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Abstract

Purpose: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in
just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene
encoding a transcription factor regulating cell fate and differentiation in neurogenesis and
other discrete developmental processes. The genetic alterations described so far are mainly
microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its
clinical and genetic spectrum, and the pathophysiological mechanisms involved.

Methods: Clinical and genetic data were collected through GeneMatcher and clinical or
genetic networks for 41 novel patients harboring various types of SOX5 alterations. Functional
consequences of selected substitutions were investigated.

Results: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most
missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter
variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas
missense variants located outside the high-mobility-group domain did not. Clinical manifestations
and severity varied among patients. No clear genotype—phenotype correlations were found, except
that missense variants outside the high-mobility-group domain were generally better tolerated.

Conclusions: This study extends the clinical and genetic spectrum associated with LAMSHF
and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual
disability, language delay, and other clinical features.
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INTRODUCTION

The SOX protein family is made of transcription factors harboring a high-mobility-group
(HMG) domain at least 50% similar to that of SRY (encoded by the sex-determining

region on the Y chromosome).! This domain mediates DNA binding and bending, nuclear
trafficking, and protein—protein interactions. The 20 SOX proteins existing in humans and
other mammals fall into eight groups (SOXA to SOXH) based on sequence identity within
and outside this domain.2:3 Most have been shown in animal models to play pivotal roles

in determining the lineage choice, differentiation program, and survival capacity of discrete
cell types, such that as a whole the SOX family controls many crucial biological processes,
including sex determination, neurogenesis, and skeletogenesis. In humans, pathogenic
variants in half of the SOX genes were shown to date to cause developmental disorders.*
For example, SRY variants cause XY sex reversal (MIM 400045 and 400046);®> SOX9
variants cause campomelic dysplasia with or without XY sex reversal (MIM 114290);5
SOX18variants cause hypotrichosis—-lymphedema-telangiectasia syndrome (MIM 607823
and 137940):8 and SOX4and SOX11 (MIM 615866) variants cause Coffin-Siris syndrome—
like syndromes.’-8 Most pathogenic variants are de novo and, except for SRY; result in
dominant disorders because of gene haploinsufficiency.

Lamb-Shaffer syndrome (LAMSHF, MIM 616803) was initially described as a condition
caused by de novo deletions ranging from a few kilobases to several megabases and
including at least part of SOX5.9 LAMSHF is clinically characterized by developmental
delays, language and motor deficits, intellectual disability, behavioral disturbances including
autistic traits, and other, partially penetrant features.®-12 SOX5is located on chromosome
12p12.1 and gives rise to at least five transcript isoforms through expression from different
promoters, alternative start site usage, and alternative precursor messenger RNA (pre-
mMRNA) splicing. The longest isoform (NM_006940) encodes a 763—amino acid protein
(originally referred to as L-SOX5, but more recently and henceforward called SOX5)

and is the predominant brain isoform.13 The shortest isoform (NM_178010) encodes

a protein corresponding to the L-SOX5 C-terminal half and is testis-specific. All long
protein isoforms contain the same functional domains and are collectively critical in

mouse development.14 SOX57/~ mice are born with lethal skeletal malformations and with
defective deep-layer cortical projection neurons, while SOX5~ mice have a normal lifespan
and no obvious abnormalities.15-18

To date, only a few SOX5 point variants, mostly introducing premature termination

codons, have been reported in LAMSHF patients!®-21 or in large genetic studies of
developmental disorders without detailed clinical descriptions.22-25 In this study, we
describe 41 unpublished patients carrying various SOX5 deletions and point variants,
including 16 with missense variants. We delineate more precisely the clinical spectrum
associated with SOX5 alterations, aim at establishing genotype—phenotype correlations, and
explore pathogenicity of selected variants using both in silico and functional approaches.
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MATERIALS AND METHODS

Human subjects

We collected clinical and molecular data from patients with SOX5 microdeletions or point
variants through GeneMatcher,26 DECIPHERZ’ (patient IDs 333039, 340665, 271393,
264625), and clinical networks. Referring physicians used standard developmental scales
and filled out a table with detailed developmental, neurological, and behavioral history,
including imaging and electroencephalogram (EEG) data where available. The study was
approved by INSERM (RBM C12-06). We obtained informed written consent for all genetic
studies as well as for the use of photographs shown in Fig. 2g.

