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Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity 
to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential prop-
erty to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and 
genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule 
release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used 
to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the 
promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
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Introduction

Nanomedicine generates a start-up in a new discipline that 
bodes well for the twenty-first century by using nanotech-
nology to improve healthcare and pharmaceutical products 
(Langer and Weissleder 2015; Hamimed et  al. 2022a). 
Nanomedicine recognizes the site of human disease and 
delivers medications, diagnostics, and therapeutics to the 
target biological cell. Initially, the diagnosis was founded 
on the notion of cell theory, but research has progressed to 
the atomic and molecular levels (Jackson et al. 2021). Thus, 
the nanoscale dimension defines new properties of materi-
als such as structure, shape, and high surface area, which 
improve their therapeutic and diagnostics forms (Satalkar 
et al. 2016; Bakir et al. 2021). Hence, the main objective 
of nanomaterials in delivery applications is to carry the 

desired molecules to their target sites with minimizing the 
side effects and maximizing their therapeutic effects (El-Say 
and El-Sawy 2017; Hamimed and Chatti 2022).

In drug delivery systems, nanomaterials play a crucial 
role in improving the stability and solubility of drugs, con-
trolling their release, minimizing their toxicity, and giving 
higher therapeutic effects (Patra et al. 2018). Many nanocar-
rier systems have been developed, such as polymeric nano-
particles, inorganic nanoparticles, and nanohydrogels (Jacob 
et al. 2018). Understanding their interactions with targeted 
cells, administration method, bioavailability, and biodistri-
bution are also essential (Jahangirian et al. 2017; Kthiri et al. 
2021). On the other hand, gene delivery offers new perspec-
tives for treating diseases by introducing new genetic materi-
als into cells via ex vivo and/or in vivo administrations (Mali 
2013). Different vectors deliver DNA chemical transduction 
and transfection using lipids and calcium phosphate, which 
ensure the gene transferring process (Candiani et al. 2010).

Generally, these systems have more advantages for treat-
ing different diseases, especially cancer, known as the sec-
ond most significant cause of mortality in 2020, after heart 
disease leading to death worldwide about 10 million, esti-
mated one in six deaths. (WHO 2022). As well as, their 
effective investigations proved against several viral infec-
tions such as coronavirus, Ebola virus, and malaria (Nas-
rollahzadeh et al. 2020). In addition, several studies proved 
their safety, non-viral methods, biodegradability, versatility 
of structural conformations, ability to deliver high amounts 
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of therapeutic agents (Fornaguera et al. 2015; Jahangirian 
et al. 2017).

Drug delivery

During the past decade, nanotechnology-based drug delivery 
has shown significant interest where studies have enhanced 
the administration and the efficacy of active molecules (Kan-
war et al. 2019; Hamimed and Chatti 2022). By improving 
the solubility, stability and minimizing the toxicity of drug 
molecules, researchers investigated the use of chemical and 
biological approaches giving high clinical benefits. How-
ever, most related research is still in the preclinical stage, 
and safety assessment remains a difficult task. Therefore, 
future research should concentrate on therapeutic nanomedi-
cine’s performance modification, molecular mechanism, and 
potential toxicity (Morton et al. 2018). As a result, it was 
established that various nanocarriers offer numerous advan-
tages such as (i) avoiding drug concentration fluctuation 
while maintaining the constant dose and the specific target, 
(ii) giving ultimate therapeutic effects and minimizing side 
effects and toxicity risks, and (iii) protecting drugs from 
enzymatic catalysis (De Jong and Ja Borm 2008). Figure 1 
illustrates different nanocarriers used in biomedical applica-
tions, discussed in the following sections.

Metallic nanoparticles

Metallic nanoparticles have fascinated scientists in the bio-
medical field due to their unique physicochemical proper-
ties and broad functional groups, allowing the binding with 
different drug molecules (Mody et al. 2010). Interestingly, 
the size, shape, and composition of metal nanoparticles (sil-
ver (Ag) and gold (Au)), as well as metals (Titanium (Ti), 

zinc (Zn), and iron (Fe)), offer potential use in drug delivery 
system.

