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Abstract 

Objectives:  To investigate current situation of minimal information implementation highlighted by minimal infor-
mation for studies of extracellular vesicles 2018 (MISEV2018) guidelines, and explore technological advances towards 
mass production and functional modification in aesthetic, plastic and reconstructive surgery.

Methods:  Original articles on extracellular vesicles (EVs) of adipose stem cells (ASCs) were identified. Statistics upon 
minimal information for EVs research, such as species, cell types, culture conditions, conditioned media harvesting 
parameters, EVs isolation/storage/identification/quantification, functional uptake and working concentration, were 
analyzed.

Results:  The items of cell culture conditions such as passage number, seeding density, conditioned media harvest-
ing time, functional uptake and working concentration were poorly documented, with a reporting percentage of 
47.13%, 54.02%, 29.89%, 62.07% and 36.21%, respectively. However, there were some studies not reporting informa-
tion of ASCs origin, culture medium, serum, EVs isolation methods, quantification and identification of EVs, account-
ing for 3.45%, 10.34%, 6.90%, 3.45%, 18.39% and 4.02%, respectively. Serum deprivation and trophic factors stimuli 
were attempted for EVs mass production. Several technological advances towards functional modification included 
hypoxia pre-condition, engineering EVs and controlled release. Presently, ASCs EVs have been applied in multiple 
fields, including diabetic/non-diabetic wound healing, angiogenesis, inflammation modulation, fat grafting, hair 
regeneration, antiaging, and healing and regeneration of cartilage/bone/peripheral nerve/tendon.

Conclusion:  Our results highlight normative reporting of ASCs EVs in functional studies to increase reliability and 
reproducibility of scientific publications. The advances towards mass production and functional modification of ASCs 
EVs are also recommended to enhance therapeutic effects.
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Introduction
Adipose stem cells (ASCs) isolated from adipose tissues 
have emerged as a promising therapy for the healing of 
multiple tissues, such as wound healing [1], fat grafting 
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[2], skin rejuvenation [3], cartilage [4] and bone regen-
eration [5]. The paracrine effect of ASCs is partly 
attributed to the extracellular vesicles (EVs) secretion. 
As a cell-free therapy, stem cell-derived EVs-associated 
intercellular communication has been widely stud-
ied for promoting regeneration and reconstruction of 
multiple tissues such as tendon [6] and bone regenera-
tion [7]. EVs is the generic term for several subtypes of 
particles naturally released from the native cells, such 
as “exosome”, “microparticle/microvesicle”, “ectosome”, 
“oncosome”, “apoptotic body” and many other names 
[8]. With a size of about 50–200  nm, exosome is a 
subset of endosome-origin small EVs, known as a het-
erogeneous mixture of microRNA-assembled, protein-
decorated and lipid-bound nanoparticles [9–11]. The 
last decades has witnessed a dramatically increasing 
number of scientific publications on ASCs EVs, open-
ing new frontiers for a next-generation drug delivery 
platform in ASCs-based regenerative [10].

In 2018, the “minimal information for studies of extra-
cellular vesicles 2018 (MISEV2018) guidelines” has sen-
sitized researchers to follow normative outlines when 
reporting extracellular vesicles-associated studies [8]. 
However, some of the current scientific publications 
associated with ASCs EVs poorly followed these guide-
lines to clearly report minimal information, involving 
passage number [12], the name of culture medium [13], 
the source of species and adipose tissue [14], ASCs seed-
ing density [15], conditioned media collection time [16] 
and working concentration [17], which would affect reli-
ability and reproducibility of published results especially 
in the face of skepticism by researchers outside EVs. 
When translating EVs-therapy to clinical and industrial 
practices, the primary hurdle is the low yield. Several 
strategies, such as serum deprivation [18] and precondi-
tion of platelet-derived growth factor (PDGF) [19] have 
been used to stimulate ASCs EVs release. Another hur-
dle is the unsatisfactory therapeutic effects. Sometimes 
functional modification for EVs is necessary to enhance 
therapeutic roles, including but not limited to precondi-
tion of PDGF [19], hypoxia stimulus [20] and genetically 
engineered EVs through cell transfection [21] or elec-
troporation [22]. It seems to be the productivity paradox 
between the remarkable advances in EVs research and 
the relatively slow growth of productivity.