Genetic studies

Diagnostic laboratories performed genetic tests on blood samples using microarrays or next-
generation sequencing (Supplementary Table 1). SOX5 variants and deletions were validated
and searched for in parents using Sanger sequencing and fluorescence in situ hybridization
(FISH) or real-time polymerase chain reaction (PCR), respectively. SOX5 variants were
described based on the longest isoform (NM_006940.5) using Alamut 2.11 (Interactive
Biosoftware, France) and Human Genome Variation Society guidelines (www.hgvs.org/
mutnomen). The InterVarinterface was used to classify SOX5 variants with adjusted

criteria according to American College of Medical Genetics and Genomics (ACMG)
recommendations.28:29 Combined annotation dependent depletion (CADD) scores3? were
calculated for each variant (Supplementary Table 1). SOX5 isoforms and promoters

and other SOX sequences were retrieved from the National Center for Biotechnology
Information (NCBI) and Fantom5databases and sequences were aligned using ClustalW
(MacVector16 software). The effects of missense variants on protein structure and function
were predicted using HOPE3! and Swiss-Model.32 SOX5 variants were queried in human
populations using gnomAD. Data were statistically analyzed using Fisher’s exact and
Wilcoxon—Mann-Whitney tests.

SOX5 plasmids

Expression plasmids for the longest SOX5 isoform and variants thereof were generated in
the pKTol2C-EGFP plasmid.33 The EGFP sequence was replaced with custom-synthesized
or PCR-amplified SOX5 sequences (primers are available upon request). Plasmid integrity
was verified using Sanger sequencing.

SOX5 immunolocalization

HEK-293 cells (ATCC® CRL-1573™) were plated on glass coverslips and transfected
with pKTol2C-SOX5 plasmids (2 pg) and Lipofectamine 2000 Transfection Reagent
(Thermo Fisher Scientific). Two days later, they were stained using Image-IT™ LIVE
Plasma Membrane and Nuclear Labeling Kit (Thermo Fisher, 134406), fixed in 4%
paraformaldehyde, permeabilized with 0.1% Triton X-100 in PBS (PBST), and blocked in
PBST supplemented with 1% BSA and 22.5 mg/ml glycine. They were then incubated with
rabbit polyclonal SOX5 antibody (1:200, Abcam, ab94396), followed by goat anti-rabbit
antibody (1:500, Alexa Fluor 488, Invitrogen, A27034). After placing DAPI-containing
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Vectashield antifade mounting medium (Vector Laboratories), cells were imaged by confocal
laser scanning microscopy (Zeiss LSM 780; 100x objective).

Western blot, electrophoretic mobility shift, and dimerization assays

HEK-293 cells were plated in six-well dishes and transfected eight hours later with

empty or SOX5 expression plasmid (1 pug) and FUGENES (3 ul, Promega). The next

day, extracts were prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Thermo Fisher Scientific) and tested by western blotting using SOX5 antibody (1:1000) and
horseradish peroxidase—conjugated goat anti-rabbit IgG (1:5000, Vector Biolabs). Signals
were visualized using ECL Prime Western Blotting Detection Reagents (Amersham).
Electrophoretic mobility shift assay (EMSA) was conducted using the same extracts,

10 fmoles [a—32P]-dCTP-labeled 2HMG probe and 1 ug poly(dG-dC).poly(dG-dC), as
described.34 Homodimerization was tested in western blots following cell extract incubation
for 10 minutes with 0.01% glutaraldehyde.

