of estrogen and sex hormones on 

development of PH-LHD requires further investigation, but seems worthwhile given the 

postulated role of loss of estrogen on development of HFpEF, pulmonary vascular disease, 

and right ventricular dysfunction.

Obesity and Metabolic Syndrome

Obesity is associated with the development of invasively diagnosed pulmonary hypertension, 

with risk of PH increasing in parallel with increasing BMI.194 Hemodynamic markers of PH 

such as mPAP, PAWP, and TPG increase with advancing classes of obesity. There is a higher 

prevalence of CPC-PH and IPC-PH with more advanced obesity classes. Unsupervised 

machine learning (phenomapping) of HFpEF patients has shown that the pheno-group of 

patients who had higher prevalence of obesity, diabetes mellitus, and obstructive sleep apnea 
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had higher PVR.195 Metabolic syndrome (MetS) represents a milieu of physiologic and 

biochemical abnormalities including central obesity, glucose intolerance, insulin resistance, 

and dyslipidemia; the presence of which increases risk of development of cardiovascular 

disease and overt diabetes mellitus. Metabolic syndrome is highly prevalent in HFpEF but 

also occurs in up to 39% of patients with PAH.196

While inflammation has been quoted as the driver of obesity related PH-LHD, the 

mechanisms are complex and variable, and likely go beyond inflammation alone. 

Adiponectin is a fat-derived hormone that in animal models reduces intimal thickening 

in injured arteries and suppresses proliferation of smooth muscle cells.197, 198 Vascular 

effects of adiponectin are mediated by AMPK activation of eNOS which increases NO 

synthesis while anti-inflammatory effects stem from reduction of TNF-α (and subsequently 

interleukin-8) production by endothelial cells in response to injury.199–201 COX2 expression 

increases with higher levels of adiponectin which favors PGI2 vasodilatory and anti-

proliferative effects and improving endothelial function in mouse models.202 Adiponectin 

levels are negatively correlated with BMI, more specifically visceral adipose, as opposed 

to leptin which increases with increasing BMI.203, 204 Adiponectin levels are lower in 

diabetic patients compared to non-diabetes, and among diabetics, those with coronary 

disease have less circulating adiponectin.205 Tumor necrosis factor-α (elevated in HF) 

inhibits adiponectin promoter activity and may therefore modifies plasma levels of 

adiponectin in systemic inflammatory states. Hypoadiponectinemia appears to be integral 

in the development of metabolic syndrome phenotype.206 Adiponectin and leptin have been 

implicated in the development of PH in MetS and obesity.

Leptin, a proinflammatory cytokine that is key in glycemic and lipid metabolism, plays a 

role on endothelial function and is a the product of a hypoxia-inducible factor-dependent 

gene.207, 208 Leptin normally has a vasodilatory effect; however, in vitro pulmonary 

endothelial cells in PAH have been shown to overproduce leptin, and PASMCs overexpress 

leptin’s primary receptor.209 The subsequent activity of leptin on PASMCs augments 

hypoxic driven proliferation and appears to be involvement in PAH development.209 Higher 

circulating leptin levels are also associated with increased risk of incident HF and disease 

progression.210–213 Patients with advanced HFrEF have elevated circulating leptin levels 

and soluble leptin receptor even when adjusted for BMI, although there is no data in 

humans describing differences between those with and without PH.214 Rodent models 

of PH-HFpEF have shown that elevated circulating leptin levels cause impairment of 

myocardial relaxation.74, 215 Natriuretic peptides appear to decrease the secretion of leptin 

in adipose tissue and suppress secretion of other inflammatory cytokines, including IL-6 and 

TNF-α.216

Atrial natriuretic peptide exerts anti-inflammatory effects by suppression of circulating 

markers of chronic inflammation, IL-6 and TNF-α.216 Circulating levels of these natriuretic 

peptides are known to be reduced in the obese HFpEF phenotype which also demonstrated 

more RV dysfunction and dilation, higher PAWP, and higher exercise pulmonary 

pressures.217 Patients with HFpEF have lower natriuretic peptide levels compared to 

those with HFrEF.218 Animal and human models of HFpEF-PH demonstrate upregulated 

activation of IL-6/signal transducer and activator of transcription 3 (STAT3) pathways 
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in MetS-LHD, which exacerbates PH, with pulmonary vascular remodeling, macrophage 

infiltration, and IL-6/STAT3 upregulation in human lung tissue.74 Increased levels of 