Gold nanoparticles

Gold nanoparticles (AuNPs) are the most functionalized 
metallic nanoparticles in drug delivery due to the strong 
bond mechanisms via covalent and non-covalent conjugation 
while maintaining high stability in the release of the drug 
from AuNPs (Su et al. 2013). Many methods are applied 
to synthesize these nanoparticles, such as the colloidal 
approach, and the obtained NPs have variable shapes and 
sizes (3–200 nm) (Zhao et al. 2013). Generally, in drug car-
riers, the AuNPs are synthesized by reducing gold precur-
sors with sodium borohydride or sodium citrate in the bot-
tom-up method (Duncan et al. 2010). The obtained AuNPs 
are functionalized by molecules such as drugs, enzymes, or 
plant extract, then the capping agents like transferrin, tannic 
acid, polyethylene glycol (PEG), porphyrin, etc. enhance the 
potential delivery and the therapeutic effects (Li et al. 2016a, 
b) (Fig. 2A).

The functional AuNPs have shown good use in cancer 
therapy via the delivery of anticancer drugs. As a result of 
tumour growth in a xenograft mouse model, the morin drug 
encapsulated by AuNPs promoted tumour apoptosis by regu-
lating signal crosstalk and enhancing the production of reac-
tive oxygen species (Ding et al. 2020). The 5-fluorouracil 
carried on AuNPS functionalized by casein was a promising 
nanocarrier to minimize the high toxicity of 5-fluoroura-
cil while treating breast cancer (Ganeshkumar et al. 2013). 
Similarly, Akinyelu and Singh (2019) studied the potent 
delivery of 5-fluorouracil-based AuNPS to various tumour 
cells and revealed an excellent delivery for cancer manage-
ment. Another study has developed effective methotrexate-
conjugated AuNPs, which demonstrated higher cytotoxicity 

Fig. 1   Different nanocarriers used in drug delivery system. (A) Poly-
meric nanoparticles; (B) nanostructured lipid carriers; (C) solid lipid 
nanoparticles; (D) metallic nanoparticles; (E) liposomes; (F) nanohy-

drogels; (G) dendrimers; (H) cyclodextrin; and liquid crystalline sys-
tem ((I) lamellar; (J) hexagonal; (K) cubic). Copyright 2016, MDPI 
and ACS Style. (Calixto et al. 2016)
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towards the human choriocarcinoma cell lines than the free 
methotrexate (Tran et al. 2013).

Furthermore, doxorubicin (Dox), often used as a model in 
cancer therapy, when bound AuNPs capped with PEG, dem-
onstrated toxicity against the multidrug-resistant MCF-7/
ADR cancer cells (Wang et al. 2011). Cui et al. (2017) con-
structed an enhanced Dox carrier conjugated with AuNPs-
lipoic acid-modified PEG, which showed stability to deliver 
the Dox into the nucleus of the human hepatocellular liver 
carcinoma cell line. As a treatment for malignant skin 
tumours, Dox- conjugated to glutathione-stabilized AuNPs 
showed a potential delivery system for feline injection-site 
sarcomas (Zabielska-Koczywąs et al. 2017). In a recent 
study, AuNPs capped with different biopolymers and con-
jugated with Dox demonstrated promising results in treating 
colorectal cancer cell lines (DLD-1 and HCT-116) (Hung 
et al. 2019). Additionally, Coelho et al. (2019) studied the 
efficient conjugation of Dox and varlitinib within AuNPs-
PEG, which revealed the inhibition of pancreatic cancer 
cell lines (S2-013 s) while minimizing the side effects on 
normal cells. Also, hesperidin (Hsp) loaded with AuNPs 
via the chemical method was effective against the human 
breast cancer cell line (MDA-MB-231), enhanced the pro-
duction of macrophages, and inhibited the production of pro-
inflammatory cytokines (IL-1β, IL-6, and TNF) (Sulaiman 
et al. 2020).

All these materials can have great potential as alternatives 
to traditional photothermal with high control, less toxicity, 
and more stability in drug release.

The large surface area-to-volume ratio, bio-inert, and 
low immunogenicity of AuNPs offer wide use in cardio-
vascular diseases where their incorporation within coiled 
fibre scaffolds provides a quick and robust contraction and 

relaxation of the myocardium (Fleischer et al. 2014). (Ravi-
chandran et al. 2014) developed a hybrid scaffold formed 
of AuNP-loaded bovine serum albumin (BSA)/polyvinyl 
alcohol (PVA) nanofibers that enhance the cardiomyogenic 
differentiation. In order to manage cardiovascular diseases 
in diabetic patients, AuNPs showed efficient delivery of 
miR155 into macrophages that improve cardiac function 
(Jia et al. 2017).