Reporter assay

HEK-293 cells were transfected with FUGENESG containing 150 ng pSV2pGal, 500 ng Acan
[4xA1]-p89Luc reporter, 50 ng SOX9 expression plasmid, and 300 ng plasmid encoding

no protein, wild-type (WT) SOXS5, and/or variant SOX5, as previously described.3> Forty
hours later, cells were collected in Tropix Lysis buffer (Applied Biosystems) with protease
inhibitor cocktail (Thermo Fisher Scientific) and tested using Dual-Light luciferase and E.
coli B-galactosidase assays (Thermo Fisher Scientific). Reporter activities were calculated as
means with standard deviation of luciferase values measured for triplicates and normalized
for transfection efficiency using p-galactosidase values.

RESULTS

The SOX5 variant spectrum associated with LAMSHF includes missense variants

We collected genetic and clinical information from 41 patients (Table 1, supplementary
table 1). Eight patients (D1-D8), representing seven families, carried novel pathogenic
microdeletions. These microdeletions ranged from 43.7 kb to 1.7 Mb and involved different
breakpoints (Fig. 1a). While the largest deletion encompassed the entire SOX5 gene and its
5’ neighbor (BCAT1), the others were restricted to various segments of SOX5.

The other 33 patients belonged to 31 families and totaled 23 distinct point variants. Nineteen
of these variants were classified by the InterVar interface as pathogenic or likely pathogenic
(P1-P29) and the other four as variants of unknown significance (VUS) (V1-V4). Two
patients had indels introducing frameshifts (P7 and P10) (Table 1, Fig. 1a, b). Two (P13

and P14) had variants altering the acceptor and donor splice sites of the coding exon 12,
respectively. Thirteen patients (including a pair of dizygotic twins) totaled eight distinct
nonsense variants (P1-P6, P8-P10, P11, P12, P15, P25, and P28). Truncating variants (i.e.,
nonsense, splice site, and frameshift variants) were scattered over the L-SOX5 isoform from
the N-terminus to the middle of the HMG domain. All truncating SOX5 variants thus encode
proteins lacking DNA-binding ability. Furthermore, since all variants spare the last exon,
they likely trigger nonsense-mediated mMRNA decay and thus prevent protein expression.
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Sixteen patients (including a sib pair) had 11 different missense variants (P16—P24, P26,
P27, P29, and V1-V4). Seven of these variants were clustered in the HMG domain, while
the four VUS occurred in the first coiled coil (V1), between the coiled coils (V2), or after
the HMG domain (V3 and V4).

Five identical nucleotide transitions were identified in several unrelated individuals:
€.622C>T, p.GIn208* (P2 and P3); ¢.637C>T, p.Arg213* (P4/P5 and P6); ¢.1477C>T,
p.Arg493* (P11 and P12); c.1678A>G, p.Met560Val (P16 and P17); and ¢.1711C>T,
p.Arg571Trp (P19 to P23). Besides a few that were of unknown inheritance, these alterations
were all de novo and thus suggested the presence of hot spots for nucleotide transitions. Of
additional note, 17 of 22 single-nucleotide variants identified in patients are C>T and G>A
transitions, suggesting that many SOX5 point variants result from cytosine deamination, a
prevailing mechanism of genetic alteration.36

High rate of parental mosaicism

Most microdeletions and variants predicted to be pathogenic or likely pathogenic were
undetected in parental blood samples, suggesting de novo occurrence (25/34 families, 74%).
However, in each of three families, the same alteration was found in two affected siblings
(D6 and D7; P4 and P5; and P22 and P23), but not in their parents, and in two other patients
(D3 and P9), the variant was present at low levels in maternal blood. In addition, one
nonsense variant was transmitted to a patient (P1) from his affected mother, where it was de
novo. Variant transmission could not be determined for four patients (D1, P7, P12, P19) due
to unavailability of parental samples. These findings thus indicate that pathogenic LAMSHF
variants are frequently inherited from a mosaic parent (5/34, 15%) and also occasionally
from an affected parent (1/34, 3%).