IL-6 are also known to alter endothelial function and arterial stiffness.219 Treatment with 

metformin and an anti-IL-6 antibody in a rodent model of MetS-LHD induced regression 

of pulmonary hypertension implicating a role for multimodal suppression of the leptin/IL-6/

STAT3 pathway as a promising target in PH-HFpEF.74

Metabolic syndrome and each of its independent components are associated with 

increased activity of neprilysin, which degrades natriuretic peptides, which reduces normal 

physiologic inhibition of aldosterone secretion by circulating ANP.220, 221 Obesity also 

results in increased aldosterone production and renin-angiotensin activation outside of 

ANP-mediated effects.222–224 The ultimate result of these factors is hyperaldosteronism, 

with sodium retention, insulin resistance, increased leptin expression, and an increase 

in inflammatory markers. 225–227 The renin-angiotensin-aldosterone system has a role 

in pulmonary vascular remodeling in PAH with elevated levels of angiotensin and 

aldosterone correlating with hemodynamics and pulmonary vascular remodeling through 

similar mechanisms implicated in heart disease.228 Pulmonary angiotensin-II levels and 

angiotensin-II type 1 receptor expression on myofibroblasts have been shown to be increased 

in post-MI rat models of PH-LHD.229 Aldosterone antagonism may have clinical benefit in 

patients with PAH and prevent pulmonary vascular remodeling in pre-clinical models.230, 231 

Currently while pathologic changes in aldosterone in HF and PAH exist, the role of 

aldosterone in PH-LHD is less clear.

Splanchnic Circulation

Right-sided HF plays a significant role in prognosis in patients with LHD, regardless 

of underlying ejection fraction, and is significantly impacted by pulmonary vascular 

function.232–234 The systemic venous congestion in RV failure affects multiple other 

organ systems, including the kidneys, gastrointestinal tract, and liver. Splanchnic venous 

congestion caused by RV failure has multiple potential effects on the gastrointestinal 

tract with increases in systemic inflammation and alteration of sodium and phosphate 

hemostasis.235, 236 Venous congestion contributes to the development of cardiorenal 

syndrome, particularly driven by central venous pressure, and not PAWP or cardiac 

output.237 Renal dysfunction results in altered calcium and phosphate metabolism which 

causes increased stiffness of the pulmonary artery thereby increasing RV afterload.238 

Renal dysfunction associated with splanchnic congestion causes dysregulation of mineral 

metabolism, specially calcium and phosphate homeostasis regulated by parathyroid 

hormone. A preclinical canine model of CKD showed and association between secondary 

hyperparathyroidism elevated pulmonary pressures and pulmonary vascular calcification.239 

Interestingly, in this model prophylactic parathyroidectomy resulted in significantly lower 

mPAP and RV pressure despite the same degree of renal dysfunction. Central venous 

congestion-induced splanchnic congestion may result in upregulation of NHE3 in the gut 

(by creating an acidotic environment in enterocytes due to poor blood flow and increased 

anerobic metabolism), thereby enhancing sodium resorption and resulting in lower pH in 

the gut lumen. Reduced pH in the gut lumen, in turn, can (1) reduce short-chain fatty 

acids (reducing integrity of gut gap junctions and increasing gastrointestinal permeability, a 
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risk factor for systemic infections) and (2) increase the population of bacteria that produce 

TMAO, which is known to increase inflammation.235, 238 Increased sodium resorption in 

the gut facilitates additional fluid retention and congestion, loading the central vasculature, 

raising intracardial filling pressures, and driving elevation in pulmonary pressures. These 

abnormalities may be reasons why patients with PH-LHD, particularly those with right-

sided HF, are predisposed to adverse outcomes.

Systemic inflammation is a suspected feature of splanchnic congestion that contributes to 

HF and development of PH-LHD. Altered gut permeability due to edema allows bacterial 

translocation and systemic exposure to endotoxin.240 Decompensated HF patients have 

higher circulating levels of endotoxin than compensated, as well as higher concentrations of 

serum cytokines (CRP, TNF-α, and IL-6). Diuresis and relief of peripheral edema resulted 

in a significant reduction in circulating serum endotoxin levels, but cytokine levels remained 

elevated.240 Gut edema contributes to the systemic inflammatory milieu in decompensated 

HF. Many of the circulating inflammatory markers we have described have important effects 

on vascular biology and endothelial function that contribute to development of PH in HF.

