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Abstract
Background: Vasogenic cerebral edema resulting from blood–brain barrier (BBB) 
damage aggravates the devastating consequences of intracerebral hemorrhage (ICH). 
Although augmentation of endothelial Wnt/β-catenin signaling substantially alleviates 
BBB breakdown in animals, no agents based on this mechanism are clinically avail-
able. Lithium is a medication used to treat bipolar mood disorders and can upregulate 
Wnt/β-catenin signaling.
Methods: We evaluated the protective effect of lithium on the BBB in a mouse model 
of collagenase IV-induced ICH. Furthermore, we assessed the effect and dependency 
of lithium on Wnt/β-catenin signaling in mice with endothelial deletion of the Wnt7 
coactivator Gpr124.
Results: Lithium treatment (3  mmol/kg) significantly decreased the hematoma vol-
ume (11.15 ± 3.89 mm3 vs. 19.97 ± 3.20 mm3 in vehicle controls, p = 0.0016) and 
improved the neurological outcomes of mice following ICH. Importantly, lithium sig-
nificantly increased the BBB integrity, as evidenced by reductions in the levels of 
brain edema (p = 0.0312), Evans blue leakage (p = 0.0261), and blood IgG extrava-
sation (p = 0.0009) into brain tissue around the hematoma. Mechanistically, lithium 
upregulated the activity of endothelial Wnt/β-catenin signaling in mice and increased 
the levels of tight junction proteins (occludin, claudin-5 and ZO-1). Furthermore, the 
protective effect of lithium on cerebral damage and BBB integrity was abolished in 
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1  |  INTRODUC TION

Intracerebral hemorrhage (ICH) is a common and devastating 
cerebrovascular disease with high morbidity and mortality that 
account for 15%–20% of acute strokes.1–4 Despite the large num-
ber of patients, effective clinical interventions are lacking.5–7 In 
addition, the pathophysiological mechanisms of ICH are complex 
and unclear. Notably, a series of catastrophic effects caused by 
the destruction of the blood–brain barrier (BBB) after ICH is one of 
the main reasons accounting for the poor prognosis of patients.8,9 
Accumulating evidence has demonstrated that lithium, a clinical 
drug that is used for the treatment of bipolar mood disorders and 
can upregulate Wnt/β-catenin signaling by inhibiting GSK-3β, ex-
erts neuroprotective effects in experimental ICH models.10–14 In 
contrast, evidence regarding the effect of lithium on the BBB after 
ICH is very limited. A previous study reported that lithium treat-
ment mitigated damage to the BBB after ICH in rats, with multiple 
signaling pathways being affected, including the Akt, GSK-3β, and 
β-catenin signaling pathways.15 However, whether these effects 
of lithium on brain injury and BBB function are solely dependent 
on Wnt/β-catenin signaling and which cell type plays a major role 
remain unclear.

The brain endothelium plays an important role in the barrier 
function of the BBB, and the barrier properties of the brain endo-
thelium are critically regulated by Wnt/β-catenin signaling.16,17 We 
previously showed that BBB integrity and tolerance were weak-
ened in mice with conditional deletion of endothelial G protein-
coupled receptor 124 (Gpr124), a Wnt7-specific coactivator of 
Wnt/β-catenin signaling, under pathologic conditions, including 
acute brain ischemia/reperfusion (I/R), and were fully rescued by 
genetic activation of endothelial-specific β-catenin.18–20 These re-
sults indicate that the therapeutic manipulation of BBB integrity 
via the upregulation of endothelial Wnt/β-catenin signaling is a po-
tential strategy for combating BBB breakdown in the early stage of 
ischemic stroke. While lithium has been shown to act as a GSk-3β 
inhibitor,21 the molecular mechanism underlying its protective ef-
fect on the BBB after cerebral hemorrhage has not been well eluci-
dated. In this study, we treated a mouse model of ICH with lithium 
to elucidate the molecular mechanism underlying its protective 
effect on the BBB and provided evidence for the clinical use of 
lithium in the treatment of ICH.