In the wake of these hurdles, we carry out a system-
atic survey of scientific publications on ASCs EVs. We 
will critically discuss the status quo of minimal informa-
tion implementation. Besides, we will outline the cur-
rent technological advances towards mass production 
and functional modification for the potential off-on-shelf 
alternative to cell therapy. We also list the functional 

roles of ASCs EVs in the fields of aesthetic, plastic and 
reconstructive surgery.

Methods
Search strategy
We performed a systematic search in the PubMed, 
EMBASE and Cochrane Library databases involving 
ASCs EVs, without restrictions of language, publication 
year and publication status. A search strategy was gener-
ated using the following terms: “adipose stem cells,” “adi-
pose stem cells,” “exosome,” and “extracellular vesicles”. 
We also reviewed reference lists of eligible studies and 
relevant reviews for additional articles. Those reviews, 
letters, comments, abstracts and publications irrelevant 
to ASCs EVs were excluded.

Study selection
Two authors (J.G.C. and T.Y.H.) independently reviewed 
titles and abstracts of identified records, and full texts of 
potentially useful studies were reviewed. We resolved any 
disagreements through discussion with another author 
(H.Y.J.), and based on consensus, included or excluded 
those studies that we have discussed. The study was 
organized based on investigation of the minimal informa-
tion and functional roles in aesthetic, plastic and recon-
structive surgery.

Results
Search results
A total of 173  pre-clinical and clinical studies [11–183] 
between 2011 to 2021 were included for the statistical 
analysis of minimal information implementation, mass 
production, functional modification and functional 
roles in aesthetic, plastic and reconstructive surgery. The 
screening process is shown in Fig. 1.

ASCs culture parameters
There were 3.45% of studies not reporting ASCs ori-
gin. The top three reporting derived types of ASCs were 
“homo, rat and mouse” adipose tissues (Fig.  2A). There 
were 10.34% of studies not clearly reporting the types of 
ASCs culture medium. The top three types were DMEM, 
DMEM/F-12 and MEM (Fig. 2B). Of the studies reporting 
DMEM, only 20.00% disclosed the use of high-glucose or 
low-glucose. 6.90% of studies did not document the use 
of serum for harvesting conditioned medium. 50.00% of 
studies used serum-free medium or serum replacement 
medium while 24.71% used EVs-depleted serum. How-
ever, the remaining studies used native serum without 
process of EVs-depletion (Fig. 2C). Almost half of stud-
ies did not document the passage number for EVs isola-
tion. The top five reporting passage number were passage 
3, passage 3 to 5, passage 3 to 6, passage 2 and passage 
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4 (Fig. 2D). Notably, there were more than half of stud-
ies not reporting ASCs seeding density. 28.16% of studies 
preferred to report degree of ASCs confluency as seeding 
density. (Fig. 2E).

Technological advances towards mass production
All included studies performed 2D-cell culture platforms 
for EVs production, without reporting use of hyperflasks, 
roller bottles, or 3D culture methods (e.g. perfusion, 
fixed bed or spinner flasks). Several physical or chemi-
cal stimulation was tried in 51.15% of studies to optimize 
EVs production. Serum deprivation was mostly used, 
accounting for 50.00%. Only one study reported pre-
condition of ASCs with platelet-derived growth factor 
(PDGF). A study has evidenced that ASCs EVs could be 
stored in the form of lyophilized powder  that could be 
helpful for stable storage and subsequent large scale pro-
duction. There were no studies reporting methods of low 
pH, heat shock, glucose deprivation, ethanol, or ultra-
sounds for mass production. (Fig. 3A).

Conditioned media harvesting parameters
29.89% of studies did not report the conditioned media 
harvesting time, but some of them document harvest in 
a cell confluence of 70% to 90%. The top three harvesting 
time were 48-h, 24-h and 72-h (Fig. 3B). Almost all stud-
ies chose to store the conditioned media at –  80  °C, or 
firstly isolated EVs and then stored it at – 80 °C.

EVs isolation
There were 3.45% of studies not reporting EVs isolation 
methods. The top five isolation techniques were differen-
tial ultracentrifugation (UC), ExoQuick-TC reagent from 
System Biosciences (SBI), ultrafiltration (UF), total EVs 
isolation kit from Invitrogen, and UC plus isolation kit 
(Fig. 3C).