Wide clinical spectrum associated with SOX5 pathogenic alterations

Excluding the four patients with VUS, our patient series comprised 20 females and 17 males
(Supplementary Table 1). The patients were 12.2 years of age on average at the time of
examination (median: 8.0 years, range: 1.75-36), with 11 older than 15 and six younger than
4,

For most patients, pregnancy and delivery were unremarkable (21/36), birth measurements
(weight, length, and head circumference) normal (15/18 for whom full information was
available), and the neonatal period uneventful (25/36). Eight patients had mild growth
retardation or a small head at birth, two were hypotonic, and three had feeding difficulties.

Developmental delay was present in all patients for whom information was available.
Although more than half of the patients timely acquired the sitting position (<9 months; n=
16/29), the age of walking was delayed in all but one (>18 months; n = 35/36), without clear
timing differences among variant categories (Fig. 2a, b). The age of first words was delayed
in 21/26 patients (>12 months; mean: 29.9 months, range: 10-60 months). The delay was
significantly less pronounced in patients with missense variants (mean: 22.4 months, n=11)
than in those with deletions and truncating variants (mean: 35.2 months, 7= 15; pvalue:
0.04, Wilcoxon rank sum test) (Fig. 2c). The levels of verbal expression were variable,
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but most patients older than three years could make short or full sentences (Supplementary
Tables 1 and 2).

Intellectual disability (ID) was reported in 30/33 patients, with 27 having mild-to-moderate
ID and 3 having severe or moderate-to-severe ID. The three patients without ID had learning
difficulties and either borderline functioning or discrepant verbal/performance IQ scores. No
significant correlation was observed between degree of ID and variant type (Fig. 2d).

Of 25 patients evaluated for autism spectrum disorder (ASD), 6 (4 with truncating variants
and 2 with missense variants) were positively diagnosed (24%) and 11 had other behavioral
disturbances including stereotypies, isolation, tantrums, and hyperactivity (Fig. 2e). Of 36
patients, 8 experienced epileptic seizures (22%), but 5 of these had only one or two episodes
and did not require medication. One of these patients (D6) had seizures triggered by
environmental photosensitivity, an unusual finding in a “developmental delay plus seizures”
syndrome (Supplementary Fig. 1). No correlation was found between the occurrence of
seizures and the SOX5 variant type (Fig. 2f).

Clinical examination revealed that stature and weight were within normal range for most
patients. Head circumference of both males (n= 14) and females (n= 15) was in the low
but normal range (~—1.5 SD) while two patients (P14 and P23) had microcephaly. Hypotonia
was reported in 22 patients, and five had additional neurological features, including ataxia
(n=2) or pyramidal syndrome (/7= 3). Thirty-one patients had mild dysmorphic facial
features, including broad/full nasal tip (7= 9), thin upper lip or full lips (7= 8), small jaw
or chin (n=5), long face (n = 3), or epicanthus (n7 = 3). Strabismus was reported in 13
patients, optic atrophy in 5, and amblyopia or cortical visual impairment in 1 each. Except
for thin optic nerves, brain magnetic resonance image (MRI) scans were normal or showed
nonspecific anomalies. Besides dysmorphic facial features, other skeletal malformations
included scoliosis in six patients, thoracic kyphosis and hip dysplasia in one patient each,
and fused cervical vertebrae in two patients (Supplementary Table 1). Malformations of
other organs were rare and restricted to individual patients. Again, no correlation was found
between the occurrence of these features and the variant types. Moreover, patients with
recurrent variants (e.g., P2—P3: p. GIn208*, P4-P6: p.Arg213*, P16-P17: p.Met560Val, and
P19-P23: p.Arg571Trp) exhibited considerable clinical variability, indicating that factors
other than the SOX5 variants modulate the expression of the clinical phenotype.