The splanchnic circulation holds a large proportion of the total blood volume, acting 

as a reservoir of volume able to be mobilized by alterations in venous tone. Venous 

capacitance, the ability of the vessel to accommodate changes in volume with minimal 

changes in pressure, is reduced in HF, obesity, diabetes, and inflammatory states, leading 

to increased central blood volume when stressed.241–243 The volume loading of the central 

vascular compartment results in pulmonary and hemodynamic congestion, driving factors 

in development of PH and pulmonary vascular remodeling. Reduced PA capacitance in PH-

LHD, which signals a lack of ability of the pulmonary vasculature to accommodate changes 

in volume loading, is associated with adverse outcomes.244 Coupled with sodium-driven 

plasma volume expansion due to upregulation of gastrointestinal NHE3, the splanchnic 

circulation appears to play an integral role in the pathogenesis of PH-LHD. In patients 

with PH-LHD due to HFpEF, levosimendan (a calcium sensitizer and KATP channel 

opener) was associated with improved hemodynamics and exercise capacity compared with 

placebo.245 Although levosimendan is known to increase contractility, it was reduction of 

the stressed blood volume via splanchnic vasodilation that appeared to be the underlying 

cause for improvement.246 Given these encouraging results, further investigation of the 

effects splanchnic vasoconstriction on the development and progression of PH-LHD in 

animal models and humans is therefore warranted.

Lymphatic Dysfunction

The lymphatic system controls extracellular fluid volume, holding and transporting up to 

8 liters per day, of which approximately 1.5L/day travels through the thoracic duct to 

the left subclavian vein.247 This function is possible through both intrinsic factors, the 

pumping function of the lymphangion via smooth muscle, and extrinsic factors such as the 

respiratory cycle, skeletal muscle contraction, and surrounding blood vessel pulsations.247 

In HF, elevated central venous pressure can impede outflow from the thoracic duct, thereby 

increasing hydrostatic pressure and ultimately resulting in increased extracellular fluid.248 
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Recent data indicates reduced lymphatic reserve as a byproduct of microvascular disease and 

capillary rarefaction accompanied by dilated, dysfunctional lymphatics in HFpEF.249

Lymphatics may play a role in the acuity of HF and the development of pulmonary edema, 

as patients with longstanding HF tolerate higher filling pressures without development 

of pulmonary edema even as PH progresses. Hemodynamic congestion results in more 

equally distributed blood flow through the lung fields through capillary recruitment.250 The 

thoracic lymphatics act to buffer the lungs from elevated intracardiac filling pressures by 

accommodating extracellular fluid influx.251 Lymphatic vessels in the pulmonary connective 

tissues and pleural space can accommodate fluid removal as a high capacitance reservoir 

with up to ten-fold increase in volume chronically.252 In PH-LHD, where left atrial pressure 

is one of the primary drivers of development of pulmonary hypertension, the capacity of 

the lymphatic system to act as a reservoir for excess volume serves to mitigate to some 

degree the hydrostatic pressure that drives PH.253 When maximal lymphatic efflux rate 

is overwhelmed, both fluid and protein stalls in the interstitial compartment leading to 

ongoing edema development.254, 255 Patients with HFpEF have lower numbers of lymphatic 

vessels with larger diameters although despite this drainage was impaired.249 The lymphatic 

system contributes to pulmonary vascular hemodynamics as a reservoir for volume and 

pressure. In response to chronic congestion lymphatics muscularize and hypertrophy similar 

to the pulmonary vascular bed.251, 252 VEGF-D, which is elevated in chronic HF, has 

strong lymphangiogenic and angiogenic functions. 176 The potential implications of this 

is important as increased circulating VEGF-D in chronic HF may, in part, be adaptive to 

drive the development of a larger lymphatic reservoir.256 These changes indicate that the 

lymphatic system may play a critical role in the development and progression of PH-LHD 

given the role of lymphatic system in buffering congestion, and therefore should be studied 

more extensively in the pre-clinical and clinical settings.