EVs identification
There were 4.02% of studies not reporting the informa-
tion of EVs identification. The reporting percentages 
in terms of morphology, size distribution and protein 
markers were 81.61%, 56.90%, and 82.18%, respectively 
(Fig. 3D). Transmission electron microscope (TEM) was 
mostly used for detecting morphology (Fig.  3E). The 
top three size assessment tools were nanoparticle track-
ing analysis (NTA), dynamic light scattering (DLS) and 
qNano devices (Fig.  3F). Protein markers were mostly 
identified by western blotting. Particularly, the top five 
reporting markers were CD9, CD63, CD81, TSG101 and 
HSP70/90. Flow cytometry or flow cytometry combined 
with western blotting were also used for protein markers 
identification (Fig. 3G).

Quantification, functional uptake through fluorescence 
labelling and working concentration of EVs
There were 18.39% of studies not reporting quantifica-
tion of EVs. Most of studies quantified EVs using BCA 
protein assay while only 6.90% of studies only using NTA. 
(Fig.  4A) There were 62.07% of studies not reporting 
functional uptake assays. The remaining studies mainly 
used PKH26, PKH67 and Dil as fluorescence labelling 
dyes (Fig. 4B). 36.21% of studies did not report working 
concentration in functional studies. The working concen-
tration generally used in in vitro and in vivo studies are 
shown at Fig. 4C, D.

The percentage of “not reporting” minimal information: 
before and after the publication of MISEV2018
We also conducted a comparison on the percentage of 
“not reporting” minimal information before and after the 
publication of MISEV2018. The results could be seen at 
Table 1. We found that the “not reporting” percentage of 
several parameters such as ASCs origin, isolation meth-
ods, EVs morphology/size/protein markers, EVs quanti-
fication and working concentration decreased to some 
extent after the publication of MISEV2018, indicating 
that MISEV2018 was favorable to promote the report-
ing of minimal information when performing ASCs EVs 
studies.

Records identified through 
database searching (PubMed, 
EMBASE, Cochrane Library)

(n=616)

Records screened
(n = 390)

Records excluded 
(n=158)

Full-text articles
assessed for eligibility 

(n=232)

Studies included in 
systematic survey

(n=173)

Articles excluded with 
reasons (n=59)

Duplicates removed
(n= 226)

Fig. 1  Flowchart of study search and selection
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Technological advances towards functional modification
THE modified strategies for enhancing loading and tar-
geted delivery of EVs  have been reported. Engineering 
EVs were mostly carried out either via transfecting func-
tional molecules into ASCs [14, 17, 21, 26, 34, 35, 44, 45, 
49, 72, 77, 79, 82, 113, 125, 181] or directly transfecting 
functional molecules into EVs [22, 37, 142]. Six studies 
[20, 67, 85, 86, 102, 103] reported the strategy of hypoxia 
culture precondition of ASCs. These hypoxia-precondi-
tioned ASCs EVs shown superiority in RNA sequencing 

and functional assays such as fat grafting survival, neo-
vascularization, inflammation inhibition, extracellular 
matrix regeneration, and pro-metabolism/pro-survival 
abilities.

Biomaterials laden with EVs were a promising strategy 
for controlled EVs release, which was especially helpful 
for chronic wound healing and bone regeneration [50, 88, 
139, 140, 144, 145]. Seven kinds of regenerative biomate-
rials laden with EVs have been reported, including pol-
ypeptide-based FHE hydrogel, antioxidant polyurethane, 

Fig. 2  The percentage (%) of minimal information for A ASCs origin, B ASCs medium, C serum, D passage number, and E seeding density. NR 
percentage of “not reporting” minimal information
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hyaluronic acid, thermosensitive multifunctional poly-
saccharide-based dressing, alginate-based hydrogel, bio-
hybrid bovine bone matrix and human acellular amniotic 
membrane.