2  |  MATERIAL S AND METHODS

2.1  |  Animal protocol and lithium treatment

A total of 120 adult male C57BL/6  mice aged 8–10  weeks and 
weighing 23 ± 3 g (provided by the Beijing Vital River Laboratory 
Animal Technologies Co. Ltd) were randomly assigned to four 
groups (total n  =  120): (A) a sham-operated group, in which the 
mice were subjected to needle insertion only; (B) a sham +lithium 
chloride (LiCl) group, in which the mice received LiCl after needle 
insertion (freshly prepared LiCl; #213233, Sigma–Aldrich; 2% in 
saline injected intraperitoneally (i.p.) at 1 h, 24 h, and 48 h postop-
eratively); (C) an ICH + LiCl group, in which ICH model animals re-
ceived LiCl via intraperitoneal injection (intrastriatal bleeding was 
induced on the right side by stereotactically guided collagenase 
injection to mimic ICH, and an equal volume of LiCl was admin-
istered according the same regimen); and (D) an ICH + vehicle 
group, in which ICH animals received an equal volume of vehicle 
(saline) according to the same regimen. The mice were housed at 
37 ± 0.5°C on a 12-h light–dark cycle with free access to water 
and food. All procedures were approved by the Animal Care and 
Use Committee of Shenzhen Institute of Advanced Technology, 
Chinese Academy of Science.

The Gpr124flox allele was generated previously18 and crossed 
with the tamoxifen-inducible endothelial driver Cdh5-CreER22 on 
the C57BL/6 background to generate Gpr124flox/flox; Cdh5-CreER 
mice (termed KO mice) and Gpr124flox/+; Cdh5-CreER mice (termed 
het mice). The Gpr124 het mice did not show any differences from 
the wild-type mice. The efficiency and specificity of Gpr124 gene 
knockout in the brain endothelial cells of the KO mice were con-
firmed in previous studies and in this study. To induce Gpr124 de-
letion, 24 KO mice and 24 het mice aged 7–8 weeks were treated 
with tamoxifen (2  mg/10  g body weight, in corn oil) through an 
oral feeding needle every other day for 7 days for a total of four 
doses per mouse. The tamoxifen dosage was based on a previ-
ous study.18 The mice were allowed to recover from tamoxifen 
treatment-related toxicity (washout) for at least 1  week before 
being subjected to any other surgical procedures or experiments. 
Similarly, after the ICH model was constructed, an equal volume 
of LiCl or vehicle control (saline) was administered using the same 
regimen.
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endothelial Gpr124 knockout mice, suggesting that its protective effect on BBB func-
tion was mainly dependent on Gpr124-mediated endothelial Wnt/β-catenin signaling.
Conclusion: Our findings indicate that lithium may serve as a therapeutic candidate 
for treating BBB breakdown and brain edema following ICH.
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2.2  |  ICH model establishment

The mice were anesthetized with 5% isoflurane and positioned on 
a stereotaxic frame (Stoelting Co.). A skin incision was made along 
the sagittal midline to expose the skull. A burr hole was drilled 
2.8 mm lateral and 0.3 mm anterior to bregma and 3.8 mm deep, 
and collagenase VII-S (sterile-filtered, 0.5 U in 0.5 μl of sterile sa-
line, Sigma) was then injected slowly into the left basal ganglia at 
the abovementioned stereotactic coordinates (at a rate of 0.05 μl/
min). The needle was left in place for an additional 10  min and 
withdrawn slowly (at a rate of 1 mm/min) to prevent reflux. The 
burr hole was sealed with bone wax, the skin was sutured, and the 
mice were allowed to recover under observation. For the mice in 
the control group, holes were drilled in the skull at the same loca-
tion, but collagenase was not injected. Mice that died before the 
end of the study were excluded.

2.3  |  Neurological score evaluation

Neurological deficit scores were assigned, and the grab test and 
horizontal ladder test were performed at 72 h after ICH by a blind 
observer as previously described.19 Animals were excluded if no 
neurological deficits were observed after ICH according to the pre-
established exclusion plan.

2.4  |  Hematoma volumetric analysis

Mice were euthanized under deep isoflurane anesthesia, and 
2-mm-thick coronal brain slices were prepared using a mouse brain 
matrix. The brain slices were scanned, and the hematoma size was 
calculated by a blinded investigator using ImageJ software (NIH). A 
binary image in which the hematoma appeared red and the remain-
ing brain tissue appeared white was created. The total hematoma 
area was converted to a volumetric measurement by multiplying it 
by the slice thickness and is expressed as the mean hematoma vol-
ume (mm3).

2.5  |  Brain water content examination

The mice were euthanized under deep isoflurane anesthesia 
3 days after ICH induction, and their brains were removed quickly. 
The ipsilateral and contralateral hemispheres of the brains were 
dissected and weighed with a precise electronic balance (model 
AE 100; Mettler Instrument Corp.) immediately after harvesting 
to determine the wet weights. The brain samples were then dried 
at 100°C for 24  h to determine the dry weight and brain water 
content, which was calculated as [(wet weight − dry weight)/wet 
weight] × 100%.

