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Abstract
Dilated cardiomyopathy (DCM) is a major risk factor for heart failure and is associated with the development of life-
threatening cardiac arrhythmias. Using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) 
model harbouring a mutation in cardiac troponin T (R173W), we aim to examine the cellular basis of arrhythmogenesis 
in DCM patients with this mutation. iPSC from control (Ctrl) and DCM-TnT-R173W donors from the same family were 
differentiated into iPSC-CM and analysed through optical action potential (AP) recordings, simultaneous measurement of 
cytosolic calcium concentration ([Ca2+]i) and membrane currents and separately assayed using field stimulation to detect the 
threshold for AP- and [Ca2+]i-alternans development. AP duration was unaltered in TnT-R173W iPSC-CM. Nevertheless, 
TnT-R173W iPSC-CM showed a strikingly low stimulation threshold for AP- and [Ca2+]i-alternans. Myofilaments are known 
to play a role as intracellular Ca2+ buffers and here we show increased Ca2+ affinity of intracellular buffers in TnT-R173W 
cells, indicating increased myofilament sensitivity to Ca2+. Similarly, EMD57033, a myofilament Ca2+ sensitiser, replicated 
the abnormal [Ca2+]i dynamics observed in TnT-R173W samples and lowered the threshold for alternans development. In 
contrast, application of a Ca2+ desensitiser (blebbistatin) to TnT-R173W iPSC-CM was able to phenotypically rescue Ca2+ 
dynamics, normalising Ca2+ transient profile and minimising the occurrence of Ca2+ alternans at physiological frequencies. 
This finding suggests that increased Ca2+ buffering likely plays a major arrhythmogenic role in patients with DCM, specifi-
cally in those with mutations in cardiac troponin T. In addition, we propose that modulation of myofilament Ca2+ sensitivity 
could be an effective anti-arrhythmic target for pharmacological management of this disease.
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Introduction

Dilated cardiomyopathy (DCM) represents the most com-
mon cardiomyopathy and is a major contributor to heart fail-
ure and sudden cardiac death [41]. Roughly, 40% of DCM 
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cases are caused by inherited mutations, particularly in 
genes encoding for sarcomeric proteins [18, 42]. More than 
50 disease-related genes have been identified, which also 
include mutations in cytoskeletal, mitochondrial and ion-
channel proteins [41]. The lethal complications of DCM are 
largely due to the increased incidence of cardiac arrhythmias 
[33]. While previous work heavily focuses on the molecular 
basis of impaired contractile function, little is known about 
the mechanisms underlying cardiac arrhythmias in patients 
with DCM.

Human induced pluripotent stem cell-derived cardiomyo-
cytes (iPSC-CM) are an emerging tool for modelling cardiac 
disease and for investigating the molecular basis of cardiac 
arrhythmias [25, 29, 44, 77]. The first mutation reported in 
a human patient-specific iPSC-CM model of dilated car-
diomyopathy (DCM) was troponin T (TnT)-R173W [63]. 
Impaired calcium (Ca2+) handling and reduced contractil-
ity are key features of patient-specific iPSC-CM carrying 
TnT-R173W [39, 63, 76]. Furthermore, it has been shown 
that TnT-R173W limits binding of protein kinase A to sar-
comeric microdomains and attenuates consecutive phospho-
rylation of sarcomeric proteins such as troponin I (TnI) [9]. 
Since hypophosphorylation of TnI typically increases Ca2+ 
affinity of sarcomeric troponin C (TnC) [5, 60], it follows 
that Ca2+ buffering by myofilaments would be increased in 
DCM TnT-R173W iPSC-CM within a certain range of cyto-
solic Ca2+, which can be visualised in the form of a buffer 
power curve [59].

Interestingly, increased myofilament Ca2+ sensitivity has 
been suggested to promote the occurrence of life-threaten-
ing arrhythmias in patients with familial hypertrophic car-
diomyopathy (HCM) [1]. In particular, in mice with HCM-
causing TnT mutations, the risk of developing ventricular 
arrhythmias was directly proportional to the degree of Ca2+ 
sensitisation caused by the mutation. We, therefore, hypoth-
esise that a similar mechanism, i.e. increased Ca2+ binding 
to myofilaments, may also contribute to arrhythmogenesis 
in patients with DCM-causing TnT mutations.

Here, we utilised DCM patient-specific iPSC-CM car-
rying the TnT-R173W mutation (DCM-TnT-R173W iPSC-
CM) to assess whether alterations in cellular Ca2+ handling 
and cellular electrophysiology may contribute to arrhythmo-
genesis in DCM patients harbouring mutations in TnT.

Materials and methods

Cardiac differentiation of human iPSC

Human induced pluripotent stem cells (iPSC) were grown 
to 80% confluence on Matrigel-coated plates using chemi-
cally defined E8 medium [8, 13] (Supplementary Fig. 1A) 
and were differentiated into beating iPSC-CM via a small 

molecule-based monolayer method, as described previously 
[12, 13, 34, 35]. From day 7, beating iPSC-CM could be 
observed. Following differentiation, human iPSC-CM were 
cultured in RPMI medium with B-27 Supplement (Life 
Technologies). TnT-R173W and Ctrl groups expressed 
regular levels of pluripotency markers in iPSC and cardiac 
markers in iPSC-CM, respectively (Supplementary Fig. 1). 
Following 25 days of cardiac differentiation, beating iPSC-
CM monolayers were dissociated using TrypLE and plated 
onto Matrigel-coated glass coverslips (diameter 10 mm). 
Cells were investigated within a timeframe of 30–40 days 
after differentiation. Prior to experimentation, cells were 
loaded with 0.1 × VoltageFluor2.1Cl (Fluovolt, Thermo 
Scientific; 20 min loading) for Optical action potential (AP) 
analysis or 10 µM Fluo-3-acetoxymethyl ester (Fluo-3-AM, 
Thermo Scientific; 10 min loading, 50 min de-esterification) 
for intracellular Ca2+ investigation in a bath solution con-
taining (in mM): CaCl2 2, Glucose 10, HEPES 10, KCl 4, 
MgCl2 1, NaCl 140, Probenecid 2; pH = 7.35 adjusted with 
NaOH. All protocols were approved by the Ethics Commit-
tee of the University Medical Center Göttingen (No. 10/9/15 
and 15/2/20). Informed consent was obtained from all par-
ticipants and all research was performed in accordance with 
relevant guidelines and regulations.

