Table 7.
Different techniques for selecting features in relation to classification techniques that use 80% of the information for trained and 20% for tests.
| Attribute extraction | No. of attributes | ANN (Acc, TPR, FPR, TNR, FNR) | Decision tree (Acc, TPR,FPR, TNR, FNR) | Naive Bayes (Acc, TPR, FPR, TNR, FNR) (%) | SVM (Acc, TPR, FPR, TNR, FNR) (%) |
|---|---|---|---|---|---|
| (%) | (%) | ||||
| CFsSubset | 25 | 95.4 | 97 | 93 | 98.5 |
| 100 | 100 | 100 | 100 | ||
| 3 | 6 | 9 | 3 | ||
| 94 | 96 | 89 | 96 | ||
| 0 | 0 | 0 | 0 | ||
|
| |||||
| PCA | 55 | 96.4 | 95.8 | 91.5 | 97.7 |
| 100 | 93 | 93 | 91 | ||
| 4 | 7 | 9 | 0 | ||
| 95 | 98 | 88 | 98 | ||
| 0 | 7 | 6 | 8 | ||
|
| |||||
| GainRatioAttribute | 201 | 95.7 | 97.3 | 87.9 | 97.5 |
| 100 | 100 | 100 | 100 | ||
| 6 | 3 | 13 | 5 | ||
| 8 | 97 | 84 | 97 | ||
| 0 | 0 | 0 | 0 | ||
|
| |||||
| SymmetricalUncertAttributeEval | 146 | 94.6 | 94.3 | 90.5 | 97.9 |
| 100 | 100 | 100 | 100 | ||
| 5 | 6 | 12 | 3 | ||
| 94 | 93 | 85 | 96 | ||
| 0 | 0 | 0 | 0 | ||