Skip to main content
. 2022 Apr 25;2022:9690940. doi: 10.1155/2022/9690940

Table 3.

Performance evaluation of different ML models using mrmr feature selection technique for NCS.

Features Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate MCC Kappa AUC
EC Top 10 93.25 ± 0.95 91.69 ± 1.03 98.44 ± 0.61 91.77 ± 1.02 0.07 ± 0.01 0.90 0.82 1.00
RF Top 10 93.06 ± 0.63 91.61 ± 0.69 98.92 ± 0.59 91.52 ± 0.76 0.07 ± 0.01 0.89 0.81 1.00
DT Top 10 91.34 ± 1.60 89.86 ± 1.88 99.37 ± 0.46 89.46 ± 1.99 0.09 ± 0.02 0.87 0.77 0.98
KNN Top 10 79.47 ± 0.94 75.71 ± 0.89 91.95 ± 1.05 75.89 ± 1.01 0.21 ± 0.01 0.69 0.45 0.91
SVM Top 8 75.98 ± 1.59 69.29 ± 1.92 75.18 ± 2.06 72.54 ± 1.84 0.24 ± 0.02 0.64 0.36 0.96
NB Top 10 73.90 ± 2.02 72.35 ± 2.16 95.31 ± 1.01 72.43 ± 2.02 0.26 ± 0.02 0.64 0.30 0.95
LR Top 9 71.76 ± 1.89 69.45 ± 1.85 93.42 ± 1.22 69.19 ± 1.82 0.28 ± 0.02 0.60 0.25 0.95
DAC Top 9 70.73 ± 2.44 68.66 ± 2.43 94.11 ± 1.24 68.52 ± 2.24 0.29 ± 0.02 0.59 0.22 0.94