Electrical field stimulation of iPSC‑CM

Coverslips containing iPSC-CM were transferred to a 
37 ± 0.5  °C heated chamber containing bath solution. 
Cells were electrically stimulated at increasing frequencies 
(0.5 Hz, 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz) with two paral-
lel platinum electrodes connected to an external stimulator 
(IonOptix Myopacer cell stimulator). Stimuli were set to 
3–5 ms bipolar pulses with voltages ~ 25% above the con-
traction threshold (normally between 10 and 30 V). APs 
were recorded from isolated masked cells on the stage of an 
epifluorescence microscope (λEx = 470 nm, λEm = 535 nm), 
which was optimised for high-speed signal capture with a 
photomultiplier as previously described [52, 58]. Three APs 
from each cell at every measured frequency were ensemble 
averaged for offline analysis of AP parameters with Clampfit 
10.7 (Molecular Devices). Whole-trace AP alternans magni-
tude was analysed using a discrete Fourier transform-based 
spectral method as described previously [15, 50]. Cytosolic 
Ca2+ levels were estimated as a change in fluorescence inten-
sity relative to the resting fluorescence intensity at the begin-
ning of each experiment (ΔF/F0).

Patch‑clamp and simultaneous intracellular Ca2+ 
measurements

Coverslips containing iPSC-CM were transferred to a 
37 ± 0.5 °C heated chamber and were superfused with bath 
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solution containing (in mM): 4-aminopyridine 5, BaCl2 0.1, 
CaCl2 2, Glucose 10, HEPES 10, KCl 4, MgCl2 1, NaCl 
140, Probenecid 2; pH = 7.35 adjusted with NaOH. Simul-
taneous measurements of membrane currents and intracel-
lular Ca2+ were performed under voltage-clamp using the 
whole-cell ruptured-patch configuration. Membrane cur-
rents were measured and analysed using pClamp-Software 
(V 10.7 Molecular Devices). Fluo-3 pentapotassium salt, 
0.1 mM (Thermo Scientific) was added to the pipette solu-
tion containing (in mM): EGTA 0.02, GTP-Tris 0.1, HEPES 
10, K-aspartate 92, KCl 48, Mg-ATP 1, Na2-ATP 4; pH = 7.2 
adjusted with KOH. Tip resistances of borosilicate glass 
microelectrodes were 3–7 MΩ. A voltage-clamp protocol 
using a holding potential of − 80 mV and a 100 ms voltage 
step to +10 mV at 0.5 Hz was employed to activate L-type 
Ca2+ current (ICa,L) and corresponding triggered Ca2+ tran-
sients. A 100 ms ramp pulse to − 40 mV to inactivate the 
fast Na+ current was applied before each depolarising step. 
Membrane capacitance measurements were acquired and 
current was expressed as current density (pA/pF).

To quantify intracellular Ca2+ concentration ([Ca2+]i), 
Fluo-3 was excited at 488 nm and emitted light (> 520 nm) 
converted to [Ca2+]i, assuming

where kd is the dissociation constant of Fluo-3 (864 nM), F 
is the Fluo-3 fluorescence; Fmax is the Ca2+-saturated fluo-
rescence obtained at the end of each experiment [70, 71]. 
Ca2+ transients were analysed by averaging 10 consecutive 
traces. Sarcoplasmic reticulum (SR) Ca2+ content and Ca2+ 
buffering were quantified as previously described by the 
application of high concentration caffeine (10 mM) [10, 14, 
59, 66].

Measurements of Ca2+ fluxes (integrated ICa,L) and SR 
Ca2+ content (integrated INCX) are expressed per litre total 
cell volume, which has been estimated based on a capaci-
tance to volume relationship of 4.57 pF/pL [21].

Statistical analysis

Summarised data are reported as mean ± SEM, unless other-
wise specified. Clustering of experimental data within sepa-
rate differentiations was tested in 6 WT differentiations and 
appeared to be negligible (Supplementary Fig. 2). Continu-
ous data with a sample size n ≥ 30 were assumed to be nor-
mally distributed (central limit theorem) [28]. Values with 
a distribution between n = 10–30 were tested for normality 
using the Shapiro–Wilk test. Normally distributed data were 
compared using unpaired two-tailed Student’s t test. Non-
normally distributed data and all data sets with n < 10 were 
compared using the Mann–Whitney U test, as indicated in 

[Ca
2+
]
i
= k

d

(

F

F
max

− F

)

,

the figure legends. Kaplan–Meier curve data were compared 
using the Gehan–Breslow–Wilcoxon test. A P value < 0.05 
was considered to be statistically significant.

Results

Action potential alternans in DCM‑TnT‑R173W 
iPSC‑CM

We first assessed optical AP characteristics of isolated iPSC-
CM from DCM patients carrying the cardiac troponin T 
mutation (R173W) and control iPSC-CM from the same 
family (Ctrl). iPSC-CM were stimulated at a range of fre-
quencies using electrical field stimulation. AP duration at 
90% repolarisation (APD90) was not significantly different 
between both groups (Fig. 1A, B, 0.5 Hz: APD90 R173W: 
171 ± 19.6, n/N = 16/3 vs. Ctrl: 156 ± 21.4 ms, n/N = 11/3). 
In addition, post-rest potentiation was not enhanced in 
R173W cells (Supplementary Fig. 3A, B) [57]. AP resti-
tution, describing the relationship between APD and the 
previous diastolic interval, was also unchanged. Neither 
group produced a curve with a maximal slope greater than 
1 (Fig. 1B). A maximal slope of 1 or greater is assumed to be 
a pre-requisite for the development of action potential-driven 
alternans, a phenomenon describing beat-to-beat variation 
in AP morphology [51, 73]. Despite this, AP alternans was 
observed at higher frequencies in DCM-TnT-R173W iPSC-
CM, and was almost absent in Ctrl iPSC-CM (Fig. 1C, D). A 
discrete Fourier transform spectral analysis revealed a higher 
incidence of alternans during both phase 0–1 and phase 2–3 
of an action potential event (Supplementary Fig. 3C, D).

Ca2+ alternans in DCM‑TnT‑R173W iPSC‑CM

It has been shown previously that DCM-TnT-R173W iPSC-
CM are characterised by impaired systolic contractility 
and slowed diastolic relaxation [9], with the latter pointing 
to impaired diastolic Ca2+ removal from the cytosol [39]. 
Impaired diastolic Ca2+ homeostasis has been shown to con-
tribute to Ca2+-driven alternans and, therefore, represent a 
major mechanism of cardiac arrhythmias. To further inves-
tigate diastolic Ca2+ handling and potential arrhythmogenic 
mechanisms, Fluo-3-loaded DCM-TnT-R173W iPSC-CM 
were stimulated at 0.5 Hz using electrical field stimulation. 
Representative normalised traces are shown in Fig. 2A 
(upper panel). Similar to previous studies [9, 39, 63], DCM-
TnT-R173W iPSC-CM showed delayed Ca2+ transient time-
to-peak values (Supplementary Fig. 4A). The time constant 
of decay was quantified by fitting a single exponential curve 
to the decay phase of the transient (from 90 to 10% of the 
amplitude). The time constant of decay was higher in DCM-
TnT-R173W iPSC-CM (Fig. 2B), suggesting slower Ca2+ 



	 Basic Research in Cardiology (2022) 117:5

1 3

5  Page 4 of 18

removal from the cytosol, which is hypothesised to predis-
pose the cardiomyocyte to the occurrence of Ca2+ transient 
alternans, i.e. beat-to-beat alterations of systolic Ca2+ tran-
sient amplitude [15, 73].