Another strategy was the targeted differentiation 
induction. EVs released from osteogenic or chondrogenic 
induction of ASCs could specifically promote osteogen-
esis or chondrogenesis differentiation of MSCs [104, 151, 
160, 182]. ASCs EVs could be modified in bone heal-
ing and regeneration via giving a stimulus of TNF-α or 
low-level laser irradiation (LLLI) to parent ASCs [114, 
152]. The anti-inflammatory and immunosuppressive 
functions of ASCs EVs could be modified via giving an 
inflammatory stimulus of IFNγ and TNFα [92]. Stimulus 

of Platelet-derived growth factor (PDGF) could triggered 
the EVs secretion from parent ASCs and enhanced the 
angiogenic potential [19]. ASCs EVs from lean volunteers 
even were different from those from obese individuals 
in terms of protein markers, size, contents of cargo and 
functional effects [11, 159]. Conclusive  information on 
functional modification was shown at Table 2.

Systematic survey in aesthetic, plastic and reconstructive 
surgery
Diabetic/non‑diabetic wound healing (n = 26)
ASCs EVs delivered functional molecules for non-dia-
betic/diabetic wound healing via enhancing skin collagen 
production/angiogenesis/cell proliferation/migration/

Fig. 3  The percentage (%) of minimal information for A mass production, B conditioned medium harvesting time, C EVs isolation methods, D EVs 
identification, E EVs morphology, F EVs size distribution, and G EVs protein markers. NR: percentage of “not reporting” minimal information. PDGF 
platelet-derived growth factor, UC ultracentrifugation, UF ultrafiltration, TEM transmission electron microscope, SEM scanning electron microscope, 
NTA nanoparticle tracking analysis, DLS dynamic light scattering, WB western blotting, FCM flow cytometry
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expression of wound healing-related growth factors, 
inhibiting apoptosis, promoting skin barrier function 
repair, reducing inflammation and scar formation, as 
well as regulating extracellular matrix remodeling [12, 
14, 15, 32, 40, 51, 53, 73, 87, 88, 108, 119, 138–149, 166, 
175]. The underlying mechanisms of action were shown 
as follows. For the capacity of promoting diabetic wound 
healing, ASCs EVs have been reported to regulate several 

axes such as mmu_circ_0000250/miR-128-3p/SIRT1 axis 
[14] in endothelial progenitor cell, miR-21-5p/Wnt/β-
catenin signaling in keratinocytes [142], or transferring 
transcription factor nuclear factor-E2-related factor 2 
(Nrf2) to endothelial progenitor cells [143]. The healing 
capability of ASCs EVs in non-diabetic wound involved 
the modulation of multiple signaling, such as the lncRNA 
H19/miR-19b/SOX9 axis in human skin fibroblast (HSF) 

Fig. 4  The percentage (%) of minimal information A EVs quantification, B EVs uptake, C in vitro top five dose, and D in vivo top four total-dose. NR 
percentage of “not reporting” minimal information, BCA bicinchoninic acid assay, NTA nanoparticle tracking analysis
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cell [12], and miR-19b/CCL1/TGF-β pathway axis [40], 
AKT/HIF‑1α axis [53], Wnt/β‐catenin signaling [87], 
lncRNA MALAT1/miR-124/Wnt/β-catenin axis [141], 
miR-21/PI3K/AKT axis in HaCaT cells [148], as well as 
ERK/MAPK pathway in skin dermal fibroblasts [108]. 
The functional modification of ASCs EVs went through 
several processes from the simple to the complex. Ini-
tially, ASCs EVs without modification could be used 
topically or systemically. Then, a variety of regenera-
tive biomaterials built up the concept of controlled EVs 
release, effectively matching with the complicated and 
long healing process of chronic wound [88, 139, 140, 144, 
145]. Engineered EVs were another direction of achieving 
gene therapy by loading functional non-code RNA into 
the patent ASCs or EVs [14, 142].

Other skin diseases and medical cosmetology (n = 12)
The pre-clinical studies indicated that ASCs EVs could 
promote epidermal barrier repair on the treatment 
of atopic dermatitis via increasing stratum corneum 
hydration, reducing the levels of multiple inflammatory 

Table 1  The percentage (%) of “not reporting” minimal 
information before and after the publication of MISEV2018

ASCs adipose stem cells, EVs extracellular vesicles

Minimal information Before (%) After (%) Comparison

ASCs origin 6.78 1.74 −
ASCs medium 10.17 10.43 +
Culture serum without EVs 
depletion/reporting