2.6  |  Measurement of Evans blue (EB) leakage

An EB extravasation assay was performed to assess the permeability 
of the BBB after ICH according to previous reports.19 The results are 
shown as the ratio of EB content in the ipsilateral (ipsi) hemisphere 
to that in the contralateral (contra) hemisphere.

2.7  |  Western blot analyses

After the mice were deeply anesthetized, their brains were removed, 
and 1  mm of brain tissue around the hematoma was collected. 
Protein extraction and WB analysis of brain tissue were performed 
according to previous reports.19 The membranes were probed with 
primary rabbit anti-claudin-5 (1:1000, #34-1600, Thermal Fisher), 
rabbit anti-ZO-1 (1:1000, #40-2200, Thermal Fisher), rabbit anti-
occludin (1:1000, #71-1500, Thermal Fisher), rabbit anti-laminin 
(1:1000, #PA5-115490, Thermal Fisher), rabbit anti-collagen IV 
(1:1000, #PA1-28534, Thermal Fisher), and mouse anti-β-actin 
(1:1000, #66009-1, ProteinTech) antibodies at 4°C overnight. The 
relative intensity of each protein signal was quantified via densito-
metric analysis using ImageJ software.

2.8  |  Immunohistochemistry staining

Immunohistochemistry staining was performed as described pre-
viously.19 Three slices from the brain of each mouse were stained, 
and three images of each slice were acquired randomly. Therefore, 
nine images were acquired per mouse and averaged for quantifi-
cation. The antibodies used included hamster anti-mouse CD31 
(1:200, #MAB1398Z, Millipore), donkey anti-mouse IgG (1:500, 
#715-545-150, Jackson ImmunoResearch), rabbit anti-claudin-5 
(1:40, #34-1600, Thermal Fisher), rabbit anti-ZO-1 (1:100, #40-
2200, Thermal Fisher), rabbit anti-laminin (1:200, #L9393, Sigma–
Aldrich), and rabbit anti-active β-catenin (1:50, #8814S, CST) 
antibodies. The images were processed and analyzed using ImageJ 
software.

2.9  |  Statistical analysis

Statistical analysis was performed with the SPSS 20.0 for 
Windows  software package (SPSS, US). The data are ex-
pressed as the mean  ±  standard errors (SEs). The Shapiro–Wilk 
test was used to assess the normality of the data distribution. 
Statistical  differences among multiple groups were analyzed by 
one-way analysis of variance (ANOVA) followed by Tukey's multi-
ple comparisons test, while those between two groups were ana-
lyzed by unpaired t tests. Statistical significance was defined as 
p < 0.05.
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3  |  RESULTS

3.1  |  Lithium treatment alleviated neurological 
damage in adult mice following acute hemorrhagic 
stroke

Red hematoma tissues were detected in brain sections harvested 
from adult mice subjected to ICH, and the hematoma volume was 
reduced in the group administered three intraperitoneal injections 
of LiCl at a dose of 3 mmol/kg (11.15 ± 3.89 mm3) compared with 
the group administered the vehicle control (19.97  ±  3.20  mm3; 
p  =  0.0016; Figure  1A–C). Brain water content measurements re-
vealed that LiCl reduced cerebral edema in the ipsilateral hemi-
sphere without affecting the contralateral hemisphere (p = 0.0312; 
Figure  1D). LiCl treatment reduced neurological deficit scores 
(p = 0.0169) and improved grabbing (p = 0.0219) and horizontal lad-
der (p = 0.0023) movements (Figure 1E).

3.2  |  Lithium protected BBB function in adult mice 
following acute hemorrhagic stroke

We determined the severity of BBB breakdown in the hemorrhagic 
hemisphere via an EB extravasation assay.23 EB leakage was signifi-
cantly reduced in the mice treated with LiCl at a dose of 3.0 mmol/kg 

compared with the mice treated with the vehicle control (p = 0.026; 
Figure 2A,B). BBB leakage was additionally assessed by measuring 
the IgG extravasation from vessels around the hematoma areas into 
the mouse brain parenchyma. IgG leakage into the blood was re-
duced in mice treated with LiCl compared with mice treated with 
the vehicle control (p = 0.0009; Figure 2C–E). These data indicate 
that LiCl treatment significantly improved BBB function after acute 
hemorrhagic stroke.