The occurrence of Ca2+ transient alternans in DCM-TnT-
R173W iPSC-CM was investigated by increasing stimula-
tion frequency stepwise up to 5 Hz (Fig. 2A). Strikingly, at 
5 Hz, Ca2+ transient alternans was observed in all DCM-
TnT-R173W iPSC-CM but only in 47% of Ctrl iPSC-CM. 
Kaplan–Meier analysis of alternans occurrence over the 
whole range of frequencies revealed significantly higher 
susceptibility to Ca2+ transient alternans in R173W-mutant 
cells. In addition, the threshold for Ca2+ transient alternans, 
i.e. mean frequency at which alternans first occurs, was sig-
nificantly lower in the DCM-TnT-R173W group (Fig. 2C). 
Taken together, DCM-TnT-R173W iPSC-CM show slower 
Ca2+ removal from the cytosol, which may contribute to the 

occurrence of arrhythmogenic alternans in DCM patients 
harbouring this mutation.

Smaller amplitude of ICa,L‑triggered Ca2+ transient 
in TnT‑R173W iPSC‑CM

To further investigate mechanisms underlying impaired 
Ca2+ handling in DCM-TnT-R173W iPSC-CM, epifluo-
rescence was combined with the whole-cell voltage-clamp 
technique. No significant difference between membrane 
capacitance of DCM-TnT-R173W and Ctrl iPSC-CM was 
observed (R173W: 21.65 ± 1.63 pF, n/N = 46/5 vs. Ctrl: 
27.38 ± 3.28 pF, n/N = 29/3; Mann–Whitney: P = 0.33), 
indicating comparable cell size. ICa,L was induced by a volt-
age-step protocol (0.5 Hz stimulation frequency) and was 
measured simultaneously with cytosolic Ca2+ (Fig. 3A).

Fig. 1   Incidence of action potential (AP) alternans in control (Ctrl) 
and DCM-TnT-R173W induced pluripotent stem cell-derived cardio-
myocytes (iPSC-CM). A Normalised representative traces of optical 
AP at 0.5 Hz (upper) and 2 Hz (lower) in Ctrl (left) and TnT-R173W 
(right) iPSC-CM. Arrowheads indicate electrical stimulation and 
illustrate when beat-to-beat alterations are present. B Action poten-
tial duration at 90% repolarisation (APD90) at increasing diastolic 
intervals (AP restitution) fitted with a one-phase association nonlin-

ear function to determine maximum curve slope. C Kaplan–Meier 
plot showing the percentage of cells without alternans in relation to 
the respective pacing frequency. D Alternans threshold frequency. 
Number of myocytes without AP alternans is shown in boxes above. 
n = number of iPSC-CM from three batches. Data are mean ± SEM. 
***P < 0.001 using the Mann–Whitney U test (D) and Gehan–Bres-
low–Wilcoxon test (C)
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The peak amplitude and integral of ICa,L were both greater 
in DCM-TnT-R173W, compared to Ctrl. Interestingly, 
despite greater ICa,L, the triggered Ca2+ transient amplitude 
was smaller in DCM-TnT-R173W compared to Ctrl (Fig. 3C 
right panel). Diastolic Ca2+ levels were comparable in both 
groups (Fig. 3C left panel).

Increased intracellular Ca2+ buffering 
in DCM‑TnT‑R173W iPSC‑CM

The Ca2+ transient amplitude is determined by various 
factors such as ICa,L and SR Ca2+ content. Considering 
increased ICa,L (Fig. 3B), we subsequently measured SR 
Ca2+ content. After 3–5 min stimulation at 0.5 Hz using 
the voltage-step protocol described above, myocytes were 
clamped at − 80 mV and caffeine (10 mM) was applied to 
induce complete Ca2+ release from the SR (Fig. 3D upper 
panel). The amplitude of the resulting caffeine-induced Ca2+ 

transient was smaller in DCM-TnT-R173W, compared to 
Ctrl (Fig. 3E).

As the majority of Ca2+ released from the SR during 
caffeine application is extruded out of the cell by the elec-
trogenic Na+-Ca2+-exchanger (NCX), integration of the 
resulting NCX current can be used as an index of the “total” 
amount of Ca2+ released from the SR. This was comparable 
in DCM-TnT-R173W and Ctrl (Fig. 3D middle panel, F), 
in contrast with the amplitude of the caffeine-induced Ca2+ 
transient, which was smaller in DCM-TnT-R173W. Since 
the latter is quantified using intracellular Ca2+ indicators 
such as Fluo-3, and intracellular Ca2+ buffers such as SR 
Ca2+-ATPase (SERCA) and TnC compete with the indicator 
for binding to Ca2+ ions, the caffeine-induced Ca2+ transient 
represents only the “free” cytosolic Ca2+ concentration [59]. 
Therefore, an increase in intracellular Ca2+ buffering may 
explain the reduced amplitude of the caffeine-induced Ca2+ 
transient, despite comparable measurements of total Ca2+.

Fig. 2   Incidence of Ca2+ alternans in control (Ctrl) and DCM-TnT-
R173W induced pluripotent stem cell-derived cardiomyocytes (iPSC-
CM). A Normalised representative traces of Ca2+ transients (CaT) 
at 0.5 Hz (upper), 2 Hz (middle) and 5 Hz (lower) in Ctrl (left) and 
TnT-R173W (right) iPSC-CM. Arrowheads indicate electrical stimu-
lation and illustrate when beat-to-beat alterations are present. B Ca2+ 
transient time constant of decay (τ). C Alternans threshold frequency. 

Number of myocytes without CaT alternans is shown in boxes above. 
D Kaplan–Meier plot showing the percentage of cells without alter-
nans in relation to the respective pacing frequency. n = number of 
iPSC-CM from three batches. Data are mean ± SEM. **P < 0.01 and 
***P < 0.001 vs. Ctrl using Student’s t test (B), Mann–Whitney U test 
(C) and the Gehan–Breslow–Wilcoxon test (D)
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To quantify intracellular Ca2+ buffering, the integral of 
the caffeine-induced NCX current was plotted against free 
[Ca2+], as determined during the decay of the caffeine-
induced Ca2+ transient [59, 66]. The data were fitted with 
a Michaelis–Menten buffer curve (Fig. 3D lower panel):

The maximum buffer capacity Bmax was comparable 
between DCM-TnT-R173W and Ctrl, pointing to a similar 
amount of cytosolic Ca2+-binding sites. In contrast, the 
dissociation constant Kd, which represents the [Ca2+]i at 
which buffers are half saturated, was significantly lower 
in DCM-TnT-R173W, compared to Ctrl (Fig.  3G). A 
lower Kd suggests increased affinity of cytosolic Ca2+ 
buffers, thereby resulting in increased Ca2+ buffering in 
DCM-TnT-R173W.