23.73 26.09 +

Harvesting time 28.81 30.43 +
Isolation methods 5.08 2.61 −
EVs morphology 30.51 12.17 −
EVs size 55.93 36.52 −
EVs protein markers 22.03 15.65 −
EVs quantification 27.12 13.91 −
EVs uptake 55.93 65.22 +
Working concentration 49.15 29.57 −

Table 2  Technological advances towards functional modification for ASCs EVs

ASCs EVs adipose stem cells extracellular vesicles, OM osteogenic induction media, CM chondrogenic induction medium, LLLI low-level laser irradiation
a Indirectly modifying EVs by modifying functional molecules of ASCs
b Directly modifying functional molecules of ASCs EVs

Modification Strategy Rationale Ref

Engineering EVsa Transfecting: mmu_circ_0000250, cir-
RNA_100395, miR-323-3p, miR-188-3p, miR-
301a-3p, miR-29a-3p, miRR-28-3p, circAKap7, 
GDNF, miR-320d, miR‐375, miR-671, miR-191, 
miR-181-5p, miR-122, miR-21

Indirectly up-regulating expression of func-
tional molecules into ASCs EVs

[14, 17, 21, 26, 34, 35, 44, 
45, 49, 72, 77, 79, 82, 113, 
125, 181]

Engineering EVsb Transfecting: miR-381-3p, miR-10a, miR-21-5p Directly up-regulating expression of functional 
molecules of ASCs EVs

[22, 37, 142]

Hypoxia Hypoxia pre-condition in different methods Enhancing pro-metabolism and pro-survival 
abilities. Angiogenesis, increasing levels of 
VEGF/VEGFR, attenuating inflammation. ECM 
repair/regeneration

[20, 67, 85, 86, 102, 103]

Controlled release Biohybrid bovine bone matrix loaded with EVs Continuous release of osteogenic factors for 
bone healing and regeneration

[50]

polypeptide-based FHE hydrogel/oxygen 
releasing antioxidant and antibacterial 
cryogelwound dressing OxOBand/hyaluronic 
acid/polysaccharide-based dressing/alginate 
hydrogel loaded with EVs

Continuous release of EVs for diabetic/non-
diabetic wound healing

[88, 139, 140, 144, 145]

Osteoinduction ASCs were osteogenically induced using OM Bone healing and regeneration [104, 151, 182]

Chondrogenesis ASCs were osteogenically induced using CM Cartilage healing and regeneration [160]

LLLI A 24-h expose to LLLI before EVs collection Reducing apoptosis of osteocyte induced by 
hypoxia

[152]

Inflammatory stimuli TNF-α pre-condition for 3 days Enhancing the potential of EVs in bone healing 
and regeneration

[114]

IFNγ and TNFα Increasing the immunosuppressive and anti-
inflammatory potential of EVs

[92]

Growth factors 20 ng/ml PDGF, VEGF or FGF stimuli Enhancing angiogenic potential [19]

Lean adipose Comparing ASCs EVs from lean and obese 
adipose

Having differences in size, cargo and bioactivi-
ties

[11, 159]
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cytokines, and enhancing de novo synthesis of ceramides 
[61, 97]. ASCs EVs could promote genes expression 
involved in skin barrier, lipid metabolism, cell cycle, and 
inflammatory response in the diseased area [61]. Only 
one study revealed that the intravenous injections of 
ASCs EVs could effectively slow-down the course of the 
systemic sclerosis via regulating miR-29a-3p/Dnmt3a/
Pdgfrbb/Bcl2/Bcl-xl axis [35]. Two studies found that 
ASCs EVs could inhibit the proliferation/migration, and 
promote the apoptosis of keloid/hypertrophic scar fibro-
blasts via the regulation of miR-192-5p/IL-17RA/Smad 
axis [23] or inhibiting TGF-β1/Smad pathway [174]. 
Another two studies reported the essential roles of ASCs 
EVs in promoting the vascularization of skin flaps [163, 
176], and one study found that ASCs EVs were compa-
rable to parent ASCs in the inhibition of alloimmune 
response for vascularized composite allotransplanta-
tion [13]. Recently, ASCs EVs have been investigated in 
the antiaging of photoaged skin by increasing the mRNA 
expression of type I collagen, corresponding to the 
antiaging properties of parent ASCs [36].

