Table 3.
Performance evaluation of different ML models using mrmr feature selection technique for NCS.
| Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | F1-score (%) | Error rate | MCC | Kappa | AUC | |
|---|---|---|---|---|---|---|---|---|---|
| EC | Top 10 | 93.25 ± 0.95 | 91.69 ± 1.03 | 98.44 ± 0.61 | 91.77 ± 1.02 | 0.07 ± 0.01 | 0.90 | 0.82 | 1.00 |
| RF | Top 10 | 93.06 ± 0.63 | 91.61 ± 0.69 | 98.92 ± 0.59 | 91.52 ± 0.76 | 0.07 ± 0.01 | 0.89 | 0.81 | 1.00 |
| DT | Top 10 | 91.34 ± 1.60 | 89.86 ± 1.88 | 99.37 ± 0.46 | 89.46 ± 1.99 | 0.09 ± 0.02 | 0.87 | 0.77 | 0.98 |
| KNN | Top 10 | 79.47 ± 0.94 | 75.71 ± 0.89 | 91.95 ± 1.05 | 75.89 ± 1.01 | 0.21 ± 0.01 | 0.69 | 0.45 | 0.91 |
| SVM | Top 8 | 75.98 ± 1.59 | 69.29 ± 1.92 | 75.18 ± 2.06 | 72.54 ± 1.84 | 0.24 ± 0.02 | 0.64 | 0.36 | 0.96 |
| NB | Top 10 | 73.90 ± 2.02 | 72.35 ± 2.16 | 95.31 ± 1.01 | 72.43 ± 2.02 | 0.26 ± 0.02 | 0.64 | 0.30 | 0.95 |
| LR | Top 9 | 71.76 ± 1.89 | 69.45 ± 1.85 | 93.42 ± 1.22 | 69.19 ± 1.82 | 0.28 ± 0.02 | 0.60 | 0.25 | 0.95 |
| DAC | Top 9 | 70.73 ± 2.44 | 68.66 ± 2.43 | 94.11 ± 1.24 | 68.52 ± 2.24 | 0.29 ± 0.02 | 0.59 | 0.22 | 0.94 |