Moreover, the delivery of the antibiotic levofloxacin 
within bromelain-capped AuNPs showed high control and 
localization of the target site while enhancing the antimi-
crobial activity compared to free levofloxacin (Bagga et al. 
2016). As well as, gentamicin was conjugated with AuNPs 
for the delivery and enhancement of severe microbial infec-
tion (Ahangari et al. 2013). Apart from chemotherapeutic 
drugs, peptide-drug-conjugates with AuNPs have good 
chemical and biological performance while improving the 
target efficacy (Kalimuthu et al. 2018).

Silver nanoparticles

Silver nanoparticles (AgNPs) are tailored in drug delivery 
due to their electrical conductivity, broad antimicrobial 
activity, and localized surface plasmon resonance effect 
(Ocsoy et al. 2018). Generally, the drug molecules inter-
act with AgNPs via multiple bonds such as sulphide/thiol, 
amine/carboxylic, azide-alkyne bio-conjugation (Prasher 
et al. 2020). Liu et al. (2012) developed a conjugate cell-pen-
etrating peptide (TAT) using AgNPs for multidrug-resistant 
cancer treatment; this drug delivery system showed unusual 
antitumour activity. The AgNPs were used as a nanocarrier 
for Dox and alendronate (Ald) for cancer therapy, where 
they improve the drug delivery and anticancer activity 

Fig. 2   Numerous incorpora-
tions of nanocarriers with drug 
molecule. (A) Functionalization 
of gold metallic nanoparti-
cles (AuNPs) by interacting 
on the surface with drug. (B) 
The nanohydrogels formed 
an aggregation of mesopore 
and macropore nanoparticles 
trapping the drug molecule in 
which the release occurs under 
absorption of water. (C) Poly-
meric nanocarriers exhibited 
nanoencapsulation of the drug 
molecule. (D) High dispersion 
of the drug molecule into the 
solid lipid nanocarriers
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(Benyettou et al. 2015). Interestingly, Shao et al. (2016) 
used a practical approach to deliver Dox within a nanocar-
rier formed of Janus AgNPs, where the delivery system was 
found to be efficient for cancer theranostic with less toxic 
effects. Capanema et al. (2019) designed a hybrid material of 
AgNPs embedded in the carboxymethylcellulose (CMC) as 
a nanocarrier for Dox by using a green process. This nano-
carrier showed potent anticancer and antibacterial activi-
ties against skin cancer. The high conjugation properties of 
AgNPs with curcumin demonstrate the potential delivery for 
cancer therapy; they also showed less haemolytic toxicity 
than free curcumin (Gang and Gang 2018). The biocompat-
ibility (AgNPs-NGR-graphene oxide (GO) showed excellent 
delivery of Dox to tumour cells with high targeting prop-
erties and great potential cancer therapy (Shi et al. 2014). 
In an attempt to enhance the delivery and the biosensing 
of Dox, the surfactant-free AgNPs coated with nanoGO 
served as potent nanocarrier and showed great theragnostic 
for anticancer effect (Zeng et al. 2018). The conjugation of 
camptothecin via an acid-labile β—this propionate on the 
surface of AgNPs improves the delivery and allows track-
ing the mechanism “on”/ “off” of the release process in the 
tumour cells (Qiu et al. 2017).

Therefore, the AgNPs demonstrated an essential ability to 
carry vast amounts of anaesthetic drug tetracaine hydrochlo-
ride by using Gemini surfactant aggregation. Furthermore, 
these results showed that the mole fraction controlled the 
aggregate size of the nanocarrier (Srivastava et al. 2019). 
Other reports revealed the excellent delivery of antibiot-
ics via conjugating the ciprofloxacin within a composite of 
AgNPs-GO-cobalt ferrite (Kooti et al. 2018). Furthermore, 
incorporating rifampicin within AgNPs entrapped on amphi-
philic chitosan-grafted-(cetyl alcohol-maleic anhydride-
pyrazinamide) enhanced cellular uptake, biocompatibility 
and showed an immediate effect against Mycobacterium 
tuberculosis (Amarnath Praphakar et al. 2018). In addition, 
the AgNPs conjugated with antimalarial drugs, such as chlo-
roquine and fosmidomycin, exhibited active and passive tar-
geting delivery (Rai et al. 2017).

