Skip to main content
. 2022 Apr 25;2022:9690940. doi: 10.1155/2022/9690940

Table 5.

Performance evaluation of different ML models using fscnca feature selection technique for NCS.

Features Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate MCC Kappa AUC
RF Top 10 93.26 ± 0.91 91.95 ± 1.03 98.95 ± 0.62 91.80 ± 1.07 0.07 ± 0.01 0.90 0.82 1.00
EC Top 10 93.16 ± 0.89 91.49 ± 1.00 98.38 ± 0.78 91.62 ± 0.96 0.07 ± 0.01 0.89 0.82 1.00
DT Top 10 91.60 ± 1.95 90.19 ± 2.36 99.40 ± 0.47 89.78 ± 2.44 0.08 ± 0.02 0.87 0.78 0.98
KNN Top 10 79.47 ± 0.94 75.71 ± 0.89 91.95 ± 1.05 75.89 ± 1.01 0.21 ± 0.01 0.69 0.45 0.91
SVM Top 8 75.03 ± 1.42 68.17 ± 1.76 72.69 ± 2.70 71.95 ± 1.65 0.25 ± 0.01 0.63 0.33 0.95
NB Top 10 73.90 ± 2.02 72.35 ± 2.16 95.31 ± 1.01 72.43 ± 2.02 0.26 ± 0.02 0.64 0.30 0.95
LR Top 10 71.57 ± 1.92 69.15 ± 1.88 93.33 ± 1.27 68.91 ± 1.84 0.28 ± 0.02 0.59 0.24 0.95
DAC Top 10 70.33 ± 2.09 68.15 ± 2.04 93.96 ± 1.42 68.05 ± 1.95 0.30 ± 0.02 0.58 0.21 0.93