FUTURE DIRECTIONS

Large gaps knowledge gaps exist in our understanding of PH-LHD, starting with accurate 

diagnostic criteria and rational pathophysiological and pathobiological disease classification. 

The most basic requirement for improved understanding PH-LHD is to establish a 

widely accepted, reproducible definition of disease, especially with provocative maneuvers. 

Determination of the impact of chronicity and severity of LHD as well as genetic, 

epigenetic, and inherited factors on risk for development of Cpc-PH versus Ipc-PH is 

also critical. Understanding the interplay between chronic inflammation in association 

with metabolic syndrome, insulin resistance, and the imbalance of vasoconstrictors and 

vasodilators in the pulmonary vascular bed is essential to finding intervenable pathways in 

these disease processes. Given the high prevalence, morbidity, and mortality of PH-LHD, it 

is essential that we continue to push the field forward in basic, translational, clinical, and 

epidemiological research so that we can identify patients at risk for PH-LHD, diagnose 

it early and accurately, treat it, and prevent progression of disease. Table 3 outlines 

important unanswered questions for improved understanding of PH-LHD and the underlying 

pathobiology which drives disease progression, which we hope will serve as a stimulus to 

the scientific community.
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CONCLUSIONS

There are multiple phenotypes of Group 2 PH, which likely have significant variation 

in metabolic, hemodynamic, and inflammatory derangements. Hemodynamically, patients 

with Ipc-PH and Cpc-PH vary by severity of pulmonary vascular disease potentially driven 

by underlying wall stress and injury related to both the chronicity of exposure to LA 

hypertension over time and superimposed PAH risk factors. The current understanding 

of the pathobiology of PH-LHD is very limited. While endothelial dysfunction, obesity/

metabolic syndrome, splanchnic vasoconstriction, and lymphatic dysfunction may all play 

a role, phenotypes vary, and the primary drivers of disease have not been fully identified. 

Furthermore, there are no direct treatments of PH-LHD, with a track record of multiple 

failed trials of pulmonary vasodilators. Improved understanding of the drivers of PASMC 

homeostasis and the biologic drivers of disease is essential to intervening in this disease 

process, whether via prevention or for amelioration.
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Nonstandard Abbreviations and Acronyms:

PH pulmonary hypertension

LHD left heart disease

HF heart failure

HFpEF heart failure with preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

LVEF left ventricular ejection fraction

HFmrEF Heart failure with mid-range ejection fraction

PA pulmonary artery

mPAP mean pulmonary artery pressure

PVR pulmonary vascular resistance

Cpc-PH combined pre and post capillary pulmonary hypertension

Ipc-PH isolated post capillary pulmonary hypertension

PAWP pulmonary artery wedge pressure

LVEDP left ventricular end diastolic pressure

LA left atrium

LV left ventricle
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RV right ventricle

DPG diastolic pressure gradient

TPG transpulmonary gradient

PAH pulmonary arterial hypertension

TNF-α tumor necrosis factor alpha

LVAD left ventricular assist device

CPA pulmonary arterial compliance

SNP single nucleotide polymorphisms

ZSF1 Zucker

SU5416 Sugen 5416

NO nitric oxide

PASMC pulmonary artery smooth muscle cells

eNOS Endothelial nitric oxide synthase

NADPH nicotinamide adenine dinucleotide phosphate

ET-1 endothelin-1

ETA endothelin receptor A

ETB endothelin receptor B

ERAs endothelin receptor antagonists

PGI2 prostaglandin I2

TXA2 thromboxane-A2

COX cyclo-oxygenase

5-HT serotonin

ATP adenosine triphosphate

IL-6 interleukin-6

CRP C-reactive protein

VEGF vascular endothelial growth factor

MetS Metabolic syndrome

AMPK adenosine monophosphate protein kinase

BMI body mass index
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STAT-3 signal transducer and activator of transcription-3

CKD chronic kidney disease

NHE3 sodium-hydrogen antiporter 3

TMAO trimethylamine N-oxide

KATP adenosine triphosphate sensitive potassium channel

RF risk factors

PVOD pulmonary veno-occlusive disease

PASP pulmonary artery systolic pressure

IR insulin receptor

TPR thromboxane A2 receptor

5-HTR serotonin receptor
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Figure 1. Hemodynamic Phenotypes of Pulmonary Hypertension in Left Heart Disease
The current understanding of PH-LHD is a progressive worsening of PH starting with 