SOX5 is tightly conserved in the general population

We used gnomAD, a genomic database for over 140,000 individuals who are theoretically
unrelated and lacking severe pediatric disease, to investigate conservation constraints on
SOX5in humans.3” While 158 synonymous variants were predicted and 159 were observed
(Z-score: —0.08), 42 loss-of-function variants were expected, but only 3 were observed
(probability of loss-of-function intolerance [pLI] = 1). Moreover, 427 missense variants
were predicted, but only 244 were observed (Z-score: 3.21). Thus, SOX5is under tight
conservation constraint in control populations. Interestingly, gnomAD synonymous variants
were found for 10-29% residues both within and outside functional domains, whereas
missense variants altered significantly fewer residues in the HMG domain (six residues, i.e.,
7.5%) than in other regions (21-33%) and significantly fewer than synonymous variants
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(20%, p=0.017) (Fig. 3a, b). The SOX5HMG domain is thus highly constrained within
control populations, which is in contrast to the relatively high prevalence of HMG domain
missense variants observed in our patient cohort. The first coiled-coil domain also had
significantly fewer missense variants (20.7%) than the regions outside of known functional
domains (33.2%; p = 0.03), suggesting that this domain, which is required for SOX5
homodimerization and thereby for binding to pairs of recognition sites in target genes, is
also under conservation constraint.

The six HMG domain missense variants found in gnomAD affected two of the same
residues as in LAMSHF patients and four others, and all six occurred only once
(Supplementary Table 5). In contrast, for missense variants located outside the HMG
domain, we found four occurrences of the patient Arg235Cys variant (located in the first
coiled coil) in gnomAD, and one for Ser693Leu. Other gnomAD variants affected the same
residues as in patients, such as Arg235His, found in 11 individuals. These observations
suggest that some SOX5 variants, especially those located outside the HMG domain, may be
better tolerated than others.

In silico prediction of variant pathogenicity

To predict pathogenicity of SOX5 missense variants, we first examined the location

and conservation of affected residues. Since all HMG domain residues are fully or
semiconserved in SOX5 vertebrate orthologs (Supplementary Fig. 2a), we focused on
human SOX protein paralogs. All HMG domain residues altered in patients and gnomAD
individuals affected residues involved in DNA binding or bending, a-helical configuration,
or nuclear trafficking (Fig. 3c). Interestingly, 3 of the 5 residues altered in patients (Met560,
Asn561 and Arg571) were among 23 residues identical in all protein paralogs, Tyr605

was among 13 semiconserved residues, and only Ala596 was among the 40 nonconserved
residues. Conversely, only two of the six residues altered in gnomAD individuals were
among the conserved and semiconserved ones. Outside the HMG domain, patient variants
affected residues that are highly conserved in SOX5 and its orthologs (Supplementary

Fig. 2b). When the comparison was limited to human SOXD proteins (S0OX5, SOX6, and
SOX13), these conservation patterns held strongly for Arg235Cys, located in the first coiled-
coil domain, and Thr632Asn, immediately flanking the HMG domain, but less strongly for
residues located in functionally unknown regions (Fig. 3d). Together, these data suggested
that all HMG domain variants and a few other patient variants might impact SOX5 function.

We then asked whether the HMG domain residues altered in LAMSHF patients also

cause disease when altered in other SOX genes. Interestingly, all residues affected in
LAMSHF patients were shown to cause gonadal dysgenesis or XY sex reversal when
altered in SRY; or campomelic dysplasia with or without XY sex reversal when altered

in SOX9 (Supplementary Table 6). In contrast, only two of the four variants found in
gnomAD, but not in LAMSHF patients, were shown to cause disease when altered in SRY.
These data further support pathogenicity of patient variants. They also suggest that some
variants present in gnomAD individuals could be pathogenic, but clinical information was
unavailable to validate this possibility.
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Lastly, comparison of WT and variant residues using HOPE (Supplementary Fig. 3) showed
that all variants differed from WT residues by at least one major structural feature: 16/18
differed in size, 13/18 differed in hydrophaobicity, and 6/6 had a neutral instead of positive
charge. All variants could thus affect the secondary structure and hence function of SOX5.

Overall, these analyses concurred that most missense variants identified in our patient series
are likely pathogenic.

