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FXR: structures, biology, and drug development for NASH

and fibrosis diseases

Si-yu Tian', Shu-ming Chen’, Cheng-xi Pan' and Yong Li'

The nuclear receptor farnesoid-X-receptor (FXR) plays an essential role in bile acid, glucose, and lipid homeostasis. In the last two
decades, several diseases, such as obesity, type 2 diabetes, nonalcoholic fatty liver disease, cholestasis, and chronic inflammatory
diseases of the liver and intestine, have been revealed to be associated with alterations in FXR functions. FXR has become a
promising therapeutic drug target, particularly for enterohepatic diseases. Despite the large number of FXR modulators reported,
only obeticholic acid (OCA) has been approved for primary biliary cholangitis (PBC) therapy as FXR modulator. In this review, we
summarize the structure and function of FXR, the development of FXR modulators, and the structure-activity relationships of FXR
modulators. Based on the structural analysis, we discuss potential strategies for developing future therapeutic FXR modulators to
overcome current limitations, providing new perspectives for enterohepatic and metabolic diseases treatment.
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INTRODUCTION

Nuclear receptors (NRs) are a large family of ligand-regulated
transcription factors including receptors for steroid hormones,
thyroid hormones, fatty acids and bile acids [1-3]. The human NR
superfamily comprises 48 members that share highly conserved
domains. NRs are involved in various physiological functions,
ranging from development and differentiation to metabolic
homeostasis [4]. Dysfunction of NRs leads to various diseases,
such as cancer, diabetes, obesity, and liver disease. Therefore, the
NR superfamily is one of the main therapeutic targets for human
diseases. Indeed, NRs modulators account for more than 10% of
all FDA-approved drugs [5]. The success of drug development
targeting ligand-regulated NRs has heightened interest in finding
NR modulators with remarkable selectivity and pharmacological
properties.

The bile acid receptor farnesoid X receptor (FXR, NR1H4) is a
member of the nuclear hormone receptor superfamily that is
highly expressed in the liver and intestines and presents at
lower levels in the kidney, adipose tissue, and adrenal gland [6-
8]. FXR was first found as an orphan NR activated by farnesol
derivatives, which are metabolic intermediates of the mevalo-
nate pathway [9]. Subsequent studies have identified that bile
acids such as chenodeoxycholic acid (CDCA) and cholic acid (CA)
are endogenous ligands for FXR. Recent studies have deter-
mined that FXR functions as an enterohepatic regulator of bile
acid homeostasis, lipid and glucose metabolism, and inflamma-
tion [10]. Thus, FXR has emerged as an important therapeutic
target for various diseases, such as primary biliary cholangitis
(PBCQ), type 2 diabetes mellitus (T2DM), and liver fibrosis. Here,
we describe the structure and function of FXR and the
development of FXR modulators. In addition, we reviewed the

FXR modulators’ structure-activity relationships (SAR). Finally,
we discuss potential strategies for developing future therapeutic
FXR modulators for non-alcoholic steatohepatitis (NASH) and
fibrosis diseases.