Based on the estimated values of Bmax and Kd, 
Ca2+-buffer curves were calculated for each individual 
experiment (Supplementary Fig. 5A), allowing estimation 
of the time course of changes of total cytosolic Ca2+ dur-
ing ICa,L-triggered Ca2+ transient (Fig. 3H). In contrast to 
the lower free cytosolic Ca2+ transient amplitude (Fig. 3C 
right panel), the amplitude of total Ca2+ release in DCM-
TnT-R173W was comparable to Ctrl (Fig. 3I) suggesting 
that apparent alterations in systolic Ca2+ transients are 
mainly due to increased Ca2+ buffering.

[

Ca
2+
]

total
=

B
max

[

Ca2+
]

i

K
d
+
[

Ca2+
]

i

.

Slower decay of free systolic Ca2+ transient 
in TnT‑R173W iPSC‑CM is due to increased Ca2+ 
buffering

We further assessed whether the measured changes of 
cytosolic Ca2+ buffering can account quantitatively for 
the observed slowing of the cytosolic free Ca2+ transient 
[10]. Therefore, we plotted the rate of decay of free Ca2+ 
(-d[Ca2+]i/dt) as a function of the free cytosolic Ca2+ 
level (Fig. 4A) and, in accordance with slower decay of 
the cytosolic Ca2+ transient, we found the gradient of this 
relationship to be smaller in DCM-TnT-R173W (Fig. 4B). 
In contrast, Fig. 4C shows the rate of decay of total Ca2+ 
(-d[Ca2+]total/dt) plotted against the free [Ca2+]i with unal-
tered slope in DCM-TnT-R173W. The unaltered slope shows 
that the slowed decay of the systolic free Ca2+ transient in 
DCM-TnT-R173W (Fig. 2B) can be attributed quantitatively 
to increased Ca2+ buffering.

To estimate the contribution of NCX to cytosolic Ca2+ 
removal, we plotted the rate of decay of total Ca2+ during 
caffeine-induced Ca2+ transient against the corresponding 
free cytosolic Ca2+ level. The resulting slope was compa-
rable between both groups suggesting unaltered activity of 
NCX (Fig. 4D). In accordance, the slope of the line relat-
ing INCX to [Ca2+]i during decay of caffeine-induced Ca2+ 
transient (Supplementary Fig. 9A, B) showed no difference 
between groups, confirming unaltered Ca2+-dependence 
of NCX function. Since [Ca2+]i dependence of decay rate 
of total Ca2+ (d[Ca2+]total/dt) was unaltered during systolic 
and caffeine-induced Ca2+ transients, it can be concluded 
that [Ca2+]i dependence of SERCA activity is unaltered in 
DCM-TnT-R173W, which has been estimated based on the 
difference between the two respective slopes (Fig. 4E).

Pharmacological increase in myofilament Ca2+ 
affinity reproduces the Ca2+ handling phenotype 
observed in DCM‑R173W iPSC‑CM

Since TnC is the major cytosolic Ca2+ buffer [59], the DCM-
TnT-R173W mutation likely results in increased Ca2+ affin-
ity of TnC, leading to increased Ca2+ buffering and altered 
Ca2+ homeostasis.

To investigate whether increased Ca2+ affinity of myo-
filaments may contribute to Ca2+ handling abnormalities 
observed in DCM-TnT-R173W iPSC-CM, Ctrl iPSC-CM 
were treated with the Ca2+ sensitiser EMD57033 (5 µM, 
5 min pre-treatment, Figs. 5, 6) [1]. EMD57033 treatment 
had no effect on ICa,L (Fig. 5B). This is in stark contrast to 
the greater ICa,L in DCM-TnT-R173W iPSC-CM, an effect 
which, therefore, appears to be independent of increased 
Ca2+ buffering. Ca2+ transient amplitude was, however, 
smaller in EMD57033-treated iPSC-CM, compared to Ctrl 
(Fig. 5C right panel).

Fig. 3   ICa,L and Ca2+ transient (upper), sarcoplasmic reticulum Ca2+ 
load and intracellular Ca2+ buffering (middle) and total cytosolic 
Ca2+ concentration during ICa,L triggering (lower) in control (Ctrl) 
and DCM-TnT-R173W induced pluripotent stem cell-derived car-
diomyocytes (iPSC-CM). A Voltage-clamp protocol (upper), repre-
sentative simultaneous recordings of ICa,L (middle) and corresponding 
ICa,L-triggered Ca2+ transients (CaT, lower) in Ctrl (left) and TnT-
R173W (right) iPSC-CM. B Peak ICa,L amplitude (left) and integrated 
ICa,L (right). C Diastolic and systolic [Ca2+]i (left) and Ca2+ transient 
amplitude (right). D Representative recordings of caffeine-induced 
Ca2+ transient, i.e. free cytosolic Ca2+ concentration (upper) with 
associated depolarising inward current (INCX, middle) in Ctrl (left) 
and TnT-R173W (right) iPSC-CM. Integrated INCX as an index for 
total cytosolic Ca2+ concentration was plotted against correspond-
ing cytosolic free Ca2+ concentration (lower). Buffer curves depict-
ing the relationship between cytosolic free and total Ca2+ were fitted 
with hyperbolic functions. E, F Sarcoplasmic reticulum Ca2+, quanti-
fied with caffeine-induced Ca2+ transient amplitude (E), or area under 
the curve (Integral) of the corresponding inward current (INCX) (F). 
G Maximum buffer capacity (Bmax, left) and dissociation constant 
(Kd, right), determined from buffer curves. H Representative total 
cytosolic Ca2+ concentration during ICa,L-triggered Ca2+ transients in 
Ctrl (left) and TnT-R173W (right) iPSC-CM. I Total cytosolic Ca2+ 
amplitude. n = number of iPSC-CM from 3 to 5 batches. Data are 
mean ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. Ctrl using 
Student’s t test (B, C, E–G left, I) and the Mann–Whitney U test (G 
right)

◂
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EMD57033 treatment did not affect SR Ca2+ load, as 
quantified by the integration of the caffeine-induced INCX 
(Fig. 5D middle panel, F). In contrast, amplitude of the 
caffeine-induced Ca2+ transient was smaller in EMD57033-
treated iPSC-CM, compared to untreated (Fig. 5E), indi-
cating less free [Ca2+]i during Ca2+ release from the SR. 
Quantification of buffer properties revealed unaltered total 
buffer capacity, Bmax, but a lower dissociation constant, Kd, 
in EMD57033-treated iPSC-CM (Fig. 5G). These data phe-
nocopy the Ca2+ handling properties observed in DCM-TnT-
R173W iPSC-CM and confirm the effective increase in cyto-
solic Ca2+ buffering in myocytes treated with EMD57033.