Truncating variants and missense variants located within or near nuclear import signals
impair SOX5 translocation to the nucleus

We constructed expression plasmids for WT and variant forms of L-SOX5 and transiently
transfected them in HEK-293 cells to explore the functional impacts of variants. Western
blots of nuclear and cytoplasmic fractions (Fig. 4a) and cell immunostaining assays (Fig.
4b) showed that WT SOX5 localized primarily in the nucleus, as expected. On the contrary,
expression of nonsense variants (GIn208*, GIn274*, Gly354*, and Arg493*) revealed that,
if these variants were expressed in patients’ cells (i.e., if their mMRNAs were not subjected

to nonsense-mediated decay), they would be primarily cytoplasmic. This result was expected
since protein truncation occurs before the nuclear translocation signals. All proteins with a
missense variant that we tested were able to translocate into the nucleus, except those in
which the variant occurred within or near the N-terminal nuclear import signal. Accordingly,
the Met560Val variant was localized to both the cytoplasm and nucleus, and the Asn561His
and Arg571Trp variants were mainly cytoplasmic. Cytoplasmic retention of these missense
variants may thus contribute to pathogenicity.

Missense variants in the HMG domain prevent SOX5 from participating in transactivation

We tested the transcriptional activity of SOX5 variants by transfecting HEK-293 cells

with an Acan reporter whose enhancer is synergistically activated by SOX9 and SOXD
proteins.3> WT SOXS5 increased transactivation by SOX9 in a dose-dependent manner (Fig.
4c). Nonsense and HMG domain missense variants exhibited little if any activity, whereas
missense variants located outside the HMG domain had activity similar to WT. Since SOX5
variants are heterozygous in our patients, we also tested whether they could interfere with
the activity of WT SOX5. Nonsense and HMG domain missense variants did not affect the
activity of WT SOX5, and missense variants located outside the HMG domain increased

the reporter activity as much as WT SOX5 (Fig. 4d). Thus, none of the variants showed a
dominant-negative effect.

We then tested the DNA-binding ability of SOX5 missense variants in EMSA using whole-
cell extracts from HEK-293 cells transfected with SOX5 plasmids and a probe avidly
binding SOXD homodimers.38 HMG domain missense variants failed to bind DNA, whereas
other missense variants efficiently bound DNA (Fig. 4e). This result also suggested that
Arg235Cys, located in the main coiled-coil domain, can homodimerize effectively. Its
ability to homodimerize was confirmed in an assay where closely interacting proteins were
crosslinked with glutaraldehyde (Fig. 4f).

In conclusion, HMG domain missense variants prevented SOX5 from binding DNA and
from participating in transcriptional activation, supporting their pathogenicity. On the
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contrary, variants located outside the HMG domain had no deleterious impact in the assays
used, but this finding does not rule out that they could be pathogenic and alter other, untested
SOX5 activities.

DISCUSSION

LAMSHF syndrome was previously described in just over two dozen patients. Most patients
had deletions of at least part of SOX5, and a few had either a chromosomal translocation
involving SOX5, or SOX5 nonsense or frameshift variants.>-12:19-21 Qur patient series more
than doubles the number of cases described in the literature and demonstrates that SOX5
missense variants clustering in the HMG domain can also cause LAMSHF syndrome. All
variants were heterozygous, and most were predicted in silico and validated in vitro to

be loss-of-function variants. This confirms that SOX5 haploinsufficiency is deleterious for
neurogenesis and a few other developmental processes. Our study also revealed that parental
mosaicism, found in at least 14% of families in our series, is relatively frequent in LAMSHF
syndrome. This finding is important for genetic counseling and in line with increasing
evidence that somatic, gonosomal, or gonadal mosaicism in parents may cause recurrence of
neurodevelopmental disorders, apparently due to de novo variants.3? SOX5and LAMSHF
syndrome thus expand the list of such genes and disorders.