FXR STRUCTURE AND FUNCTION

FXRa (NR1H4) and FXRB (NRTH5) are two known FXR genes. The
single FXRa gene is conserved from fish to humans [11] and
encodes four transcript isoforms, FXRa1, FXRa2, FXRa3, and FXRa4,
in humans and mice. FXRal and FXRa3 isoforms have four amino
acids (MYTG) immediately adjacent to the DNA-binding domain
(DBD) in a region referred to as the hinge domain (Fig. 1a), while
FXRa3 and FXRa4 possess an extended N-terminus. FXRB is a
lanosterol sensor in rodents, rabbits, and dogs but constitutes a
pseudogene in humans and primates [12, 13]. As members of the
NR superfamily, the four FXRa proteins share highly conserved
domains: the A/B region containing an N-terminal activation
function-1 (AF1) domain, the central C region that has a DNA-
binding domain (DBD), the C-terminal E region including a ligand-
binding domain (LBD), and the D region hinge domain that links
the DBD and the LBD (Fig. 1a). The four FXRa proteins shared the
highest similarity in their DBD and LBD (Fig. 1b). The ligand
binding to FXR, which forms a heterodimeric complex with
the retinoid X receptor (RXR), triggers receptor conformational
changes that regulate the recruitment of corepressors
and coactivators, ultimately impacting the transcription
of target genes (Fig. 2a) [14, 15]. The first FXR-LBD crystal
structure was resolved in 2003 by X-ray crystallography [14, 16]
revealing a three-layer helical sandwich arrangement that
resembles most nuclear receptor structures. In particular, helix
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Homo sapiens EKTELTPDQQTLLHFIMDSYNKQRMPQEITNK-ILKEEFSAEENFLILTE 303
Mus musculus EKTELTADQQTLLDYIMDSYNKQRMPQEITNK-I1LKEEFSAEENFLILTE 305
Gallus gallus EKVEFTPEQQNLLDYIMDSYSKQQIPQEVSKK-LLHEEFSAEGNFLILTE 29
Gavialis gangeticus EKVELTTEQQNLLHY I MDSYSKQRFPQEVSKK-LLHEEFGAEENFLILTE 294
Xenopus tropicalis ENTELTQEQMNLLQYVMDSHVKNRLPQSLATRLILQEDMGSDDNFVFLTE 295
Danio rerio ENIELSQDQQALINYIVDAHNKHRIPQDMAKK-LLQEQFNAEENFLLLTE 300
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Homo sapiens MATNHVQVLVEFTKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAE | FNKK 353
Mus musculus MATSHVQILVEFTKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAE | FNKK 355
Gallus gallus MATSHVQVLVEFTKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAEI|IFSRK 340
Gavialis gangeticus MATSHVQVLVEFTKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAEI|IFSRK 344
Xenopus tropicalis MATRHVQILVEFTKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAELFNRK 345
Danio rerio MATSHVQVLVEFTKNIPGFQSLDHEDQIALLKGSAVEAMFLRSAQVFSKK 350
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H6 H7 H8
I I —
Homo sapiens LPSGHSDLLEERIRNSGISD I TPMFSFYKSIGELKMTQEEYALLTAI1V 403
Mus musculus LPAGHADLLEERIRKSGISD I TPMFSFYKSVGELKMTQEEYALLTAIYV 405
Gallus gallus LPTGHTVLLEERIRNSGISD I TPMFNFYKSIGELKMTQEEYALLTA IV 39
Gavialis gangeticus LPTGHADLLEERIRNSGISD I TPMFNFYKSVGELKMTQEEYALLTAIV 3%
Xenopus tropicalis LLERHTEVLEERIRKSGISH INPMFHFYKSVGELKMVEEEYALLTAVYV 39
Danio rerio LPNGHTEVLEDRIRRSGISE I TPMFNFYKSIGELQMMQEEHALLTAI T 400
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H9 H10/11
—— —
Homo sapiens ILSPDRQY | KDREAVEKLQEPLLDVLQKLCKIHQPENPQHFACLLGRLTE 453
Mus musculus ILSPDRQY | KDREAVEKLQEPLLDVLQKLCKMYQPENPQHFACLLGRLTE 455
Gallus gallus ILSPDRQY | KDRESVERLQEPLLDILQKFCKLHHPDNPQHFACLLGRLTE 440
Gavialis gangeticus ILSPDRQY | KERESVERLQEPLLDVLQKLCKLHHPDNPQHFACLLGRLTE 444
Xenopus tropicalis ILTPDRQYLKDKESVEKLQETFLHILEKICKRCHPDNPQHFARLLGRLTE 445
Danio rerio ILSPDRPYVKDQQAVERLQEPMLEVLRKICKLQHPQEPQHFARLLGRLTE 450
*k . kkk *:*::::**:*** :*.:*.*:** :*::***** *kkkk k%
H10/11 H12 (AF-2)
| ) 18
Homo sapiens LRTFNHHHAEMLMSWRVNDHKFTPLLCE IWDVQ 486
Mus musculus LRTFNHHHAEMLMSWRVNDHKFTPLLCEIWDVQ 488
Gallus gallus LRTFNHHHAEMLMSWRVNDHKFTPLLCE IWDVQ 473
Gavialis gangeticus LRTFNHHHAEMLMSWRVNDHKFTPLLCEIWDVQ 477

Xenopus tropicalis LRTFSHHHADMLMSWRVNDHKFTPLLCEIWDVQ 478
Danio rerio LRTLNHHHAEMLESWRMSDHKFNPLLCE IWDVQ 483
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Fig. 1 Domain organization and sequence alignment of FXR. a Schematic diagram showing the functional domains of FXR. The DBD is blue,
the hinge is gray and the LBD is red. The presence of AF-2 is indicated in the box. b Sequence alignment of the FXR ligand-binding domain
among different species. The secondary structure elements are shown above the sequences. Identical residues are labeled with an asterisk.

Partially conserved residues are labeled with a colon.

H12, containing the activation function-2 (AF-2) domain of the
FXR-LBD, forms a hydrophobic cleft with helix H3 and helix H4,
which stabilizes the binding between the coactivators and FXR
through the hydrophobic interface with LXXLL motifs in
coactivators (Fig. 2b) [14, 16].