Titanium, magnesium, iron, and zinc nanoparticles

It is widely known that titanium oxide nanoparticles 
(TiO2NPs) may significantly enhance the performance of 
drug delivery systems. Generally, the incorporation of the 
drug molecule within TiO2NPs requires two approaches: (i) 
soaking TiO2NPs in an aqueous drug solution or (ii) pipet-
ting a volume of drug solution on the surface of TiO2NPs 
(Chennell et al. 2013). For example, Ren et al. (2013) have 
successfully conjugated Dox with TiNPs via electrostatic 
interactions and confirmed the improvement of Dox deliv-
ery into the intracellular cytoplasm with better anticancer 
activity against the multidrug resistance MCF-7/ADM cells. 

Similarly, Mund et al. (2014) used the TiO2NPs to deliver 
the anticancer drug paclitaxel (PTX) into breast cancer cells 
and found that PTX-TiO2NPs have better anticancer activ-
ity than free PTX. As shown in Table 1, erlotinib (ERL) 
and vorinostat (SAHA) drugs were loaded in TiO2NPs for 
the treatment of the breast cancer cells (MDA-MB-231 
and MCF-7) and human cancerous amniotic cells (WISH) 
(Abdel-Ghany et al. 2020). The results showed that the 
hybrid nanocarrier could upregulate the cancer cells by 
arresting them at the G2/M phase.

Moreover, the chitosan/cobalt ferrite/TiO2 nanofibers 
conjugated with Dox via electrospinning process treated 
the melanoma cancer B16F10 cell lines. These nanocom-
posites showed the fastest release of Dox from the nanofib-
ers and high-localized cancer therapy (Radmansouri et al. 
2018). At the same time, mesoporous TiO2@ zinc oxide-GO 
nanocarriers conjugated with curcumin revealed significant 
anticancer activity and promising candidates to deliver drugs 
for colon cancer (Zamani et al. 2017). Another recent study 
demonstrated that the magnetic nanoparticles (Fe3O4NPs) 
functionalized with (3-aminopropyl)triethoxysilane and 
coated by chitosan and tragacanth gum were able to deliver 
curcumin with the best-recorded release of curcumin (60% 
within 120 h) (Shafiee et al. 2019).

Nowadays, various green synthetic methods have been 
developed to minimize the use of toxic solvents and con-
trol the physicochemical properties of the obtained metallic 
nanoparticles (Hamimed et al. 2020, 2021a, b). For exam-
ple, magnesium oxide nanoparticles (MgONPs) synthesized 
through the green approach can conjugate with Dox, lead-
ing to high control drug release (Somanathan et al. 2016). 
Besides, safer molecules (e.g. phenolic compounds) from 
natural sources gained much interest in recent studies 
(Hamimed and Kthiri 2022; Hamimed et al. 2022b).

In addition, the zinc oxide nanoparticles (ZnONPs) were 
found to be promising for Dox delivery, where the nanocar-
rier exhibited high chemotherapeutic effect and low toxic-
ity toward normal cells (Sharma et al. 2014). Similarly, Liu 
et al. (2016) improved the Dox delivery through ZnONPs by 
increasing cell uptake and decreasing cell efflux in human 
breast cancer cells (MCF-7 cells). Results revealed the dual 
roles of ZnONPs by overcoming drug resistance and prob-
ing the intracellular drug release. In an attempt to enhance 
anticancer drug delivery, Sadhukhan et al. (2019) fabricated 
phenylboronic acid (PBA) conjugated with ZnONPs to 
deliver quercetin. Researchers indicated that the PBA-ZnO-
quercetin improved apoptotic cell death in MCF-7 cells via 
enhanced oxidative stress and mitochondrial damage. There-
fore, Taxifolin, one of the flavanols used for cancer therapy 
loaded with ZnONPs, demonstrated a potential anticancer 
activity against MCF-7 cells and high drug release (Sundrar-
aman and Jayakumari 2020). Another study revealed the bet-
ter conjugation of ZnONPs with A. socotrina extract, giving 
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Table 1   Anti-tumour applications of different nanocarriers in drug delivery

Nanocarriers Size (nm) Cell Lines Ref

MTX-AuNPs 3–20 Human choriocarcinoma cell lines (JAR) (Tran et al. 2013)
MTX- Folic acid-conjugated magnetic 

nanoparticles
50–150 HeLa cells (Madeeha et al. 2022)