Ipc-PH with the ultimate development of Cpc-PH. However, the degree of elevation in PVR 

in a patient with LHD likely depends on both severity of LHD and the presence of risk 

factors for PAH. If risk factors for PAH are present, PVR will likely be higher, and Cpc-PH 

will be more severe. Alternatively, there are some patients who have very high PVR and 

DPG with only mildly elevated PAWP. These patients likely have predominant PAH but have 

cardiometabolic risk factors. Technically these patients would be classified as PH-LHD due 

to the elevated PAWP, but from a phenotypic standpoint are much more similar to Group 1 

PAH.

Ipc-PH: isolated post-capillary pulmonary hypertension; Cpc-PH: combined pre and post 

capillary pulmonary hypertension; LHD: left heart disease; PAH: pulmonary arterial 

hypertension; RF: risk factors; mPAP: mean pulmonary artery pressure; DPG: diastolic 

pressure gradient; PAWP: pulmonary artery wedge pressure; LA: left atrial; PA: pulmonary 

artery
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Figure 2. Left Atrial Dysfunction Correlates with Pulmonary Vascular Resistance and 
Compliance in Heart Failure.
Left panel: In patients with HFpEF, worse LA reservoir strain (indicative of the inability 

of the LA to fill from the pulmonary veins during ventricular systole) is associated with 

increased PVR. Middle panel: In patients with HFpEF and HFrEF, lower LA emptying 

fraction (indicative of worse LA function) is also associated with elevated PVR. Right panel: 

Lower LA emptying fraction is also associated with reduced PA compliance in both HFpEF 

and HFrEF. Reproduced with permission from Freed, et al. Circulation: Cardiovascular 
Imaging 2016 and Melenovsky, et al. Circulation: Heart Failure 2015.
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Figure 3. Histologic Pulmonary Vascular Remodeling in Pulmonary Hypertension due to Left 
Heart Disease.
Left panel: Comparison of pulmonary arteries, veins, and indeterminate vessels among 

healthy controls, PH-HFrEF, PH-HFpEF, and PVOD patients. Representative vessels with 

remodeling approximating the median values for medial and intimal thickening of arteries, 

veins, and indeterminate vessels in each group are shown. Right, top panel: There is 

progressive severity of medial and intimal thickening in pulmonary arteries and veins 

from healthy controls (normal) to PH-HFrEF to PH-HFpEF to PVOD (most severely 

abnormal). Right, bottom panel: increases in medial and intimal thickening in the pulmonary 

arteries and veins correlates with increased severity of pulmonary hypertension (increased 

PASP). The solid line represents the estimated PASP via linear regression based on 

medial/intimal thickening, and the dotted lines represent the 95% confidence interval. 

HF, heart failure; HFpEF, HF with preserved ejection fraction; HFrEF, HF with reduced 

ejection fraction; %IT, percent intimal thickness; %MT, percent medial thickness; PH, 

pulmonary hypertension; PVOD, pulmonary veno-occlusive disease; IV, indeterminate 

vessels; PASP, pulmonary artery systolic pressure. Reproduced with permission from Fayyaz 

et al., Circulation 2018..; and PVOD, pulmonary veno-occlusive disease. Reproduced with 

permission from Fayyaz et al., Circulation 2018.
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Figure 4. Pathobiologic Contributors to Pulmonary Hypertension in Left Heart Disease.
Wall stress and shear stress are drivers of adaptive and maladaptive processes resulting 

in endothelial dysfunction, smooth muscle hypertrophy, and inflammation. Many of these 

mediators of endothelial function in PH-LHD that have effects both systemically and 

locally. eNOS: endothelial nitric oxide synthase, IR:insulin receptor, NO: nitric oxide, 

ANP: atrial natriuretic peptide, TNF-α:Tumor necrosis factor alpha, COX: cyclooxygenase, 

PGI2:Prostaglandin I2, IPR: Prostacyclin I2 receptor, TXA2: thromboxane A2, TPR: 

Thromboxane A2 receptor, ET-1: endothelin-1, ETA: Endothelin receptor A, 5-HT: 

serotonin, 5-HTR: serotonin receptor, IL-6: Interleukin-6, CRP: C-reactive protein
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Table 1.

