Varieties discrimination results of oat seeds using different modelsa.
Models | Parameters | Training | Testing | ||
---|---|---|---|---|---|
Accuracy/% | Time/s | Accuracy/% | Time/s | ||
Full wavelengths + RBF_SVM | (256, 0.0039) | 98.63 | 13.97 | 98.05 | 1.97 |
Full wavelengths + LINEAR_SVM | — | 98.39 | 18.02 | 97.88 | 0.0026 |
Full wavelengths + LR | (liblinear, L2, 256) | 98.94 | 11.63 | 98.69 | 0.0024 |
Optimal wavelengths + RBF_SVM | (256, 0.16) | 89.82 | 4.58 | 87.31 | 0.22 |
Optimal wavelengths + LINEAR_SVM | — | 84.62 | 6.38 | 84.21 | 0.0017 |
Optimal wavelengths + LR | (Liblinear, L2, 74.66) | 85.30 | 3.83 | 84.92 | 0.0008 |
Deep spectral features + RBF_SVM | (1.85, 0.0039) | 100 | 19.04 | 99.05 | 2.25 |
Deep spectral features + LINEAR_SVM | — | 100 | 11.81 | 99.02 | 0.61 |
Deep spectral features + LR | (Liblinear, L2, 0.54) | 100 | 18.02 | 98.72 | 0.0050 |
DCNN trained in end-to-end manner | (256, 133) | 100 | 9701.63 | 99.19 | 7.96 |
Parameters of different discriminant models. (c, g) for RBF_SVM, (optimize_algo, r, c′) for LR, and (epoch) for DCNN trained in end-to-end manner.