The smaller Ca2+ transient amplitude in myocytes treated 
with EMD57033 is unlikely to be caused by the lower total 
amount of Ca2+ released from the SR because the amplitude 
of the total Ca2+ transient calculated based on Ca2+ buffer 
curves (Supplementary Fig. 5C) was unaltered (Fig. 5H, I). 
Rather, it is more likely due to stronger binding of Ca2+ 
to myofilaments sensitised by EMD57033. The latter also 
hampers diastolic Ca2+ removal from the cytosol since 
Ca2+ must first dissociate from buffers before it can interact 
with Ca2+ removal mechanisms of the SR and the sarco-
lemma, respectively. Accordingly, decay of cytosolic free 
Ca2+ during ICa,L-triggered SR Ca2+ release was slower 
in EMD57033-treated iPSC-CM (Fig. 6B). In contrast, 
[Ca2+]i dependence of the decay rate of total Ca2+ during 

ICa,L-triggered and caffeine-induced SR Ca2+ release was 
unaltered in EMD57033-treated cells pointing to unchanged 
SERCA and NCX [Ca2+]i dependence (Fig. 6C–E).

To demonstrate that increased Ca2+ buffering is suffi-
cient to increase alternans susceptibility, field stimulation 
experiments were performed in EMD57033-treated iPSC-
CM (Fig. 7). Similar to DCM-TnT-R173W, Ca2+ transient 
upstroke was slower (Supplementary Fig. 4B) and time 
constant of decay was greater in EMD57033-treated iPSC-
CM, compared to Ctrl (Fig. 7B). Furthermore, EMD57033-
treated iPSC-CM demonstrated higher susceptibility for 
Ca2+ alternans, as shown by the Kaplan–Meier curve 
(Fig. 7D), and a lower threshold frequency for Ca2+ transient 
alternans, compared to Ctrl (Fig. 7C).

Blebbistatin reduces alternans susceptibility 
in DCM‑TnT‑R173W iPSC‑CM

Blebbistatin is an inhibitor of myosin ATPase and has been 
suggested to reduce Ca2+ affinity of myofilaments [1]. To test 
whether the proarrhythmic phenotype of DCM-TnT-R173W 
iPSC-CM may be rescued by normalisation of myofilament 
Ca2+ affinity, Ca2+ transients were recorded in electrically 
field stimulated DCM-TnT-R173W iPSC-CM treated with 
blebbistatin (10 µM, 20 min pre-treatment, Fig. 8). As shown 
in Fig. 8B, blebbistatin treatment normalised Ca2+ transient 

Fig. 4   Quantification of decay of free and total Ca2+ transient of 
control (Ctrl) and DCM-TnT-R173W induced pluripotent stem cell-
derived cardiomyocytes (iPSC-CM). A Representative rate of decay 
of free Ca2+ (-d[Ca2+]i/dt) plotted against free [Ca2+]i (left), repre-
sentative rate of decay of total Ca2+ (-d[Ca2+]total/dt) plotted against 
free [Ca2+]i (middle) and representative rate of decay of total Ca2+ 
during caffeine-induced Ca2+ transient plotted against the corre-
sponding free [Ca2+]i (right) in Ctrl and TnT-R173W iPSC-CM. 

Slopes are shown as a linear function. B Slope of -d[Ca2+]i/dt plot-
ted against [Ca2+]i. C Slope of -d[Ca2+]total/dt plotted against [Ca2+]i. 
D Slope of -d[Ca2+]total/dt during caffeine plotted against the corre-
sponding [Ca2+]i. E Difference between C and D indicating unaltered 
[Ca2+]I dependence of SERCA-mediated Ca2+ removal. n = number 
of iPSC-CM from 3 to 5 batches. Data are mean ± SEM *P < 0.05 
vs. Ctrl using Mann–Whitney U test (B, C, E) and Student’s t test (D)
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time constant of decay. In addition, blebbistatin reduced sus-
ceptibility to Ca2+ transient alternans in DCM-TnT-R173W 
iPSC-CM and increased the threshold frequency at which 
Ca2+ transient alternans occurred (Fig. 8C, D).

Discussion

In the current study, iPSC-CM with the DCM-TnT-R173W 
mutation were used to assess Ca2+ handling abnormalities 
and examine the arrhythmogenic propensity of patients 
with DCM. Single-cell patch-clamp experiments revealed 
increased intracellular Ca2+ buffering in DCM-TnT-R173W 
iPSC-CM. In addition, it could be demonstrated that these 
alterations in cytosolic Ca2+ handling contribute to AP and 
Ca2+ transient alternans as a potential underlying substrate 
for increased arrhythmogenesis in DCM patients harbouring 
the DCM-TnT-R173W mutation. Of note, treatment with 
blebbistatin, a myosin ATPase inhibitor causing decreased 
myofilament Ca2+ sensitivity [1], reduced the occurrence of 
Ca2+ alternans in DCM-TnT-R173W iPSC-CM. Our find-
ings suggest that modulation of myofilament Ca2+ sensitivity 
may represent a potential anti-arrhythmic concept in DCM 
patients, in particular in those harbouring mutations in TnT.

Cardiac arrhythmia mechanisms in DCM patients

DCM patients are more prone to cardiac arrhythmia develop-
ment, with the main reasons for mortality being end-organ 
dysfunction due to heart failure or arrhythmia-related death 
[65]. Premature ventricular contractions and non-sustained 
ventricular tachycardia are common in DCM and are 
observed in up to 90% and 60% of patients, respectively. 
Cardiac arrest can occur due to monomorphic or polymor-
phic ventricular tachycardia, degenerating to ventricular 
fibrillation [27].

A variety of mechanisms have been proposed to contrib-
ute to arrhythmogenesis in patients with DCM, but the pri-
mary cause is not well understood [27]. DCM patients often 
present with multiple patchy areas of replacement fibrosis, 
which can act as sites for re-entry, one of the most common 
mechanisms underlying ventricular tachycardia and sudden 
cardiac death [40, 55]. Other hypotheses focus on abnormal 
wall stretch, causing alterations in ventricular refractoriness 
and predisposing the patient to abnormal automaticity and 
triggered activity [6].

Given the broad spectrum of genetic and non-genetic 
contributors to DCM pathophysiology, the identification of 
a common pathomechanism underlying arrhythmogenesis 
in all DCM patients is almost impossible. Valvular heart 
disease, excessive alcohol consumption, hypertension and 
infectious diseases, for example, are accepted etiological fac-
tors associated with disease-specific remodelling pathways 

leading to DCM [42]. Nevertheless, in about 40% of patients 
with DCM, underlying genetic factors are thought to play 
a role [18]. Most mutations causing DCM are located in 
genes encoding for cytoskeletal, sarcolemmal and sarcom-
eric proteins [31, 42]. A “disruption” in the link between 
these three components and consecutive disturbance of ion-
channel function have been proposed as the “final common 
pathway” in DCM arrhythmogenesis [65].