Our extended study allowed further definition of the LAMSHF clinical features. ID is
mostly within the mild-to-moderate range, and some cases have specific cognitive deficits
rather than 1D.% Delays in motor and language acquisition are observed in all patients and
correlate with the level of ID. Behavioral disturbances are frequent and include ASD or
autistic traits, as previously reported.%1040 Microcephaly is infrequent; yet, brain growth
seems frequently mildly altered. Hypotonia is common, whereas other neurological features
are infrequent. Our findings also suggest that SOX5 pathogenic variants predispose to
epilepsy, with a prevalence of an order of magnitude higher than in the general population.
Seizures in SOX5 patients usually respond well to antiepileptic treatments and follow

a benign course. Ophthalmologic features, including strabismus, optic nerve atrophy,
amblyopia, and cortical visual impairment, are frequently observed®19.22 and, together
with rare skeletal malformations (i.e., scoliosis and fused cervical vertebrae), constitute
corroborating rather than defining features of LAMSHF syndrome.® The incomplete
penetrance observed for some features suggests that SOX5 haploinsufficiency manifests
differently in distinct individual genetic backgrounds or that some variants retain partial
activity. The investigation of clinical features according to variant types, however, did not
reveal clear genotype—phenotype correlations. Patients with HMG domain missense variants
tended to have milder language deficits, but this finding requires confirmation with larger
patient cohorts. Based on the lack of obvious genotype—phenotype correlations and on the
observation of variable phenotype severity in unrelated individuals with identical SOX5
variants, we tentatively conclude that yet-unidentified factors significantly contribute to the
penetrance and degree of disease severity.

We also describe in this study four patients with de novo variants located outside the HMG
domain and altering amino acids conserved in SOX5 orthologs. However, the pathogenicity
of these variants could not be established through functional assays, and it thus remains
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unclear whether and how these variants contribute to disease in these patients. Three of these
patients (V2-V4) had phenotypic features compatible with LAMSHF syndrome (although
patient V2 was very young at the time of the study and patient V3 mainly had ASD),
whereas the fourth patient (V1) had Tourette syndrome. The variant identified in the latter
patient (Arg235Cys) was also present in four gnomAD individuals from different ethnicities.
Although Tourette patients are included in gnomAD “neuro” cohorts, the individuals with
Arg235Cys were not in these cohorts, suggesting that these individuals had no obvious
neurological phenotype. Further investigations are therefore warranted to investigate whether
missense variants outside the HMG domain could impair untested activities of SOX5 and
whether these variants could predispose to LAMSHF or Tourette syndrome.

In conclusion, our study demonstrates that the genetic and clinical spectrum in LAMSHF
syndrome is much larger than previously described, and extends to missense variants
clustering in the HMG domain. In silico and in vitro functional data support the concept that
these missense variants are pathogenic by causing loss of function of the SOXS5 transcription
factor, and thereby reflect gene haploinsufficiency during neurogenesis and occasionally
during other developmental processes. The impacts of variants located outside the HMG
domain remain to be determined.
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Fig. 1. SOX5 variant spectrum associated with Lamb-Shaffer syndrome (LAMSHF).
(a) Location of genetic alterations identified in patients in this study. SOX5 transcript

isoforms are labeled with National Center for Biotechnology Information (NCBI) accession
numbers. Boxes 1to 15, coding exons of isoform NM_006940. 5 and 3’UTR: 5’ and 3’
untranslated sequences. pl to p11 represent SOX5 promoters listed in the Fantomb5 database;
pl and p2 (in bold) are the main promoters driving SOX5 expression in brain. CC, coiled-
coil domain. Double-arrowed lines, deletions in patients D1-D8. Point variants, labeled as
indicated. (b) Location of point variants reported here (above) and previously (below) on the
longest SOX5 isoform. Protein and domain residue boundaries are indicated underneath the
schematic. Red, nonsense and frameshift variants. Blue and green, missense variants within
and outside the HMG domain, respectively. Superscripts, references.
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Fig. 2. Patients exhibit similar clinical features regardless of the SOX5 alteration type.
Box plots showing comparative distribution of ages at (a) sitting unsupported, (b) walking

unsupported, and (c) first words for patients with deletion, truncating, and missense variants.
(d) Number of patients with normal to borderline cognitive abilities and various degrees of
intellectual disability (ID). (€) Number of patients with autism spectrum disorder (ASD) or
other behavioral disturbances. (f) Number of patients with seizures. (g) Facial profiles of
individuals with de novo SOX5 variants. Above: D2 at age 10 years; D6 at age 26 years;