3.3  |  Lithium preserved BBB function by 
regulating endothelial tight junctions following acute 
hemorrhagic stroke

To observe the improvement in BBB integrity induced by lithium 
treatment after acute hemorrhagic stroke, we evaluated the major 
components of endothelial tight junctions. We measured the lev-
els of more marker proteins than a previous study.24 LiCl had no 
apparent effects on the expression levels of marker proteins, as 
determined by Western blotting (Figure 3A,B). After ICH, LiCl treat-
ment significantly reversed the reduction in and largely maintained 
the protein levels of ZO-1 (p = 0.0147), occludin (p = 0.0259), and 
claudin-5 (p = 0.0069). Consistent with this finding, the coverage of 
ZO-1 (p = 0.0015) and claudin-5 (p < 0.0001) on vessels around the 
hematoma areas was greater in mice treated with LiCl than in control 

F I G U R E  1  Lithium improved stroke outcomes in adult mice with ICH. (A) Experimental procedure. (B) Hematoma volumes in mice with 
ICH after 3 mmol/kg LiCl or vehicle treatment. (C) Quantification of the hematoma volumes in mice. n = 6 mice per group. (D) Brain water 
content in the contralateral hemisphere (Contra) and ipsilateral hemisphere (Ipsi). n = 5 mice per group. (E) The neurologic deficit scores as 
well as the grab test and horizontal ladder test performances of mice with ICH treated with LiCl or vehicle. n = 6 mice per group. *p < 0.05. 
ICH, intracerebral hemorrhage; Contra, contralateral hemisphere; Ipsi, ipsilateral hemisphere
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mice as determined by immunofluorescence staining (Figure 3C,D). 
Furthermore, we assessed the expression of basement membrane 
components by Western blot analysis. ICH and LiCl treatment did 
not significantly increase the expression of laminin (p = 0.9084) or 
collagen IV (p  =  0.9702; Figure  3A,B). Taken together, our results 
show that lithium does not comprehensively protect the compo-
nents of the BBB except for endothelial tight junctions after hemor-
rhagic stroke.

3.4  |  Lithium upregulated endothelial Wnt/β-
catenin signaling after acute hemorrhagic stroke

Endothelial cells are the main components of the BBB, and the impor-
tance of the Wnt/β-catenin signaling pathway under both physiologi-
cal and pathological conditions has been reported in many studies.25,26 
The Wnt/β-catenin signaling pathway has been shown to ameliorate 
cerebral and neurological deficits caused by the regulated expression 

F I G U R E  2  Lithium protected the BBB in adult mice with ICH. (A) Representative images of the brain showing EB leakage in control mice 
with ICH and reduced leakage in mice treated with LiCl at a dose of 3.0 mmol/kg. (B) Quantitation of EB fluorescence. n = 5 mice per group. 
(C) Quantification of relative IgG signal densities. n = 5 mice per group. (D) Immunofluorescence staining of endogenous plasma IgG (green) 
leakage from vessels (red) after ICH in mice treated with or without LiCl. (E) Schematic illustration showing where the images in (D) were 
taken from. Perihematomal regions (indicated by black squares) were selected and imaged. Scale bar, 100 μm. *p < 0.05, **p < 0.01. ICH, 
intracerebral hemorrhage; BBB, blood–brain barrier
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of multiple downstream target genes.27,28 Lithium has been shown 
to definitively upregulate Wnt/β-catenin signaling, but its effect on 
ICH-induced endothelial injury via this mechanism is unclear. Hence, 
we verified that lithium protects the BBB by upregulating endothe-
lial Wnt/β-catenin signaling after ICH. In vivo, we found that the en-
dothelial expression of active β-catenin around the hematoma area, as 
assessed by immunofluorescence staining, was significantly increased 
in mice treated with LiCl compared with control mice (p  =  0.0016; 
Figure 4A,B). Taken together, our in vivo results indicate that lithium 
mitigated cerebral ICH injury-induced BBB disruption by upregulating 
endothelial Wnt/β-catenin signaling.