FXR is highly expressed in the mammalian liver and intestine,
functions as a guardian of bile acid homeostasis, and has been
identified as an important pharmacological target in the
treatment of intrahepatic cholestasis, such as primary biliary
cirrhosis (PBC) and primary sclerosing cholangitis (PSC) [17-19].
In addition, FXR modulators have attracted attention owing to
their roles in regulating glucose and lipid metabolism, therefore
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providing new strategies for treating T2DM, obesity, and liver
fibrosis [20-22].

Numerous FXR modulators have been developed to treat liver
disorders related to BA and lipid accumulation, and obeticholic
acid (OCA) has been approved by the FDA and EMEA for the
therapy of ursodeoxycholic acid (UDCA)-resistant patients with
PBC. However, OCA has been reported to increase the risk of liver
injury and result in pruritus [23, 24]. In addition, there is still no
effective medical therapy for nonalcoholic fatty liver disease
(NAFLD) thus far. This is an analysis of FXR modulators structural
mechanisms and SAR to provide new insights into FXR drug
design for treating NAFLD-like fibrosis diseases.
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Fig. 2 Structural basis of ligand-regulated FXR activity. a Upon ligand binding, FXR recruits transcriptional coactivators and binds to the
FXRE of target genes as a heterodimer with RXR. b The structure of OCA bound with rFXR LBD in carton representation (PDB: 10SV). The rFXR
LBD is colored slate blue, and the SRC2 peptide is pink. The bound OCA is shown in stick representation with carbon and oxygen atoms
depicted in yellow and red, respectively. ¢ Representative structures of endogenous bile acids.

STRUCTURAL BASIS FOR THE ACTIVITY OF FXR MODULATORS
Steroidal agonists

Primary bile acids, CA and CDCA, secondary bile acids, deoxycholic
acid (DCA), and lithocholic acid (LCA), and taurine or glycine
conjugates were identified as FXR endogenous agonists. The
potency to activate FXR was CDCA > DCA > LCA > CA (Fig. 2¢) [8].
To obtain highly potent FXR agonists, a panel of semisynthetic bile
acid derivatives was generated from CDCA chemical modification.
First, a series of 6a-alkyl-substituted CDCA analogs were
synthesized. Among them, the 6a-ethyl-chenodeoxycholic acid
(6-ECDCA, INT-747, OCA) was considered the most potent FXR
agonist, with an ECso of 99 nM in the FRET assay (Fig. 3a) [25]. The
structure of the rFXR LBD in complex with OCA shows that the A
ring of OCA faces helix H11 and helix H12, while the D ring faces
helix H3 and helix H5 (Fig. 3b). The 7a-OH of OCA forms H-bonds
with the side chains of Ser329 on helix H5 and Tyr366 on helix H7.
30-OH forms an H-bond with the side-chain nitrogen of His444 on
helix H11 stabilizing the m-cation interactions between the side
chains of His444 on helix H11 and Trp466 on helix H12. This
activation of the m-cation receptor trigger enables helix H12 to

SPRINGERNATURE

adopt an active conformation to recruit coactivators. In addition,
the carboxylate oxygens of OCA establish an H-bond with the
guanidino group of Arg328 on helix H5. Furthermore, the 6a-ethyl
group of OCA forms hydrophobic interactions with the side chains
of lle359, Phe363, and Tyr366 on helix H7, leading to a higher
ligand-binding affinity (Fig. 3b, c) [16, 25]. Although 3-deoxy-CDCA
cannot form an H bond with His444, its A ring can still stabilize the
mi-cation interaction between His444 and Trp466 to activate FXR,
indicating that 3a0-OH is not necessary to activate FXR (Fig. 3c) [16].
However, the correctly positioned ring A is a molecular switch that
mediates the activation of FXR. Additionally, the 3-deoxy-6-ethyl
derivative showed comparable potency to 6-ECDCA in the cell-
based reporter assay and AlphaScreen coactivator recruitment
assay [26].