Mor-AuNPs 20–48 MCF-7 cells (Kondath et al. 2014)
5-FU-AuNPs 31–33 Human breast adenocarcinoma (MCF-7) 

Hepatocellular carcinoma (HepG2) and 
Kidney (HEK293) cells

(Akinyelu and Singh 2019)

Dox-AuNPs 10 Human hepatocellular liver carcinoma cell 
line (HepG2)

(Wu et al. 2018)

Dox-AuPtNPs 37–72 Human cancer cells A549 (lung) and 
MCF-7 (breast)

(Oladipo et al. 2020)

Hsp-AuNPs 15–30 Human breast cancer cell line (MDA-
MB-231)

(Sulaiman et al. 2020)

PDCs-AuNPs 20–40 Human HL-60, NB4, and murine A20 
leukemic cells

(Kalimuthu et al. 2018)

Dox-Ag-MSNs 2 Human hepatocellular liver carcinoma cell 
line (HepG2) Lung cancer (A549) Breast 
cancer (MCF-7)

(Shao et al. 2016)

Dox- Ag–In–Zn–S quantum dots nanocrys-
tals modified with 11-mercaptoundeca-
noic acid (MUA), L-cysteine, and lipoic 
acid decorated with folic acid (FA)

11–19 Adenocarcinomic human alveolar basal 
epithelial cells (A549)

(Ruzycka-Ayoush et al. 2021)

PTX-TiO2NPs 30–40 Mammalian breast cancer cell line (MCF-
7)

(Mund et al. 2014)

ERL-SAHA-TiO2NPs 5–25 Breast cancer cells (MDA-MB-231 and 
MCF-7) and human cancerous amniotic 
cells (WISH)

(Abdel-Ghany et al. 2020)

Dox-ZnONPs 476 Mammalian breast cancer cell line (MCF-
7)

(Sharma et al. 2014)

Taxifolin-ZnONPs 70–80 Human breast cancer cell (MCF-7) (Sundraraman and Jayakumari 2020)
Curcumin-ZnONPS-PEG-beta cyclodextrin 26 Human breast cancer cell (MCF-7) (Sawant and Bamane 2018)
Dox-(p(HEMA)-b-p(His) NPs 100–120 Human colon tumour 116 human colon 

carcinoma cell line
(Johnson et al. 2012)

Dox- iRGD-PEG- p(His)@IO NPs 210–219 PC3MM2 human prostate cancer cells (Herranz-Blanco et al. 2016)
Dox-sorafenib-PEG-PLGA 177 Human cancer cell line HT-29 (Babos et al. 2018)
Dox- collagen-PAPBA NPs 81.3 Ovarian cancer A2780 cells (Jiang et al. 2020)
MTX- PHLNPs 173.51–233.37 U-87 MG glioma cells (Bhattacharya 2021)
GmcH-SLNPs 103–228 Lung adenocarcinoma epithelial A-549cell 

line
(Soni et al. 2016)

GmcH-metal-doped boron nitride nano-
structure

125–500 Cancerous cells (Bibi et al. 2022)

Resveratrol-SLNPs 168 Human breast cancer cells (MDA-MB-231) (Wang et al. 2017)
Crucumin-SLNPs 40 Human breast cancer cells (SKBR3) (Wang et al. 2018)
Dox-NLCs 100 Breast cancer cells ( MCF-7 ADR) (Li et al. 2018)
Resveratrol-NLCs 88 Human breast cancer cell (MCF-7) (Poonia et al. 2019)
Dox-GEM-VCR-NLCs 112 Human Burkitt’s lymphoma cell line (Ni et al. 2017)
Dox-β-elemene-NLCs 190 Lung cancer cells (A549) (Cao et al. 2019a)
Dox-Liposome 60 Human breast cancer cell (MCF-7/MX 

cells)
(Tahover et al. 2015)

PD-1-Liposome-DOX 85 Mouse breast tumour cell line (4T1-fLuc) (Du et al. 2017)
Dox-Liposome enrobed (PLGA-PEG-

PLGA)
75 Murine breast cancer cell line (4T1) (Cao et al. 2019b)

Curcumin-antiSTAT3 siRNA- Cationic 
Liposome

276 Mouse melanoma cells (B16F10) (Jose et al. 2017)
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a potent antibacterial activity in the urinary tract infection 
(Fahimmnisha et al. 2020).

