Table 6.
Various attitudes for selecting features in relation to classification techniques for 100% training.
| Attribute extraction | No. of attributes | ANN (Acc, TPR, FPR, TNR, FNR) (%) | Decision tree (Acc, TPR, FPR, TNR, FNR) (%) | Naive Bayes (Acc, TPR, FPR, TNR, FNR) (%) | SVM (Acc, TPR,FPR, TNR, FNR) (%) |
|---|---|---|---|---|---|
| CFsSubset | 25 | 89.9 | 91.3 | 87.9 | 93.3 |
| 100 | 100 | 100 | 100 | ||
| 11.9 | 13 | 15 | 10 | ||
| 86.8 | 88 | 88.9 | 90 | ||
| 0 | 0 | 0 | 0 | ||
|
| |||||
| PCA | 55 | 87.9 | 93.5 | 88.9 | 94.8 |
| 63.8 | 77 | 74 | 96 | ||
| 5 | 4 | 11 | 6 | ||
| 94.8 | 97 | 91 | 98 | ||
| 34.7 | 22 | 25 | 0 | ||
|
| |||||
| GainRatioAttribute | 201 | 90.5 | 93.8 | 86.7 | 94.5 |
| 1 | 100 | 100 | 100 | ||
| 9 | 10 | 17 | 8 | ||
| 90 | 89 | 86 | 91 | ||
| 0 | 0 | 0 | 0 | ||
|
| |||||
| SymmetricalUncertAttributeEval | 146 | 93.5 | 93.8 | 89.3 | 95.5 |
| 100 | 100 | 100 | 100 | ||
| 9.9 | 10 | 11 | 8 | ||
| 88.7 | 89.6 | 83 | 91 | ||
| 0 | 0 | 0 | 0 | ||