Many DCM-causing mutations have also been shown to 
affect multiple aspects of Ca2+ homeostasis in cardiac myo-
cytes, including altered binding of Ca2+ to myofilaments, 
as well as disrupted expression of Ca2+ handling proteins. 
It follows, therefore, that abnormal Ca2+ handling may also 
play a potentially key role in DCM-related arrhythmogenesis 
[30, 64].

Altered cytosolic Ca2+ handling in DCM patients

Ca2+ is a major mediator of excitation–contraction cou-
pling [4] and specific alterations in cellular Ca2+ handling 
are likely to contribute to impaired contractile function in 
patients with DCM [31]. Accordingly, decreased amplitude 
of systolic Ca2+ transients appears to be a common finding 
in all DCM models in which cytosolic Ca2+ handling has 
been investigated [2, 36, 37, 62, 63]. Reduced Ca2+ transient 
amplitude has been suggested to result from reduced SR 
Ca2+ content, which may be due to increased diastolic Ca2+ 
leak from the SR mediated by leaky type 2 ryanodine recep-
tor channels (RyR2) [2]. Reduced SR Ca2+ content may also 
result from slower Ca2+ reuptake into the SR due to reduced 
activity of SERCA [43].

Here, we describe another mechanism which could also 
contribute to reduced Ca2+ transient amplitude in DCM 
patients. Our experiments suggest that reduced Ca2+ tran-
sient amplitude in DCM-TnT-R173W cardiomyocytes [63] 
results from increased Ca2+ buffering due to increased bind-
ing of Ca2+ to myofilaments [14]. This is consistent with 
previous publications showing that the DCM-TnT-R173W 
mutation limits binding of protein kinase A to local sar-
comere microdomains, thereby attenuating phosphorylation 
of TnI [9]. The latter might contribute to increasing the Ca2+ 
sensitivity of TnC and increase Ca2+-myofilament binding 
within the physiologically relevant range (Supplementary 
Figs. 5B, D).

It is important to note that contractile function is attenu-
ated in DCM-TnT-R173W myocytes and engineered heart 
muscle constructs (EHM) [9, 39]. A contributing factor 
might be the reduced interaction of TnT with tropomyosin 
in the presence of the DCM-TnT-R173W mutation, which is 
located within one of the two tropomyosin binding regions of 
TnT [9, 24]. This may affect correct relocation of tropomyo-
sin following Ca2+ binding to TnC as well as freeing of the 
myosin-binding sites on actin, thereby limiting contraction. 
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A similar discrepancy has been shown in skinned muscle 
fibres in response to caffeine, which sensitises the force 
response to lower Ca2+ concentrations without affecting 
Ca2+ binding to TnC [53]. Taken together it is important 
to consider alterations in the “apparent” Ca2+ affinity of 
contractile proteins determined by analysis of contractile 
function in response to variations of [Ca2+]i separately from 
alterations in the Ca2+ binding affinity of myofilaments. The 
latter represent the major Ca2+ buffers in cardiac myocytes 
and alterations in binding affinity are thought to have rel-
evant impact on cellular Ca2+ homeostasis [59].

Increased susceptibility to arrhythmogenic AP 
and Ca2+ transient alternans in DCM patients

Increased Ca2+ buffering has a major impact on Ca2+ han-
dling and arrhythmogenesis [14]; Ca2+ influences cellular 
electrophysiology via the modulation of Ca2+-dependent ion 
channels and transporters in the sarcolemma, such as the 
L-type Ca2+ channel and NCX. It, therefore, follows that 
altered Ca2+ handling may also contribute to arrhythmogen-
esis in patients with DCM. Surprisingly little is known about 
the role abnormal Ca2+ handling plays in arrhythmogenesis 
in patients with DCM. Previous publications have shown 
that increased incidence of spontaneous Ca2+ release events 
from the SR during diastole may contribute to arrhythmo-
genesis, particularly in patients with Duchenne Muscular 
Dystrophy (DMD)-associated cardiomyopathy [2]. The 

released Ca2+ is extruded from the myocyte by NCX, which 
brings 3 Na+ ions per extruded Ca2+ ion into the cell, giving 
rise to a depolarising inward current. If this current is large 
enough, it will trigger a new action potential and ectopic 
activity, with the potential to initiate cardiac arrhythmias 
[20, 70, 71].

Here, we demonstrate for the first time that cardiomyo-
cytes from patients harbouring a DCM-causing mutation 
are prone to developing arrhythmogenic AP and Ca2+ tran-
sient alternans. The maximum slope of the AP restitution 
curves did not exceed one (Fig. 1B), which points towards 
Ca2+-driven alternans as opposed to alternans based on 
AP which requires a steeper restitution slope [15, 73]. In 
addition, the alterations in Ca2+ handling properties seen in 
DCM-TnT-R173W iPSC-CM could be reproduced in control 
iPSC-CM treated with the Ca2+ sensitiser EMD57033. This 
highlights increased Ca2+ buffering as a major contributor 
to impaired Ca2+ handling and increased susceptibility to 
arrhythmogenic alternans in DCM-TnT-R173W iPSC-CM.

Ca2+ alternans is enhanced by factors which increase SR 
Ca2+ release and reduce Ca2+ sequestration from the cytosol 
[73]. Increased Ca2+ buffering has previously been shown 
to reduce Ca2+ reuptake into the SR [10, 59]. In the present 
study, Ca2+ transient decay was slower in DCM-TnT-R173W 
iPSC-CM. We suggest that this is predominantly due to 
slowed SERCA and NCX-mediated Ca2+ removal from the 
cytosol secondary to increased Ca2+ buffering by myofila-
ments. Since NCX-mediated Ca2+ removal is electrogenic, 
the slower Ca2+ transient decay, it generates a depolarising 
inward current resulting in slower repolarisation of the mem-
brane potential during diastole. Indeed, further analysis of 
diastolic potentials during optical AP recordings revealed a 
significantly increased diastolic potential preceding every 
even (“pathological”) beat compared with every odd (“phys-
iological”) AP. This is consistent with incomplete dias-
tolic extrusion of intracellular Ca2+ in DCM-TnT-R173W 
iPSC-CM and persistence of NCX current (Supplemen-
tary Fig. 3F, G). The higher diastolic membrane potential 
prevents recovery from inactivation of voltage-gated ion 
channels thereby leading to impaired AP upstroke and/or 
duration. Since the abnormal AP appears not sufficient for 
triggering full SR Ca2+ release, cytosolic Ca2+ is reduced 
to its initial state without remaining NCX current, thereby 
allowing full repolarization of the membrane potential and 
the alternans cycle starts all over again [73].