Polymeric nanoparticles and nanohydrogels

Polymeric drug nanocarriers (PNCs) are formed from natu-
ral or synthetic polymers such as PEG, chitosan, and col-
lagen, which seal the drug molecule on a spherical bilayer 
shape or distributed on micelles (Fig. 2C). The polymer 
usually interacts with the drug via carboxyl, amine, and 
hydroxyl groups (Ciejka et al. 2017). The Dox delivery 
through pH-sensitive polymeric nanoparticles can retain the 
Dox during circulation while controlling the Dox release 
at the tumour site (Meng et  al. 2014). (Hu et  al. 2018) 
developed poly (ε-caprolactone-co-lactide)-b-PEG-b-poly 
(ε-caprolactone-co-lactide) for the treatment of breast can-
cer. They synthesized Dox theranostic nanoparticles with 
high stability, biocompatibility, and antitumour activity. 
Carborane-conjugated amphiphilic copolymer nanoparti-
cles were fabricated to deliver anticancer drugs by Xiong 
et al. (2015); they showed that PEG-b-poly(L-lactide-co-
2-methyl-2(2-dicarba-closo-dodecarborane) propyloxycar-
bonyl-propyne carbonate) (PLMB) enhanced the delivery of 
boron atoms and Dox to the tumour sites. It was suggested 
that these PLMB nanoparticles are promising for combin-
ing chemotherapy and boron neutron capture therapy. To 
enhance the oral bioavailability of Dox, Ahmad et al. (2018) 
prepared PEGylated-Dox-loaded-poly-lactic-co-glycolic 
acid (PLGA)-nanoparticles using a single emulsion/solvent 
evaporation method. Results showed that PEGylated-Dox-
PLGA-NPs improved the Dox oral delivery, which provides 
an alternative to intravenous therapy for better patient care. 

Herranz-Blanco et al. (2016) fabricated polymeric-drug con-
jugate solid nanoparticles containing encapsulated superpar-
amagnetic iron oxide nanoparticles (IO NPs) and decorated 
with a tumour homing peptide (iRGD) using the nanopre-
cipitation technique. This strategy showed potential tumour 
therapy with reduced cytotoxicity and haemolytic effects. In 
addition, the conjugation of Dox within the poly(ethylene 
glycol)-block-poly(histidine) @ IO NPs- iRGD offers a 
potential anticancer activity while improving intracellular 
delivery. Babos et al. (2018) reported an efficient encapsu-
lation of Sorafenib and Dox using PLGA and PEG-PLGA 
nanoparticles assessed for anticancer activity against hepa-
tocellular carcinoma (HT-29). The polymeric nanocarriers 
displayed higher cellular uptake with high toxicity toward 
tumoural cells (Babos et al. 2018). In addition, the copoly-
mer D-α-tocopheryl polyethylene glycol 1000-block-poly 
(b-amino ester) (TPGS-PAE) was synthesized for the co-
delivery of Dox and curcumin. It showed an efficient drug 
release in acidic pH and effective inhibition of human hepa-
tocellular carcinoma (Zhang et al. 2017). Also, biopolymer 
such as chitosan for drug delivery remains an interesting 
way for green nanocarriers. Deng et al. (2014) developed 
nanocarriers based on Dox and miR-34a co-encapsulated 
into hyaluronic acid (HA)-chitosan nanoparticles to enhance 
the drug resistance in cancer cells and minimize side effects. 
Their results showed that co-delivery enhanced the suppres-
sive breast cancer cells. Recently, findings on the delivery of 
Dox using biopolymer-based of collagen-poly (3-acrylami-
dophenylboronic acid) nanoparticles (collagen-PAPBA NPs) 
proved their efficiency against ovarian cancer A2780 cells 
(Jiang et al. 2020). Furthermore, donepezil, rivastigmine, 
and galantamine delivery by using chitosan nanoparticles 