Notably, OCA has been approved to treat UDCA-resistant patients
in PBC. It represents the first FXR ligand that progressed in Phase I
clinical trials in NASH patients [27, 28]. However, pruritus, a common
side effect of OCA, occurred in 51% of subjects receiving the active
ingredient and 18% receiving placebo. Other side effects, such as
gallstones and acute cholecystitis, were more frequent in the OCA

Acta Pharmacologica Sinica (2022) 43:1120-1132
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Fig. 3 Structural basis for the interaction of FXR with OCA. a Chemical structures of OCA and 3-deoxy CDCA. b Overall structure of OCA
bound to rFXR and the key interactions. FXR and OCA are colored slate blue and yellow, respectively. PDB: 10SV. c Interactions of OCA (yellow)
and 3-deoxy CDCA with the activation switch of FXR. PDB codes: 10SV (rFXR/OCA), and 10T7 (rFXR/3-deoxy CDCA).

group than in the placebo group (3% and <1%, respectively).
Treatment with OCA was also associated with an increase in low-
density lipoprotein (LDL) cholesterol, consistent with the phase 2
FLINT study [28].

In 2004, Pellicciari et al. synthesized a series of CDCA derivatives
with scaffold and side-chain modifications, which confirmed that
6a-alkyl substituents had more potency and efficacy [29]. The
CDCA side chain was further modified by carbamate moieties to
explore the existence of the FXR “back door” pocket [30]. In FXR
AlphaScreen coactivator recruitment assays, compared with CDCA,
Compound 4, with an ECsq of 0.15uM and efficacy of 290%,
showed very potent agonist activity (Fig. 4a). Compound 4 showed
full agonist activity on FXR at 1upM, comparable to that of
6-ECDCA. In contrast, CDCA proved to be only a partial agonist at
FXR even at a concentration of 20 uM in HepG2 cells by FXR
transactivation assay. In addition, Compound 4 has more potency
than 6-ECDCA in regulating FXR target genes such as small
heterodimer partner (SHP), bile salt export pump (BSEP), organic
solute transporter beta (Ostf), and cholesterol 7a-hydroxylase
(Cyp7a1) in HepG2 cells [31]. Furthermore, Xiao et al. reported that
Compound 18 (Fig. 4a), and the amidation of the carboxylic group
of 6-ECDCA, endowed with high FXR potency, good pharmaco-
kinetic properties, and pharmacological efficacy compared with
6-ECDCA [32]. The introduction of a hydroxyl group to the C ring
of 6-ECDCA, especially at the C-11f position, generated a potent
and selective FXR agonist TC-100 (Fig. 4a), with remarkable
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physicochemical and pharmacological profiles. In addition, dock-
ing studies highlighted that TC-100 could occupy the binding
pocket of FXR. Moreover, the C11f hydroxyl group makes an
additional hydrogen bond with the carbonyl group of Leu284 [33].
However, 7-deoxy-CDCA (LCA) decreases the affinity of FXR, and
the 73-epimer of CDCA (UDCA) cannot activate FXR [34, 35].
Intercept Pharmaceuticals reported a 23-sulfate derivative of
6-ECDCA (INT-747, OCA) named INT-767 (Fig. 4a) [36]. The potency
of INT-767 (ECsq =7 +1.5nM) for FXR was approximately 10-fold
higher than that of INT-747 (76 +4.3nM) in the AlphaScreen
coactivator recruitment assay. Moreover, FXR can be activated by
INT-767 in cell-based transactivation assays. Compared with INT-
747, INT-767 has a higher potency in modulating the FXR target
genes SHP, BSEP, Ostf, and Cyp7al in HepG2 cells. In diabetic
mice, INT-767 decreased total cholesterol and triglyceride levels. In
addition, INT-767 treatment significantly attenuates liver damage
and the proinflammatory response in a rat model of NASH [37].
In conclusion, scientists have focused on bile acid scaffold
modifications since bile acids were identified as FXR endogenous
agonists. CDCA is a recognized privileged molecule among bile
acids; its above-mentioned derivatives were synthesized to
improve the potency, efficacy, and metabolic stability relative to
CDCA. The SAR of CDCA derivatives can be summarized as follows:
First, the 6a-alkyl group of the CDCA scaffold is an important
group that can increase the ligand-binding potency to FXR.
Second, the hydroxyl group at the 3a-position is unnecessary for
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Scaffold Modification

OH.
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Fig. 4 Structural basis for the interaction of FXR with CDCA derivatives. a Chemical structures of CDCA derivatives. b Chemical structure of
MFA-1. ¢ Superposition of the structures of FXR-CDCA (PDB: 4QE6; cyan) and FXR-MFA-1 (PDB: 3BEJ; green).

the CDCA derivatives to activate FXR. Furthermore, the hydroxyl
group at the 7a-position is critical for the binding affinity of CDCA
derivatives to FXR. Finally, the side chain tolerates significant
structural variations in the length and nature of the end group.