AP and Ca2+ transient alternans may lead to spatial elec-
trical heterogeneity, providing a substrate for arrhythmo-
genic activity [16, 46]. Interestingly, a similar arrhythmo-
genic mechanism has been proposed by Baudenbacher et al. 
in mouse models harbouring TnT mutations causing hyper-
trophic cardiomyopathy [1]. The authors demonstrated that 
the risk of developing ventricular tachycardia was directly 
proportional to the degree of Ca2+ sensitisation caused by 

Fig. 5   ICa,L and Ca2+ transient (upper), sarcoplasmic reticulum Ca2+ 
load and intracellular Ca2+ buffering (middle) and total cytosolic 
Ca2+ concentrations during ICa,L triggering (lower) in control (Ctrl) 
induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) 
pre-treated with EMD57033 (5  µM). A Voltage-clamp protocol 
(upper), representative simultaneous recordings of ICa,L (middle) 
and corresponding ICa,L-triggered Ca2+ transients (CaT, lower) in 
untreated Ctrl iPSC-CM (left) and Ctrl iPSC-CM pre-treated with 
EMD57033 (right). B Peak ICa,L amplitude (left) and integrated ICa,L 
(right). C Diastolic and systolic [Ca2+]i (left) and Ca2+ transient 
amplitude (right). D Representative recordings of caffeine-induced 
Ca2+ transient i.e. free cytosolic Ca2+ concentration (upper) with 
associated depolarising inward current (INCX, middle) in untreated 
Ctrl iPSC-CM (left) and Ctrl iPSC-CM pre-treated with EMD57033 
(right). Integrated INCX as an index for total cytosolic Ca2+ concen-
tration was plotted against corresponding cytosolic free Ca2+ con-
centration (lower). Buffer curves depicting the relationship between 
cytosolic free and total Ca2+ were fitted with hyperbolic functions. 
E, F Sarcoplasmic reticulum Ca2+, quantified with caffeine-induced 
Ca2+ transient amplitude (E), or area under the curve (Integral) of 
the corresponding inward current (INCX) (F). G Maximum buffer 
capacity (Bmax, left) and dissociation constant (Kd, right), determined 
from buffer curves. H Representative total cytosolic Ca2+ concen-
tration during ICa,L-triggered Ca2+ transients in untreated Ctrl iPSC-
CM (left) and Ctrl iPSC-CM pre-treated with EMD57033 (right). I 
Total cytosolic Ca2+ amplitude. n = number of iPSC-CM from three 
batches. Data are mean ± SEM. **P < 0.01 and ***P < 0.001 vs. Ctrl 
using Student’s t test (B, C left, F, G, I) and the Mann–Whitney U 
test (C right, E)
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the mutation. Furthermore, in vitro studies demonstrate that 
HCM-causing mutations sensitising myofilaments to Ca2+ 
are associated with high risk of sudden cardiac death [17, 20, 
26, 57, 72]. There is also evidence for increased myofilament 
Ca2+ sensitivity in ventricular myocytes after myocardial 
infarction and also from patients with heart failure. Both 
diseases are associated with a high incidence of ventricular 
tachycardia and sudden cardiac death [68, 69, 74]. Our data 
show, for the first time, that increased Ca2+ buffering and 
increased susceptibility to AP and Ca2+ alternans also occur 
in myocytes from DCM-TnT-R173W patients. The extent 
to which our findings are valid in other subsets of DCM 
patients requires further investigation.

Potential limitations

In the present study, we used iPSC-CM from DCM patients 
harbouring the TnT-R173 mutation. iPSC-CM represent 
myocytes at an immature developmental stage. iPSC-CM 
exhibit poor co-localisation between ICa,L channels and 
RYR2 [54], resulting in more internal, non-coupled RyRs 
being activated by the subsequent rise in [Ca2+]i as opposed 
to direct activation by ICa,L channels [32, 78]. Neverthe-
less, iPSC-CM resemble adult ventricular cardiomyocytes 
in many aspects of cellular electrophysiology, Ca2+ han-
dling and contractile function [12, 23]. In addition, human 

iPSC-CM present a readily available human model of car-
diac myocytes which can be generated on demand in large 
quantities [7, 11, 13], making them a promising model to 
investigate electrophysiological abnormalities in patients 
with inherited cardiac arrhythmias [22, 44, 77].

Our data show significant upregulation of ICa,L in DCM-
TnT-R173W iPSC-CM. In contrast, SR Ca2+ content was 
unchanged in DCM-TnT-R173W iPSC-CM (Fig. 3F). Since 
the latter is mainly determined by the Ca2+ influx-efflux bal-
ance, this points to increased diastolic Ca2+ efflux [47, 67]. 
Accordingly, the amount of Ca2+ removed by NCX corre-
lated with the Ca2+ influx mediated by ICa,L (Supplementary 
Fig. 9D, E). In addition, Ca2+ removal by forward mode 
NCX was increased in DCM-TnT-R173W iPSC-CM to com-
pensate for the higher Ca2+ influx through upregulated ICa,L. 
The mechanisms underlying increased ICa,L are beyond the 
scope of the present study. Nevertheless, unaltered mRNA 
expression of the underlying Ca2+ channel subunit, Cav1.2, 
renders intrinsic differences of its expression levels between 
DCM-TnT-R173W and Ctrl iPSC-CM unlikely (Supplemen-
tary Fig. 6). Further analysis of the biphasic ICa,L inactiva-
tion revealed unaltered time course of fast ICa,L decay (τfast, 
Supplementary Fig. 7A left panel), which is thought to be 
mainly due to Ca2+ dependent inactivation of ICa,L [3]. We, 
therefore, conclude that increased ICa,L in DCM-TnT-R173W 
is unlikely due to reduced Ca2+-dependent inhibition of 

Fig. 6   Quantification of decay of free and total Ca2+ transient in 
control (Ctrl) induced pluripotent stem cell-derived cardiomyocytes 
(iPSC-CM) pre-treated with EMD57033 (5  µM). A Representative 
rate of decay of free Ca2+ (-d[Ca2+]i/dt) plotted against free [Ca2+]i 
(left), representative rate of decay of total Ca2+ (-d[Ca2+]total/dt) plot-
ted against free [Ca2+]i (middle) and representative rate of decay of 
total Ca2+ during caffeine-induced Ca2+ transient plotted against the 
corresponding free [Ca2+]i (right) in Ctrl iPSC-CM with and with-

out EMD57033 treatment. Slopes are shown as a linear function. B 
Slope of -d[Ca2+]i/dt plotted against [Ca2+]i. C Slope of -d[Ca2+]total/
dt plotted against [Ca2+]I. D Slope of -d[Ca2+]total/dt during caffeine 
plotted against the corresponding [Ca2+]i. E Difference between C 
and D indicating unaltered [Ca2+]I dependence of SERCA-mediated 
Ca2+ removal. n = number of iPSC-CM from three batches. Data are 
mean ± SEM. *P < 0.05 vs. Ctrl using Mann–Whitney U test (B–E)
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ICa,L in response to reduced free cytosolic Ca2+ levels. In 
accordance, increased cytosolic buffering due to EMD57033 
leads to a similar decrease in Ca2+ transient amplitude but 
had no effect on ICa,L. ICa,L is regulated by various post-
transcriptional and post-translational mechanisms including 
miRNA-dependent inhibition, phosphorylation and expres-
sion of accessory units [19, 56]. Future studies are neces-
sary to investigate whether these mechanisms contribute to 
ICa,L alterations in DCM patients in general, but also those 
harbouring the TnT-R173W mutation.