Only three clinical studies have been reported in Korea 
for testing the therapeutic functions of hASCs EVs. Park 
et al. [16] tentatively applied ASCs EVs to the treatment 
of atopic dermatitis, and found that EVs could serve as 
an effective agent in the management of dupilumab facial 
redness. Two randomized controlled trials have indicated 
the safety and efficacy of hASCs EVs on the treatment of 
facial acne scars and skin brightening [136, 137].

Angiogenesis/inflammation/fat grafts/hair regeneration 
(n = 18)
ASCs EVs could promote angiogenesis mainly via trans-
ferring functional microRNAs to targeted cells [19, 56, 
85, 103, 122, 168, 169, 173, 177, 180, 181]. The underlying 
mechanisms for angiogenesis potential of ASCs EVs were 
shown as follows. Platelet-derived growth factor pre-
conditioned ASCs EVs could load c-kit, SCF and matrix 
metalloproteinases that played a role in angiogenesis 
[19]. EVs derived from hypoxia-treated hADSCs showed 
angiogenesis capacity in fat grafting probably via regu-
lating VEGF/VEGF-R signaling [85] and PKA signaling 
[103]. micro-RNAs derived from ASCs EVs also played 
an important role in angiogenesis. ASCs EVs could pro-
mote angiogenesis of endothelial cells by regulating miR-
125a/DLL4 axis [122], miR-181b-5p/TRPM7 axis [173], 
miR-199-3p/sema3A axis [177] or miR-21/PTEN/AKT/
ERK/HIF-1α/SDF-1 axis [181]. Xu et  al. [169] found 
miR-423-5p from ASCs EVs mediated the proangio-
genic activity of hADSCs by targeting Sufu. EVs isolated 
from Sirtuin 1 (SIRT1)-overexpressing ASCs unregu-
lated Nrf2/CXCL12/CXCR7 signaling and promoted 

migration and tube formation of endothelial progenitor 
cells [180].

ASCs EVs also showed potential in attenuating inflam-
mation and immune reactions probably via transferring 
functional molecules such as miR-34a, miR-124 and miR-
135b [41, 84, 92]. Evidence has shown that ASCs could 
promote the survival rate of fat grafting via EVs secre-
tion [27, 76, 85, 102]. Hao et  al. [27] found that ASCs 
EVs could downregulate the level of transcription factor 
CCAAT/enhancer-binding protein via transferring let-7c. 
Corresponding to the poor angiogenesis/hypoxia in the 
early phase of fat grafting, the hypoxia-preconditioned 
ASCs EVs were superior to ASCs EVs in neovasculariza-
tion and inflammation attenuation [102]. Recently, Wu 
et  al. [183] indicted that that ASCs EVs could increase 
terminal hairs regeneration via promoting the expression 
of PDGF and VEGF in skin tissues.

Cartilage and bone (n = 19)
A total of five studies investigated the functional roles of 
EVs from undifferentiated ASCs and chondrogenic ASCs 
in cartilage regeneration through modulating inflamma-
tion, promoting chondrocyte differentiation of ASCs, 
stimulating the migration/proliferation, and chondro-
genic/osteogenic differentiation of BMSCs [29, 100, 105, 
160, 161]. Zhao et al. [161] found that ADCs EVs could 
transfer miR‑145 and miR‑221 which could enhance cell 
proliferation and chondrogenic potential. In addition, 
proteomics analysis reveals that ASCs EVs could induce 
cartilage/bone regeneration probably by regulating sign-
aling pathways including focal adhesion, ECM-receptor 
interaction, actin cytoskeleton, cAMP, and PI3K-Akt 
signaling pathways [29]. EVs LncRNA sequencing was 
also conducted to investigated the expression profile of 
lncRNAs, and several neighboring genes of differentially 
expressed lncRNAs that were involved in cartilage regen-
erations, such as TBX6, CHD4, and TRPV2 were identi-
fied [160].