MTX, methotrexate; AuNPs, gold nanoparticles; PHLNPs, polymeric lipid hybrid nanoparticles; Mor, morin; 5-FU, 5-fluorouracil; Dox, doxoru-
bicin; AuPtNPs, gold-platinum nanoparticles; Hsp, hesperidin; PDCs, peptide-drug-conjugates; Ag-MSNs, janus silver-mesoporous silica nano-
carriers; PTX, paclitaxel; ERL, erlotinib; SAHA, vorinostat; TiO2NPs, titanium oxide nanoparticles; (p(HEMA)-b-p(His) NPs, poly(2-hydroxye-
thyl methacrylate)-b-poly(l-histidine) nanoparticles; PEG- p(His) NPs, poly(ethylene glycol)-block-poly(histidine) nanoparticles; IO NPs, iron 
oxide nanoparticles; iRGD, tumour homing peptide; PLGA, poly-lactic-co-glycolic acid; collagen-PAPBA NPs, collagen-poly (3-acrylamidophe-
nylboronic acid) nanoparticles; GmcH, gemcitabine; SLNPs, solid lipid nanoparticles; NLCs, nanostructured lipid carriers; GEM, gemcitabine; 
VCR, vincristine; PD-1, programmed cell death-1; STAT3, signal transducer and activator of transcription 3; TPGS, theranostic D-alpha-tocoph-
eryl polyethylene glycol 1000 succinate mono-ester; PAMAM, poly (amidoamine) dendrimers

Table 1   (continued)

Nanocarriers Size (nm) Cell Lines Ref

TPGS-transferrin-Liposome 200 Brain cancer (Sonali et al. 2016)
Dox-PAMAM 10 Human lung adenocarcinoma cells (A549) 

and murine fibroblast cell line cell line 
(NIH/3T3)

(Almuqbil et al. 2020)

Dox-ß cyclodextrins-PEG-folic acid 30–60 Human hepatocellular carcinoma cells 
(HepG2)

(Fan et al. 2019)

Dox-ß cyclodextrins 17 Human hepatocellular carcinoma cells 
(HepG2)

(Yang et al. 2019)

Dox-Mesoporous structured UiO-66 
MOFs- carboxymethylcellulose

2.6 Lung Carcinoma Cell Line of A549 Cells (Xie et al. 2021)
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to treat Alzheimer’s disease showed the potential delivery 
system via intranasal administration and better targeting 
efficiency to the brain (Fazil et al. 2012; Bhavna et al. 2014; 
Hanafy et al. 2015).

Nanohydrogels are systems of nanocarriers that are recog-
nized for their ability to absorb water, better dispersion, and 
release of hydrophilic drug molecules (Fig. 2B). Nanohydro-
gels such as poly (vinylcaprolactam) cross-linked with poly 
(ethylene glycol) diacrylate modified with lysine loaded with 
Dox have shown a high cellular uptake and potential antican-
cer activity against MCF-7 cell line (Farjadian et al. 2019). 
In addition, chitosan hydrogel exhibited excellent proper-
ties in anticancer drug delivery due to its high biocompat-
ibility, bioadhesion, biodegradability, and cationic charac-
ter. Hence, many studies investigated the use of chitosan 
hydrogel incorporated with poly (acrylic acid-N-isopropyl 
acrylamide) nanoparticles (Ghaem et al. 2020), de-esterified 
tragacanth nanoparticles (Sadrjavadi et al. 2018), or porous 
silicon nanoparticles@Au (Xia et al. 2019) for the deliv-
ery of Dox and Methotrexate. They found that the chitosan 
hydrogel presented higher absorption capacity, better local-
ization of tumoural cells, and slower sustained release of 
anticancer drugs. Recently, George et al. (2020) developed 
a co-delivery of naringenin, quercetin, and curcumin drugs 
using functionalized nanohybrid hydrogel-based L-histidine, 
conjugated chitosan, phyto-synthesised ZnONPs and dialde-
hyde cellulose. The nanohydrogel significantly killed human 
skin carcinoma cell lines (A431).

Moreover, nanohydrogels based on silver nanoparticles 
are promising in drug delivery applications. Prusty and 
Swain (2018) synthesized polyacrylamide/dextran nanohy-
drogels using in situ polymerization technique incorporating 
reduced nanosilver and showed an in vitro control of orni-
dazole release within 6 h with potent antibacterial activity. 
Gulsonbi et al. (2016) designed polymeric nanohydrogels 
based on carboxymethylcellulose–poly (acrylamide) conju-
gated with AgNPs and revealed good use in drug delivery 
systems. Furthermore, PVA containing copper oxide nano-
particle hydrogel was successfully loaded with ibuprofen 
drug and results indicated a higher rate of drug release from 
hydrogel than from nanocomposite form (Ahmadian et al. 
2018).