D8 at age 24 years. Center: P1 at age 2 years, and his mother (41 years old); P6 at age 19
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years; P10 at age 8 years. Below: P13 at ages 2 years, 6 months, and 11 years, 4 months,
respectively; P14 at ages 2 years, 4 months and 8 years, respectively; P25 at age 4 years; P28
at age 5 years. Common facial features include broad or full nasal tip, thin upper lip and/or
full lower lips, small jaw or prominent chin, prominent upper incisors and epicanthus.
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Fig. 3. Human SOX5 is under tight conservation constraint.
(a) Distribution of synonymous and missense variants in SOX5in gnomAD individuals.

CC, coiled coil. (b) Percentages of residues carrying at least one synonymous or missense
variant in the functional and other domains of SOX5in gnomAD individuals. T-tests were
performed to calculate the statistical significance of differences between protein domains.
Pvalues are indicated. (c) Alignment of all human SOX protein HMG domain sequences,
with indication of residues altered in Lamb-Shaffer syndrome (LAMSHF) patients (red)
and altered only in gnomAD individuals (purple). Asterisks, fully conserved residues.
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Dots, semiconserved residues. Colored triangles, residues important for DNA binding and
bending. Brackets, H1, H2, and H3 a-helices. Continued lines linked with dotted lines,
key amino acids in nuclear localization signal sequences (NLS) and nuclear export signal
sequence (NES). (d) Alignment of human SOXD protein sequences outside the HMG
domain that encompass residues altered in LAMSHF patients.
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Fig. 4. Subcellular localization and activities of SOX5 variants.
(a) Western blots of cytoplasmic (C) and nuclear (N) extracts from HEK-293 cells

transfected with plasmids encoding no protein (=), wild-type SOX5 (WT), or SOX5 variants.
Blots were incubated with SOX5 antibody. Red boxes, SOX5specific protein signals.
Numbers, Mr of protein standards. (b) Representative images of SOX5 immunostaining
(green signal) in HEK-293 cells transfected with plasmids encoding wild-type SOX5

(WT) or the indicated variants. Nuclei are seen in blue and plasma membranes in red.

Scale bars: 20 pm. (c) Test of the abilities of SOX5 variants to synergize with SOX9 in
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transactivation. HEK-293 cells were transfected with Acanand pSV2pGal reporter plasmids
and plasmids encoding no protein, SOX9, and/or SOX5. The WT SOXS5 plasmid was used in
the indicated amounts, and the variant plasmids at 150 ng. Reporter activities are presented
as the mean = standard deviation obtained for triplicates in one representative experiment.
They were normalized for transfection efficiency and are reported as increase over the
activity of SOX9 alone. (d) Test of the abilities of SOX5 variants to interfere with WT
SOXS5 in transactivation. HEK-293 cells were transfected essentially as described above.
SOXS5 variant plasmids were tested at 150 ng with 150 ng SOX5 WT plasmid. Reporter
activities were calculated and are presented as described above. (€) Test of the abilities of
SOXS5 variants to bind DNA in electrophoretic mobility shift assay (EMSA). Extracts from
HEK-293 cells transfected with empty, WT SOX5, or SOX5 variant plasmid were incubated
with a 2HMG DNA probe. Top, X-ray film images. SOX5/DNA complexes migrated more
slowly than nonspecific protein (non-sp.)/DNA complexes. Bottom, western blot showing
similar amounts of all SOX5 proteins. (f) Dimerization assay with the same extracts as

in (c) for no protein, WT SOXS5, and the R235C variant. Western blots were performed
using SOX5 antibody. SOX5 dimers ran in sodium dodecyl sulfate—polyacrylamide gel
electrophoresis (SDS-PAGE) with an apparent Mr twice as large as that of monomers.
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