Skip to main content
. 2019 Apr 25;9(22):12635–12644. doi: 10.1039/c8ra10335f

Varieties discrimination results of oat seeds using different modelsa.

Models Parameters Training Testing
Accuracy/% Time/s Accuracy/% Time/s
Full wavelengths + RBF_SVM (256, 0.0039) 98.63 13.97 98.05 1.97
Full wavelengths + LINEAR_SVM 98.39 18.02 97.88 0.0026
Full wavelengths + LR (liblinear, L2, 256) 98.94 11.63 98.69 0.0024
Optimal wavelengths + RBF_SVM (256, 0.16) 89.82 4.58 87.31 0.22
Optimal wavelengths + LINEAR_SVM 84.62 6.38 84.21 0.0017
Optimal wavelengths + LR (Liblinear, L2, 74.66) 85.30 3.83 84.92 0.0008
Deep spectral features + RBF_SVM (1.85, 0.0039) 100 19.04 99.05 2.25
Deep spectral features + LINEAR_SVM 100 11.81 99.02 0.61
Deep spectral features + LR (Liblinear, L2, 0.54) 100 18.02 98.72 0.0050
DCNN trained in end-to-end manner (256, 133) 100 9701.63 99.19 7.96
a

Parameters of different discriminant models. (c, g) for RBF_SVM, (optimize_algo, r, c′) for LR, and (epoch) for DCNN trained in end-to-end manner.