MFA-1 with a steroid ring was identified as a new FXR agonist
by a high-throughput screen based on a homogeneous time-
resolved fluorescence (HTRF) assay (Fig. 4b). MFA-1 has an ECsq of
16.9 nM in the coactivator recruitment assay. Compared with the
structure of FXR in complex with CDCA, it is clear that MFA-1 binds
in a flipped orientation relative to bile acids. This binding mode
appears to be driven by the presence of a carboxylate on MFA-1 to
make a salt-bridge interaction with Arg331 (Fig. 4c). In addition,
receptor activation by MFA-1 differs due to bile acids in that it
relies on direct interactions between the ligand and residues in
helix H11 and helix H12. It only indirectly involves a protonated
His447 that is part of the activation trigger (Fig. 4c) [38].

Nonsteroidal agonists

GW4064 derivatives. GW4064 is a landmark discovery in the field
of nonsteroidal FXR agonists. GW4064 was initially published in 2000

SPRINGERNATURE

as a potent and selective FXR full agonist (Fig. 5a) [39]. In the FXR-
GW4064 cocrystal structure [40], the carboxylate oxygens of
GW4064 form an H-bond with the guanidino group of Arg331 on
helix H5, similar to the binding mode of the carboxylic acids of the
bile acid. The isopropyl group stabilizes the hydrophobic core of the
receptor by forming hydrophobic interactions with Phe284, Leu287,
Trp454, and Phe461 of FXR. Furthermore, the 3-phenyl isoxazole
moiety rests up against Trp454 and His447 on helix H10, while the
isoxazole establishes an edge-to-face stacking interaction with
Trp469 on helix H12 (Fig. 5b). These interactions lead to an active
conformation of FXR capable of recruiting coactivators. However, its
poor bioavailability, in vivo half-life, stilbene photolability, and
potential toxicity limit further GW4064 application.

A series of FXR ligands based on the modifications of GW4064
have been reported. Px-102 (PX20606, Fig. 5a) and its eutomer Px-
104 (GS-9674), with a trans-cyclopropyl, showed similar FXR affinities
to GW4064 but improved photolability and cell toxicity [41, 42].
GlaxoSmithKline scientists converted stiloene to naphthalene or
quinoline to improve GW4064 drug properties. First, the GW4064
analog GSK8062 was generated (Fig. 53, ¢), as an equipotent FXR full

Acta Pharmacologica Sinica (2022) 43:1120-1132
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Fig. 5 Structural basis for the interaction of FXR with GW4064 and its derivatives. a Chemical structures of GW4064 and its derivatives.
b The structure of FXR is bound with GW4064. PDB: 3DCT; FXR is in slate blue, and GW4064 is in magenta. ¢ Overlay of GW4064 (magenta),
GSK8062 (cyan), and GSK2324 (green). The hydrogen bonds are shown as red dashes (GSK8062) and yellow dashes (GSK2324). PDB codes are
the following: 3DCT (FXR/GW4064), 3DCU (FXR/GSK8062), and 3P89 (FXR/GSK2324).

agonist with reduced GW4064-induced toxicity but poor oral
bioavailability in rodents [40]. Subsequently, a series of heteroaryl
bicyclic naphthalene replacements were prepared. For example,
GSK2324, an equipotent FXR agonist of GSK8062 (Fig. 53, ), showed
the ability to improve GSK8062 pharmacological and pharmacoki-
netic properties [43]. Detailed accounts of more chemical features
and pharmacological properties have been thoroughly summarized
in recent reviews [44].

Fexaramine derivatives. Fexaramine was discovered as a non-
steroidal FXR agonist structurally distinct from GW4064 (Fig. 6a)
[14]. Although it shows high potency to FXR in cell-based reporter
assays (ECso = 25 nM) and FRET-based coactivator steroid receptor
coactivator 1 (SRC1) binding assays (ECso = 255 nM), fexaramine is
an intestinal-restricted FXR agonist with limited direct FXR
activation in the liver [45]. To further improve the pharmacological
properties of fexaramine, many derivatives have been developed
to prevent or treat alcoholic liver diseases, such as steatosis,
cirrhosis, and NASH [46-48].

Acta Pharmacologica Sinica (2022) 43:1120-1132

WAY-362450 derivatives. WAY-362450 (WAY-450. XL335) was
identified as a potent and selective FXR agonist (ECsq of 4 nM
and 149% efficacy) in 2009 (Fig. 6b) [49]. WAY-362450 can
protect against NASH in mice by attenuating liver inflammation
and fibrosis [50]. A series of analogs, such as pyrrole [2,3-d]
azepines and tetrahydroazepinoindoles, have been developed
to improve aqueous solubility and retain its bioactivity [51, 52].
Compound 14cc reveals a full FXR agonist activity. Although the
X-ray crystal structure of 14cc shows that the overall structure
and the position of helix H12 are similar to those of WAY-
362450, the helix H2 region is disordered, and the loop between
helix H5 and helix H6 is also shifted to accommodate the
morpholine linker (Fig. 6¢) [52].