Hemodynamic Definitions of Pulmonary Hypertension Phenotypes in Patients with Left Heart Disease

PH-LHD Phenotype Hemodynamic Criteria

Isolated post-capillary PH mPAP ≥20 mmHg
PAWP >15 mmHg
PVR <3 WU

Combined pre- and post-capillary PH mPAP ≥20 mmHg
PAWP >15 mmHg
PVR ≥3 WU

PH = pulmonary hypertension; LHD = left heart disease; mPAP = mean pulmonary artery pressure; PAWP = pulmonary artery wedge pressure; 
PVR = pulmonary vascular resistance.
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Table 2.

Animal Models of PH-LHD

Model Species Strengths Limitations

Metabolic Models

Metabolic Syndrome (ZSF1 
model) + SU5416/hypoxia

Rat65 Includes metabolic syndrome 
in phenotype

High Cost
Limited molecular tools compared to mice
Complicated phenotype

Metabolic Syndrome (ZSF1 
model) + Aortic Banding

Rat74 Combined pressure and 
metabolic injury

High cost
Primarily mild PH
Complicated phenotype

High fat diet/Obesity Mouse66

Bovine75
Low cost
Metabolic syndrome 
phenotype

Longer timeline needed
Variation in PH-HFpEF phenotype based on mouse 
strain used

High fat diet + L-NAME 
(or db/db model) + SU5416/
hypoxia

Mouse Low cost
Metabolic syndrome 
phenotype with added 
pulmonary vascular disease

Needs to be further studied and validated as a PH-
HFpEF phenotype

Mechanical Obstructive/Pressure Overload Models

Aortic Banding Mouse68

Rat76–78

Feline79

Simple
Reproducible
Low cost

Does not induce severe PH and RV failure
Most synonymous with Aortic stenosis induced-PH, less 
with non-valvular HFpEF

Transverse Aortic Constriction Mouse 69, 80 Simple
Reproducible

Associated pulmonary fibrosis
Most synonymous with Aortic stenosis induced-PH, less 
with non-valvular HFpEF

Pulmonary vein banding Porcine70

Bovine81
Represents pulmonary venous 
hypertension

Higher cost
Multiple operators
Large animal
Not representative of underlying LV disease

Left atrial stenosis Rat71, 72 Simulates mitral stenosis Not representative of underlying LV disease
Difficult surgical intervention

Ischemic Models

Left coronary artery ligation Rat73, 82, 84, 100

Mouse85, 86

Porcine83

Primary HFrEF model Not representative of non-ischemic cardiomyopathy
Minimal control of infarct size
Low survival
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Table 3.

Pulmonary Hypertension due to Left Heart Disease: Unanswered Questions

1 Which provocative maneuver is most specific for the diagnosis of PH-LHD and what are the optimal diagnostic thresholds indicative of 
pulmonary vascular disease?

2 How does left atrial dysfunction lead to development of PH-LHD?

3 Is Cpc-PH a further progressed and more severe form of Ipc-PH or a different disease entity with specific risk factors?

4 At which point in the adaptive response to shear stress does intracellular signaling and pulmonary vascular remodeling become 
pathologic? What are the biologic drivers that differ between adaptive and maladaptive remodeling?

5 How does platelet aggregation and activation impact pulmonary vascular function, and which drivers of platelet activation are dominant in 
hemodynamic congestion?

6 In metabolic syndrome, what features are most influential in the development of PH in the setting of LHD? How does the presence of 
insulin resistance, chronic inflammation, and changes in natriuretic peptides influence congestion?

7 Does increased circulating adiponectin modify endothelial function in PH-LHD? How does adiponectin effect the pulmonary 
vasculature? Are there other adipokines that are relevant to the development and progression of PH-LHD.

8 What are the roles of venous capacitance, peripheral venous dysfunction, and stress blood volume in development and progression of 
PH-LHD? What are the molecular drivers of splanchnic vasoconstriction, and can those pathways be targeted with specific treatments?

9 How does lymphatic dysfunction impact different degrees of congestion and the ability of the pulmonary vasculature and RV to 
accommodate congestive stress?

10 What are the ideal small and large animal models for studying PH-LHD and its various phenotypes?
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