Table 5.
Performance evaluation of different ML models using fscnca feature selection technique for NCS.
| Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | F1-score (%) | Error rate | MCC | Kappa | AUC | |
|---|---|---|---|---|---|---|---|---|---|
| RF | Top 10 | 93.26 ± 0.91 | 91.95 ± 1.03 | 98.95 ± 0.62 | 91.80 ± 1.07 | 0.07 ± 0.01 | 0.90 | 0.82 | 1.00 |
| EC | Top 10 | 93.16 ± 0.89 | 91.49 ± 1.00 | 98.38 ± 0.78 | 91.62 ± 0.96 | 0.07 ± 0.01 | 0.89 | 0.82 | 1.00 |
| DT | Top 10 | 91.60 ± 1.95 | 90.19 ± 2.36 | 99.40 ± 0.47 | 89.78 ± 2.44 | 0.08 ± 0.02 | 0.87 | 0.78 | 0.98 |
| KNN | Top 10 | 79.47 ± 0.94 | 75.71 ± 0.89 | 91.95 ± 1.05 | 75.89 ± 1.01 | 0.21 ± 0.01 | 0.69 | 0.45 | 0.91 |
| SVM | Top 8 | 75.03 ± 1.42 | 68.17 ± 1.76 | 72.69 ± 2.70 | 71.95 ± 1.65 | 0.25 ± 0.01 | 0.63 | 0.33 | 0.95 |
| NB | Top 10 | 73.90 ± 2.02 | 72.35 ± 2.16 | 95.31 ± 1.01 | 72.43 ± 2.02 | 0.26 ± 0.02 | 0.64 | 0.30 | 0.95 |
| LR | Top 10 | 71.57 ± 1.92 | 69.15 ± 1.88 | 93.33 ± 1.27 | 68.91 ± 1.84 | 0.28 ± 0.02 | 0.59 | 0.24 | 0.95 |
| DAC | Top 10 | 70.33 ± 2.09 | 68.15 ± 2.04 | 93.96 ± 1.42 | 68.05 ± 1.95 | 0.30 ± 0.02 | 0.58 | 0.21 | 0.93 |