A total of 14 studies have been published for investigat-
ing the functional effects on bone healing and tissue-engi-
neered bone [50, 58, 63, 69, 75, 77, 90, 104, 114, 151, 152, 
155, 156, 182]. ASCs EVs played an essential role of mod-
ulating functions of osteocytes and osteoclasts. Several 
studies have evidenced that ASCs EVs could be applied in 
the treatment of some bone damage-related pathologies 
such as diabetic osteoporosis, hypoxia/ischemia induced 
osteocyte apoptosis and osteocyte-mediated osteoclas-
togenesis [58, 90, 182]. The underlying mechanisms for 
these treatments could be attributed to inhibiting NLRP3 
inflammasome activation in osteoclast [58], upregulating 
the radio of Bcl-2/Bax and diminishing the production of 
reactive oxygen species/cytochrome/caspase-9/caspase-3 
[90]. Notably, Yang et  al. [182] conducted EVs-miRNA 
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sequencing in osteogenic differentiation of ADSCs and 
found some differentially expressed miRNAs connected 
osteogenic differentiation to processes such as axon guid-
ance, MAPK signaling and Wnt signaling. In addition, 
ASCs could be pre-conditioned with tumor necrosis 
factor-alpha or low-level laser irradiation to mimic the 
inflammatory phase upon bone injury [114, 152].

Another essential role of ASCs EVs was to induce oste-
ogenic differentiation, promote MSCs adhesion/migra-
tion/proliferation of MSCs via entrapping EVs on the 
surface of biohybrid bovine bone matrix [50], mineral-
doped poly(L-lactide) acid scaffolds [63], or titanium 
[69]. The EVs proteome demonstrated that EVs carried 
proteins involving various integrins and integrin ligands, 
growth factors and growth factor receptors, as well as 
Wnts and MAPKs, which were related to adhesion, struc-
ture, morphology and GF activity [69]. In addition, Yang 
et  al. [155] also found miR-130a-3p derived from ASCs 
EVs would regulate osteogenic differentiation of MSCs 
through mediating SIRT7/Wnt/β-catenin axis.

Engineered EVs s could also be designed specifically for 
osteogenic induction via altering expression of EVs-miR-
NAs. The simple methods were to induce the osteogenic 
differentiation of parent ASCs [104, 151, 182]. Other 
methods were directly loading specific miRNA such as 
miR‐375 into parent ASCs or EVs [77]. The EVs miR‐375 
would inhibit insulin‐like growth factor binding protein 3 
(IGFBP3) by binding to its 3′UTR and then improved the 
osteogenic differentiation of hBMSCs [77].

Peripheral nerve injury (n = 8)
A total of eight studies have evidenced that ASCs EVs 
could exert therapeutic effects for peripheral nerve injury 
via increasing neurite outgrowth, improving neurotrans-
mission function, modulating proliferation/migration/
myelination of Schwann cells, and increasing secretion of 
neurotrophic factors [81, 96, 98, 124, 164, 165, 171, 172]. 
Notably, Ching et al. [165] found that Schwann cell-like 
phenotype-differentiated ASCs EVs contained mRNAs 
and miRNAs known to play a role in nerve regeneration. 
These EVs RNA could be transferred to neurons and pro-
moted neurite outgrowth via down-regulating intrinsic 
inhibitors of regeneration.

Discussion
The past decades have witnessed an upsurge in EVs 
research, primarily focusing on either disease markers 
or paracrine mediators for regenerative therapy. Every 
year, tremendous research funding is pouring into the 
preclinical and clinical studies of EVs. EVs even have 
been reported as potential regenerative cell-free med-
icine for COVID-19 treatments [184, 185]. Indeed, 
obstacles have concurrently emerged when launching 

the clinical and industrial translation of EVs [186]. We 
give three hurdles urgently needing to be solved: poor 
follow to MISEV2018 guidelines, low yield, and unsatis-
factory functional effects.

The findings are summarized at Fig.  5. Overall, the 
principal finding of our study was that the current stud-
ies were poorly recording minimal information for EVs 
study. First, some studies did not or unclearly disclose 
the species and cell types for EVs secretion. The func-
tional effects of EVs depended largely on their parent 
cells. Notably, EVs form different types of MSCs such 
ASCs, BMSCs, umbilical cord blood MSCs (UCB-
MSCs), and endometrium-derived MSCs (EnMSCs) 
could play different roles in tissue healing and regen-
eration [30, 115]. Secondly, we found that several mini-
mal information for cell culture conditions, such as 
passage number, cell seeding density, and conditioned 
media collection time, were also poorly reported. These 
parameters could affect the yield or biological func-
tions of ASCs EVs. Previous study indicated that both 
increasing frequency of collection and decreasing cell 
seeding density could increase EVs production, while 
the passage number beyond passage 4 was less effective 
in pro-vascularization bioactivity [187].