3.5  |  The protective effects of lithium on the 
BBB were mainly dependent on Gpr124-mediated 
endothelial Wnt/β-catenin signaling

Gpr124  knockout induces deficiency of endothelial Wnt/β-catenin 
signaling.18 To determine whether the protective effect of lithium on 
the BBB depends on the upregulation of endothelial Wnt/β-catenin 
signaling, we generated Gpr124flox/flox; Cdh5-CreER (KO) mice and 
Gpr124flox/+; Cdh5-CreER (het) mice based on previous research.19 
While the hematoma volume was significantly reduced in het mice 
compared with vehicle-treated control mice (p = 0.0004), it was not 

F I G U R E  3  Lithium protected the BBB by regulating endothelial tight junctions following ICH. (A) Levels of tight junction protein markers 
(ZO-1, occludin and claudin-5) and basement membrane proteins in ICH mice as measured by Western blotting. (B) Quantitation of the 
bands in (A). n = 3 mice per group. The experiments were repeated twice, and representative results are shown. (C) Coimmunofluorescence 
staining for claudin-5 or ZO-1 (green) and CD31 (red) around the hematoma areas. Scale bar, 100 μm. (D) The positive signal density was 
normalized to the CD31 signal area. n = 5 mice per group. Scale bar, 100 μm. *p < 0.05, **p < 0.01. ICH, intracerebral hemorrhage
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reduced in KO mice compared with vehicle-treated control mice 
(p = 0.9230; Figure 5A,B). Consistently, IgG extravasation from ves-
sels around the hematoma areas was observed, but no apparent 
changes were observed in KO mice after LiCl treatment (p = 0.4072; 
Figure 5C,D). In summary, these data demonstrate that the protec-
tive effect of lithium on the BBB is mainly dependent on Gpr124-
mediated endothelial Wnt/β-catenin signaling.

4  |  DISCUSSION

Drugs and surgery are required in combination for the treatment of 
patients with acute cerebral hemorrhage.29,30 In addition to symp-
tomatic treatment, protecting the BBB in the early stage of ICH has 
great clinical value. Unfortunately, no suitable drugs are available to 
protect the BBB. As a clinical drug that has been used for a long 
time, lithium can potentially be used for the treatment of cerebral 
hemorrhage. Previous studies have found that lithium plays a role 
in protecting the brain after cerebral hemorrhage, specifically af-
fecting apoptosis, inflammation, and autophagy.10,31,32 However, the 
underlying molecular mechanisms by which lithium protects against 
BBB damage following ICH remain unclear. Here, we utilized an ICH 
model to investigate the protective effects of lithium on brain dam-
age and determine the mechanisms underlying the protective effect 
of lithium on the BBB.

Disruption of BBB integrity and the subsequent increase in 
permeability are the major aspects of brain injury after ICH.33,34 
BBB damage causes brain edema35 and enlarges the hematoma, in-
creasing intracranial pressure and possibly resulting in a shift in the 

midline.36,37 Previous studies have found that edema peaks on the 
third day after ICH,38 further indicating that BBB integrity is poor 
at this time point. Therefore, we evaluated the alleviating effect of 
lithium on BBB damage after ICH. Here, we found that lithium treat-
ment significantly attenuated BBB breakdown after ICH using EB 
and blood IgG leakage assays.

The canonical Wnt/β-catenin signaling pathway is a key regula-
tor of the BBB and is critical for the stabilization of brain endothelial 
tight junctions.39–41 Lithium, the first GSK-3β inhibitor, increases the 
phosphorylation of GSK-3β at Ser9 in vivo and upregulates Wnt/β-
catenin signaling.42 Although a previous study reported the effect of 
lithium on BBB damage in experimental ICH, the mechanism was not 
clarified.15 Whether the protective effects of lithium on BBB func-
tion are solely dependent on Wnt/β-catenin signaling and which cell 
type (endothelial, neuronal or glial cells) mediates the effect remain 
unknown, as the previous study used whole brain tissue lysate for 
protein measurements. We herein revealed that the Wnt/β-catenin 
signaling in endothelial cells is essential for the protective effect of 
lithium on the BBB, as shown by both an endothelial-specific Wnt 
signaling deficiency mouse model and upregulation of active β-
catenin levels by lithium in brain endothelial cells.