STRUCTURAL BASIS FOR THE ACTIVITY OF FXR PARTIAL
AGONISTS

As a result of drug repositioning screening, the antiparasitic drug
ivermectin was revealed as a novel FXR ligand with unique
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Fig. 6 Structural basis for the interaction of FXR with fexaramine and WAY-362450. a Key interactions of FXR with fexaramine. Red dashes
represent hydrogen bond interactions. PDB: 10SH. b Key interactions of FXR with WAY-362450. Red dashes represent hydrogen bond
interaction. PDB: 3FLI. ¢ Overlay of 14cc (PDB: 3L1B; FXR and 14cc are in cyan) and WAY-362450 (PDB: 3FLI; FXR is in slate blue and WAY-362450

is in green).

characteristics (Fig. 7a). Aside from the ability to promote the
recruitment of coactivator motifs by FXR, ivermectin also induced
the recruitment of the second corepressor motif nuclear receptor
corepressor (NCoR-2) by FXR, a structural feature distinct from FXR
full agonists. The unique binding of NCoR-2 by FXR was further
validated by the crystal structure of the ternary complex of FXR
LBD, ivermectin, and NCoR-2 (Fig. 7b). In the treatment of wild-
type mice but not FXR-null mice, ivermectin decreased serum
glucose and cholesterol levels, suggesting that ivermectin
regulated metabolism by targeting FXR. Ivermectin treatment
also improved hyperglycemia and hyperlipidemia in diabetic KK-
Ay mice [53].

SPRINGERNATURE

Merk et al. developed the modulator DM175, which partially
activates FXR in vitro and in mice (Fig. 7c). More importantly, they
elucidated the molecular mechanism of FXR partial activation by
crystallography- and NMR-based structural biology. FXR full
agonists stabilize the formation of an extended helix H11 and
the helix H11-H12 loop upon binding, which repositions helix H12
and enables coactivator recruitment (Fig. 7d). Partial agonism, in
contrast, is conferred by a kink in helix H11 that destabilizes the
helix H11-H12 loop and thus changes the orientation of helix H12.
Finally, partial agonists induce conformational states capable of
recruiting corepressors and coactivators, leading to an equilibrium
of coactivator and corepressor binding [54].

Acta Pharmacologica Sinica (2022) 43:1120-1132
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Fig. 7 Structural basis of FXR partial agonism. a Chemical structure of ivermectin. b Superposition of the structure of FXR-ivermectin (PDB:
4WVD; FXR is in green and ivermectin is in yellow) and FXR-GW4064 (PDB: 3DCT; FXR is in slate blue and GW4064 is in magenta). SRC1 is
colored in pink, and the NCoR-2 in blue. ¢ Chemical structure of DM175. d Overlay of DM175 (PDB: 4QE8; FXR and DM175 are in gray) and
GW4064 (PDB: 3DCT; FXR is in slate blue and GW4064 is in magenta).

STRUCTURAL BASIS FOR THE ACTIVITY OF FXR ANTAGONISTS
In addition to FXR agonists, many FXR antagonists have also been
developed, mainly focused on BA-like and aromatic scaffolds
(Fig. 8) [55]. Tauro-a-muricholic acid (T-a-MCA) and tauro-p-
muricholic acid (T-B-MCA) are less hydrophobic bile acids that are
functional antagonists to CDCA and GW4064-mediated activation
of FXR. T-B-MCA-treated mice reduced the expression of ileal
fibroblast growth Factor 15 (Fgf15) and Shp induced by
taurocholic acid (TCA) [56]. Glycine-B-muricholic acid (Gly-3-
MCA), a derivative of T-B-MCA, is a selective high-affinity and
stable FXR inhibitor that can be administered orally, decreasing
fasting serum insulin levels and reversible weight loss in HFD
obese mice [57]. Guggulsterone, isolated from the guggul tree
(Commiphora mukul), was identified as the first natural FXR
antagonist. Guggulsterone inhibited FXR transactivation and
coactivator recruitment induced by the agonist [58-60].