Despite greater ICa,L, the triggered Ca2+ transient ampli-
tude was smaller in DCM-TnT-R173W compared to Ctrl. 
Based on our experiments, we conclude that this is largely 
due to increased cytosolic Ca2+ buffering. In accordance, 
the total amount of Ca2+ released from the SR during 
ICa,L-triggered Ca2+ transients was unaltered in DCM-
TnT-R173W (Fig. 3H). Nevertheless, coupling efficiency 
between Ca2+ influx and total Ca2+ release was reduced in 

DCM-TnT-R173W (Supplementary Fig. 8A). Therefore, 
impaired interaction between L-type Ca2+ channel and RyR2 
may additionally contribute to reduced free ICa,L-triggered 
Ca2+ transient amplitude.

To quantify cytosolic Ca2+ buffering, we employed a 
method that allows investigation of Ca2+ homeostasis in 
intact cardiomyocytes [66]. Intracellular Ca2+ has been 
quantified by the fluorescent Ca2+ indicator Fluo-3, which 
represents an intracellular Ca2+ buffer itself. We assume that 
the contribution of Fluo-3 to intracellular Ca2+ buffering 
is comparable between experimental groups and does not 
contribute to the differences observed in the present study. 
Based on the dissociation constant (Kd = 0.864 µM) and an 
estimated buffer concentration (bmax) of 100 µM, the con-
tribution of Fluo-3 to the calculated buffer curves is illus-
trated in Supplementary Fig. 5. In addition, the employed 
techniques do only allow indirect conclusions on altered 
Ca2+-binding to the troponin complex. Direct quantification 

Fig. 7   Incidence of Ca2+ alternans in control (Ctrl) induced pluri-
potent stem cell-derived cardiomyocytes (iPSC-CM) pre-treated 
with EMD57033 (5  µM). A Normalised representative traces of 
Ca2+ transients (CaT) at 0.5  Hz (upper), 2  Hz (middle) and 5  Hz 
(lower) in untreated Ctrl (left) and in Ctrl iPSC-CM pre-treated with 
EMD57033 (right). Arrowheads indicate electrical stimulation and 
illustrate when beat-to-beat alterations are present. B Ca2+ transient 

time constant of decay (τ). C Alternans threshold frequency. Number 
of myocytes without alternans is shown in boxes above. D Kaplan–
Meier plot showing the percentage of cells without alternans in rela-
tion to the respective pacing. n = number of iPSC-CM from 2 to 5 
batches. Data are mean ± SEM. *P < 0.05 and ***P < 0.001 vs. Ctrl 
using the Mann–Whitney U test (B, C), and the Gehan–Breslow–Wil-
coxon test (D)
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of Ca2+ binding to troponin C will require further biochemi-
cal analysis that are beyond the scope of the present study 
[61].

In the present study, we investigated Ca2+ handling 
abnormalities in iPSC-CM carrying a specific mutation in 
cardiac TnT that has been associated with the occurrence 
of DCM. Given the multifactorial aetiology of DCM, it is 
unclear whether reduced Ca2+ uptake by SERCA, secondary 
to increased Ca2+ buffering by myofilaments may represent 
a “final common pathway” underlying arrhythmogenesis in 
DCM patients [65]. Nevertheless, early studies in ventricular 
biopsies from DCM patients also revealed a decreased rate 
of diastolic Ca2+ reuptake into the SR [36]. Furthermore, 
increased Ca2+ sensitivity of contraction has also been found 
in patients and a dog model of pacing induced DCM [45, 
75]. The differences in Ca2+ sensitivity were abrogated after 
treatment with the catalytic subunit of PKA, suggesting that, 
as in DCM caused by TnT-R173W mutations, the increased 

Ca2+ sensitivity of myofilaments may be due to a reduction 
in PKA-mediated phosphorylation of myofibrillar regula-
tory proteins.

Outlook

Based on our findings and given the fact that increased myo-
filament affinity for Ca2+ may contribute to arrhythmogen-
esis in various cardiac diseases, modulation of myofilament 
Ca2+ sensitivity may represent an important novel concept 
to prevent cardiac arrhythmias [1, 59].

Targeting Ca2+ binding of myofilaments is a classical 
therapeutic concept to improve contractile dysfunction 
in heart failure patients. Levosimendan and omecamtiv 
represent traditional drugs aiming to improve contractile 
force by increasing Ca2+ sensitivity and Ca2+-myofilament 
binding [38, 49]. Nevertheless, it is important to note that 
levosimendan also increases the incidence of ventricular 

Fig. 8   Incidence of Ca2+ alternans in DCM-TnT-R173W induced 
pluripotent stem cell-derived cardiomyocytes (iPSC-CM) pre-treated 
with blebbistatin (10  µM). A Normalised representative traces of 
Ca2+ transients (CaT) at 0.5  Hz (upper), 2  Hz (middle) and 5  Hz 
(lower) in untreated TnT-R173W iPSC-CM (left) and in TnT-R173W 
iPSC-CM pre-treated with blebbistatin (right). Arrowheads indicate 
electrical stimulation and illustrate when beat-to-beat alterations are 

present. B Ca2+ transient time constant of decay (τ). C Alternans 
threshold frequency. Number of myocytes without alternans is shown 
in boxes above. D Kaplan–Meier plot showing the percentage of cells 
without alternans in relation to the respective pacing. n = number of 
iPSC-CM from two batches. Data are mean ± SEM. **P < 0.01 vs. 
Ctrl using the Mann–Whitney U test (B, C), and the Gehan–Breslow–
Wilcoxon test (D)
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arrhythmias in patients with heart failure, likely due to 
alternans of Ca2+ [1, 20].

Blebbistatin is an inhibitor of the myosin ATPase and 
has been shown to prevent the occurrence of Ca2+ alter-
nans in mouse hearts harbouring Ca2+-sensitising TnT 
mutations in vitro [1]. According to our data, blebbista-
tin also prevents Ca2+ alternans in DCM-TnT-R173W 
iPSC-CM. Similar to blebbistatin, mavacamten, a small 
molecule modulator of β-cardiac myosin, which has been 
recently evaluated in patients with hypertrophic cardio-
myopathy, has also been shown to reduce Ca2+ affinity 
of myofilaments [48]. Both blebbistatin and mavacamten 
may, therefore, represent interesting lead compounds for 
the development of novel anti-arrhythmic concepts.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00395-​022-​00912-z.
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