Activating the Wnt signaling pathway may have some potential 
risks, especially in tumor-related diseases. For example, in many 
kinds of tumors, cancer cell survival, growth, and differentiation de-
pend on Wnt/β-catenin signaling.43 Upregulation of Wnt/β-catenin 
might thus increase the risk of tumor generation or growth. It has 
been reported that Wnt/β-catenin signaling plays an important role 
in prostate cancer and glioma, promoting self-renewal or expan-
sion.44,45 In contrast, melanoma growth is slowed by the activation 

F I G U R E  4  Lithium upregulated Wnt/β-catenin signaling in the brain endothelium after ICH in vivo. (A) Coimmunofluorescence staining 
for active β-catenin (green) and CD31 (red) around the hematoma areas. Scale bar, 100 μm. (B) The active β-catenin signal density was 
normalized to the CD31 signal area. n = 3 mice per group. **p < 0.01. ICH, intracerebral hemorrhage
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of Wnt/β-catenin signaling.46 It is worth noting that although the 
role of Wnt/β-catenin signaling in tumor development is still contro-
versial, tumor progression is a long-term process, in contrast to the 
acute onset of cerebral hemorrhage. In addition, Wnt/β-catenin sig-
naling also plays an important role in vascular repair after traumatic 
brain injury.47 In the model used herein, disruption of the integrity 
and permeability of the BBB occurred at an early stage, which was 
consistent with a previous study.48,49 Thus, we believe that the ben-
efits of Wnt/β-catenin signaling activation in the short term after 
ICH outweigh the potential side effects. Indeed, in our previous 
study, we also inhibited the expression of DKK-1 to promote the ac-
tivation of Wnt/β-catenin signaling and thereby treat BBB damage 
after acute cerebral hemorrhage in rodents.38 However, as a clinical 
drug, lithium has a very large advantage over other activators, as it 

has a clear pharmacological basis and recognized neuroprotective 
effect and can be directly applied clinically to benefit ICH patients. 
We did not observe obvious expression of active β-catenin in the 
brains of mice in the sham operation and ICH groups. It is possible 
that under normal conditions, a low level of active β-catenin is suffi-
cient to maintain the physiological functions of the endothelium, but 
in pathologic states such as ICH, a higher level of active β-catenin 
is required. In fact, our results showed that the expression level of 
active β-catenin around the hematoma tissue was significantly in-
creased after lithium treatment.

Tight junction proteins in brain endothelial cells play a vital role 
in the integrity and permeability of the BBB.50–52 We previously re-
vealed that the activation of the Wnt/β-catenin signaling pathway by 
DKK-1 knockdown upregulates the expression of the tight junction 

F I G U R E  5  Lithium improved outcomes after ICH through Gpr124-mediated endothelial Wnt/β-catenin signaling. (A) Hematoma 
volumes in mice with ICH. (B) Quantification of the hematoma volumes in mice. N = 4 mice per group. (C) Immunofluorescence staining 
of endogenous plasma IgG (green) leaking from vessels (red) after ICH in mice treated with or without LiCl. Scale bar, 100 μm. (D) 
Quantification of the relative IgG signal densities. n = 3 mice per group. *p < 0.05, **p < 0.01. ICH, intracerebral hemorrhage; BBB, blood–
brain barrier
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protein ZO-1 after cerebral hemorrhage.12 Here, we found that 
lithium treatment rescued the ICH-induced reduction in claudin-5, 
occludin, and ZO-1 expression in the endothelium but detected no 
obvious changes in sham mice after lithium treatment. We measured 
tight junction protein levels and observed upregulation only under 
pathological conditions (in the ICH group) after lithium treatment, 
which also indicated that the activation of the Wnt/β-catenin sig-
naling pathway rescued the structure of the BBB under pathological 
conditions.

GPR124 is an orphan receptor in the adhesion family of G protein-
coupled receptors (GPCRs). Studies have found that GPR124 acts as 
a WNT7A/7B-specific synergistic activator via an unclear direct or 
indirect mechanism and plays a role in canonical Wnt/β-catenin sig-
naling.18 GPR124 regulates Wnt signal transduction in endothelial 
cells under the pathological state of stroke in adult mice, thereby 
regulating the integrity of the BBB.18 This finding demonstrates the 
potential of GPR124 as a therapeutic target for human central ner-
vous system diseases involving BBB destruction. In this study, we 
clearly demonstrated that lithium attenuates BBB injury after intra-
cerebral hemorrhage. To the best of our knowledge, this report is 
the first to demonstrate that lithium improves BBB injury and brain 
edema after intracerebral hemorrhage through endothelial GPR124-
mediated Wnt/β-catenin signaling. These findings may also indicate 
that the activation of Wnt/β-catenin signaling by lithium is closely 
related to GPR124.

5  |  CONCLUSION

In summary, our study reveals that lithium ameliorates cerebral 
edema and improves outcomes by activating endothelial Wnt/β-
catenin signaling to protect tight junction proteins of the BBB and 
provides a potential treatment option for ICH in the early stage.
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