In 2015, Xu et al. reported that the small molecule NDB
functioned as a selective antagonist of FXR. SPR- and fluorescence
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quenching-based assays demonstrated that NDB binds to FXR.
The antagonistic ability of NDB against FXR was revealed by
AlphaScreen-based assay and cell-based reporter assay. NDB
promoted the formation of FXR homodimerization, which caused
severe conformational changes of helix H12 to occupy the
coactivator binding site, leading to reduced coactivator binding
(Fig. 8b). In addition, antagonist-induced FXR homodimerization
also inhibited FXR/RXR heterodimer formation and decreased FXR
target gene expression [61]. There are still many other FXR
antagonists that have been analyzed in recent reviews [20, 62, 63].

FXR LIGANDS IN CLINICAL STUDIES

To date, there are no approved drugs for the treatment of NASH.
In recent years, FXR agonists were considered promising
therapeutic agents for NASH. OCA was the first FXR ligand to
progress to phase 3 clinical trials on NASH. However, side effects
such as pruritus and dyslipidemia associated with OCA raise
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Glycine-B-muricholic acid (Gly-B-MCA)

Cl
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Guggulsterone
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Fig. 8 FXR antagonists. a Chemical structures of FXR antagonists. b Overall structure of the FXR LBD-NDB homodimer (PDB: 401V). The two

monomers are in blue and gray, respectively.

concerns about its long-term safety. Several selective FXR agonists
in clinical trials are summarized in Table 1.

EDP-305 is a selective steroidal FXR agonist under development
for treating NASH. The 12-week phase 2 study showed that EDP-
305 reduced alanine aminotransferase (ALT) levels and MRI-based
proton-density fat fraction (PDFF) in a longer-term trial assessing
NASH patients with liver histology. An ongoing 72-week phase 2b
trial is currently testing 1.5 and 2 mg doses to optimize further the
balance between efficacy and tolerability [64].

MET409, a nonsteroidal FXR agonist, is now conducting a Phase
2a study evaluating MET409 (50 mg) alone or in combination with

SPRINGERNATURE

empadliflozin (10 mg) in patients with T2DM and NASH [65]. TERN-
101, previously named LY2562175, is also a potent nonsteroidal FXR
agonist [66]. The phase 1 studies results indicated that TERN-101
was well tolerated overall in healthy volunteer population, and no
pruritus was reported. The safety, tolerability, efficacy, and PK of
TERN-101 in tablet formulation is being assessed in a phase 2a study,
with 12 weeks of dosing in noncirrhotic NASH patients [67].
Cilofexor (previously known as GS-9674), a synthetic derivative of
GW4064, is reported as a nonsteroidal FXR agonist [44]. In a phase
2 study, cilofexor for 24 weeks was well tolerated and provided
significant reductions in hepatic steatosis, liver biochemistry, and
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Table 1. FXR ligands in clinical studies.
Agonists PDB ID Clinical trial phase NCT number Indication Company
Obeticholic acid (INT-747) 108V FDA approved NCT02308111 PBC Intercept Pharmaceuticals
Phase 2 NCT01585025 BAD
Phase 3 NCT02548351 NASH
EDP-305 N/a Phase 2 NCT03394924 PBC Enanta Pharmaceuticals
NCT04378010 NASH
MET409 N/a Phase 2 NCT04702490 NASH, T2DM Metacrine
TERN-101 (LY-2562175) N/a Phase 2 NCT04328077 NASH Terns Pharmaceuticals
Cilofexor (GS-9674) N/a Phase 3 NCT03890120 PSC Gilead Sciences
Phase 2 NCT02854605 NASH
NCT02781584 NASH
Tropifexor (LJN452) 7D42 Phase 2 NCT02516605 PBC Novartis
Phase 2 NCT04065841 NASH
Phase 2 NCT02713243 BAD
a
F
N
\ AN
S
OH
\
o)
Tropifexor

Fig. 9 The structure of tropifexor binding to FXR-LBD. a Chemical structure of tropifexor. b Cocrystal structure of FXR LBD (slate blue) with

tropifexor (cyan). PDB: 7D42.

serum bile acids in patients with NASH [68]. In addition, the
phase 2b trial suggested that the combination of cilofexor and
firsocostat for 48 weeks improves key measures of NASH activity,
including ballooning, inflammation, and steatosis, and may have an
antifibrotic effect [69].

Tropifexor, also known as LIN452, is another highly potent
nonsteroidal FXR agonist (Fig. 9a) [70]. The results from a phase
1 study indicate that tropifexor is well tolerated, with no drug-
induced pruritus, and only mild and transient elevations in serum
ALT, has a pharmacokinetic profile suitable for once-daily dosing
and shows dose-dependent target engagement without altering
plasma lipids in healthy volunteers [71]. A phase 2 study is
ongoing to assess the efficacy, safety, and tolerability of oral
tropifexor & licogliflozin combination therapy and each mono-
therapy for NASH and liver fibrosis patients’ treatment. The
structural mechanism of tropifexor binding to FXR-LBD was
revealed recently (Fig. 9b) [72].