Additionally, culture medium components, such as 
basal medium, serum, growth factors, glucose and anti-
biotics, were the essential influence factors deserved 
special attention. However, there were still some studies 
not reporting the kinds of medium they used. The tra-
ditional culture for ASCs is the DMEM. However, most 
of them did not report the information of low-glucose 
or high-glucose. DMEM for ASCs culture easily caused 
low proliferation rate, early cell senescence and multi-
lineage differentiation loss that were not helpful for mass 
production of ASCs EVs. DMEM/F-12, MEM α, specific 
MSC serum free medium and MSCM could be used for 
solving these obstacles. Using serum free medium or 
EVs-depleted serum could reduce the influence of serum-
derived EVs to the functional assays. However, we found 
that there some of studies using serum without EVs 
depletion. Overall, we highlight the necessity for careful 
consideration of cell culture parameters.

Almost all studies stored the conditioned media at 
−  80  °C, or firstly isolated EVs and then stored it at 
−  80  °C. Whether the long-term cryopreserved EVs is 
different from those freshly isolated in terms of morphol-
ogy and function deserves special attention. ASCs EVs 
freeze-dried powder may be safe and a long-term storage 
alternative. After rehydration, ASCs EVs were still stable 
in the membrane morphology and components.

The obstacles to large-scale production and clinical 
translation of ASCs EVs are the inefficient isolation tech-
niques along with the high costs and low purification. 
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Ultracentrifugation still remains the gold standard to 
concentrate EVs, despite the defects of low yield and time 
consumption. The EVs isolation kit only could be used to 
isolate EVs from little conditioned medium. Ultrafiltra-
tion combined with ultracentrifugation could be trans-
lated to large-scale EVs manufacturing. Recently, the 
tangential flow filtration (TFF) and size exclusion chro-
matography (SEC) have been proposed as an effective 
concentration methods for large volumes of conditioned 
media [186]. Another strategy for large-scale manufac-
turing is to increase the number of secretion by stimu-
lating ASCs. In our study, we found several methods for 
optimal production of ASCs EVs, such as hypoxia pre-
condition, PDGF pre-condition and serum starvation.

Next, EVs identification via several complementary 
techniques, such as TEM, NTA and protein markers, is 
essential to quality control of EVs. However, there was 
still 4.02% of studies not reporting any identification 
methods. Only 56.90% of studies reported the size distri-
bution while 81.61% of studies provided images of single 
EVs at high resolution. In addition, there were 82.18% of 
studies evaluated the protein markers mainly involving 
those transmembrane/lipid-bound protein and cytosolic 
protein. Actually, a study by Mathieu et al. [188] has evi-
denced that exosomes might specifically bear CD63 com-
bined with some late endosome proteins but little CD9. 

Notably, our study found that there was 18.39% of publi-
cation not reporting the quantification of EVs. The BCA 
for total proteins yield was most used to reported EVs 
quantification.

Some preclinical and clinical studies were included in 
our systematic survey, involving one case series [16] and 
two randomized controlled trials [136, 137]. Overall, the 
current articles have given some therapeutic evidence 
for the functional roles of ASCs EVs in aesthetic, plastic 
and reconstructive surgery. In our study, we found three 
kinds of strategies could be used for optimizing the func-
tional roles of ASCs EVs: engineering EVs, targeted pre-
condition of parent ASCs and controlled EVs release.

We found several obstacles to the promotion of EVs 
research. Firstly, the functional roles were attributed to 
uptake of ASCs EVs by receipt cells rather than soluble 
non- EVs associated mediators from conditioned media. 
This was especially right when isolating EVs from poly-
mer-based concentration kits. However, in our study, we 
found 62.07% of included studies did not reported any 
assays related to functional uptake. Besides, we found 
that there were 36.21% of included studies not reporting 
the working concentration. The clear reporting of work-
ing concentration undoubtedly increased the reliability 
and reproducibility of published results.

Fig. 5  The recapitulative findings of our systematic survey
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Conclusion
Our study highlights a normative reporting for EVs 
research, referring to MISEV2018 guidelines to increase 
robustness of results. Technological advances towards 
mass production and functional modification should be 
further improved for the translation of clinical practices 
and industrial manufacturing.
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