STRUCTURAL MECHANISMS OF FXR DIMERIZATION
Recently, the crystal structures of the liganded FXR/RXR hetero-
dimer in complex with coactivator peptides have been determined
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(Fig. 10a) [73, 74]. Structural analysis revealed an allosteric
mechanism through which RXR binding stabilizes FXR active
conformation, leading to enhanced FXR transactivation (Fig. 10b),
suggesting that targeting RXR may become an alternative strategy
in regulating FXR-mediated functions. Overall, the FXR homodimer
and FXR/RXR heterodimer structures provide frameworks to design
FXR modulators in treating FXR-related diseases.

FUTURE DIRECTIONS
FXR is increasingly recognized as an essential pharmacological
target. FXR ligands have many beneficial effects treating NAFLD
and/or NASH by decreasing hepatic lipogenesis, steatosis, and
insulin resistance while also inhibiting inflammatory and fibro-
genic responses in NASH patients [75-77]. However, the devel-
opment of FXR ligands for treating liver diseases is challenging.
Following ligand binding, the function of FXR is mediated
through the selective recruitment or release of specific coregula-
tors, including both coactivators and corepressors [78, 79]. Indeed,
the distinctive functional profiles of NRs in response to the
binding of various ligands are largely determined by the selective
usage of transcriptional coregulators [80]. Thus, small molecules
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Fig. 10 Structural basis of FXR/RXR heterodimerization. a Superposition of the FXR/RXR heterodimer structure (PDB:5Z12; FXR is colored
slate blue, and RXR is green). WAY-362450 and 9-cis-RA are shown in stick representation depicted in green and orange, respectively.) with the
FXR-WAY-362450 structure (PDB:3FLI; cyan). b Heterodimerization with RXR alters the conformation of the FXR coregulator-binding site. The
alignment reveals that shifts of AF2, H3, and H9 are induced by heterodimerization with RXR, which are indicated by arrows.

called selective modulators with only a subset of FXR functions
that selectively modulate the recruitment of coregulators are of
great value for clinical purposes. As such, the benefits and side
effects arising from the cross interaction of a variety of
coregulators with FXR can be optimized by designing new
selective modulators more suitable for clinical purposes by
targeting individual coregulators and signaling pathways.

FXR is mainly expressed in the enterohepatic system and other
tissues, including the adrenal gland, kidney, adipose tissue,
stomach, macrophages, and bone marrow cells. Therefore, the
therapeutic benefits of FXR modulation may increase by restrict-
ing FXR activity to specific tissues. Since the liver plays a key role in
controlling metabolic homeostasis, excessive activation of FXR in
the liver may interfere with the metabolic homeostasis of such
important metabolites [81]. Intestinal-specific overexpression of
constitutively active FXR reduces liver toxicity, bile acid pool size,
and inflammatory infiltrates in mouse models of obstructive
extrahepatic cholestasis and intrahepatic cholestasis. After that,
given that intestinal FXR is key in regulating BA homeostasis,
intestinal-specific FXR modulators were proposed to treat various
enterohepatic diseases [82-84]. Tissue-specific FXR modulators
may be developed by refining the physicochemical properties and
pharmacokinetic profile of FXR ligands. Fexaramine and its
derivatives, TC-100, have been identified as intestinal-specific
FXR modulators that activate FXR signals in the intestine.
Compared with conventional FXR ligands, tissue-selective FXR
modulators seem to provide a strategy to increase the therapeutic
index with reduced side effects, and develop predictive models for
the biodistribution of FXR ligands becomes increasingly impera-
tive [62, 81].

Although OCA has been shown to improve the histological
features of NASH, the improvement of liver fibrosis still faces many
problems [85, 86]. Peroxisome proliferator-activated receptors
(PPARs, 0, B, and y) are fatty acid-activated NRs with a wide range
of physiological actions. Importantly, PPARs have also been
identified as promising pharmacological targets for NASH treat-
ment [87-89]. Elafibranor, a dual PPARa/& modulator, was also
prepared for a phase Il clinical trial [90]. Recently, the dual PPARa/
y agonist saroglitazar has received approval from the Indian
Medicines Agency to treat NASH [91]. In addition, other anti-NASH
drug targets have also been reported [92, 93]. Several studies have
already confirmed the effectiveness of combination strategies
[62, 94]. Thus, combining FXR modulators with other therapeutic
agents may achieve more satisfactory clinical benefits.
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