Furthermore, the primary application of clinical nano-
technology is expected to be in pharmaceutical development 
within a short period. Preclinical investigation of the epider-
mal photosensitizer protoporphyrin IX (PpIX) production 
may predict clinical efficacy accurately (Wu et al. 2013). 
Schmitz et al. (2016) developed a human ex vivo model 
suitable to explore drug permeation in human skin for epi-
dermal neoplasia disease in clinical practice (10 patients) 
using different drug formulations. After the clinical trial, the 
nanoemulsion formulation (BF-200 ALA “5-aminolevulinic 
acid”) led to a more than threefold higher distribution of 

(PpIX) than the 20% ALA cream formulation, which is fre-
quently used in clinical practice. In similar work, Morton 
et al. (2018) showed that a phase III trial on 138 patients 
using BF-200 ALA gel-photodynamic therapy (PDT) was 
highly effective with slightly lower recurrence compared 
to MAL (a cream containing methyl-aminolevulinate) after 
1 year. Thus, the nanoemulsion ALA proves its stability 
to enhance epidermal penetration compared to other clini-
cal drugs used (Schmitz et al. 2016). The nanoemulsion-
based 10% BF-200 ALA was recently tested in 2 maximal 
usage pharmacokinetic trials (MUsTs) in patients severely 
affected with actinic keratosis, where MUsTs were used to 
assess baseline-adjusted plasma concentration–time curves 
for three tubes of BF-200 ALA and PpIX after a single 
PDT treatment (Novak et al. 2022). Based on the obtained 
MUsTs, ALA plasma concentrations were increased to a 
concentration at about 2.5 to 3.3 times above endogenous 
baseline at 3 h after dosing and then were subsequently 
returned to baseline within 10 h. Overall, no safety concern 
due to high PpIX exposure is apparent upon application of 
up to 6 g of BF-200 ALA for PDT in treating actinic kerato-
sis (Novak et al. 2022).

Lipid‑based nanocarriers

It is known that some polymeric nanoparticles present some 
disadvantages, such as cytotoxicity and difficulty to man-
ufacture at a large scale. Hence, solid lipid nanoparticles 
(SLNPs) are developed as substitute systems of colloidal 
drug delivery because they are biocompatible, cost-effective, 
and can incorporate drugs molecules (Mishra et al. 2018) 
(Fig. 2D). SLNPs have multiple uses in drug delivery, espe-
cially in cancer therapy. Surface-modified SLNPs can be 
done to effectively deliver gemcitabine for targeting lung 
cancer cells treatment (Soni et al. 2016). Wang et al. (2017) 
developed SLNPs containing resveratrol that is more effi-
cient for inhibiting invasion and migration of human breast 
cancer cells (MDA-MB-231). These researchers also proved 
the higher delivery and potent activity of curcumin loaded in 
SLNPs to treat human breast cancer cells (SKBR3) (Wang 
et al. 2018). Using IONPs loaded with SLNPs to target Dox 
delivery (Shen et al. 2019) found that the nanocarriers pre-
sented chemo/magnetothermal combination therapy against 
colon cancer cells line (CT26, 4T1, and A549). Moreover, 
the SLNPs improved the delivery of resveratrol for Alzhei-
mer’s treatment after intravenous injection (Loureiro et al. 
2017). Also, nicotinamide-loaded SLNPs and functionalized 
with polysorbate 80 and phosphatidylserine showed a poten-
tial brain delivery via oral administration, preserving the 
neuronal cells and improving cognition (Vakilinezhad et al. 
2018). Dara et al. (2019) developed erythropoietin-loaded 
SLNPs by using a double emulsion solvent evaporation 
method. The nanocarrier showed a reduction of oxidative 
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stress, beta-amyloid plaque deposition, and ADP/ATP ratio 
in-patient with Alzheimer’s disease. As well, SLNPs proved 
their efficiency to deliver antimicrobial molecules such as 
polymyxin (Severino et al. 2017), Eugenia caryophyllata 
essential oil (Fazly Bazzaz et al. 2018), and carvacrol (He 
et al. 2019) for effective elimination of infections.

The SLNPs presented limitations, such as insufficient 
space for drug encapsulation, low crystallization, and inter-
actions with lipid melt. Thus, nanostructured lipid carriers 
(NLCs) were developed to overcome these drawbacks due 
to their drug overload, non-ideal crystalline structure, and 
preventing solid lipid crystallization (Mishra et al. 2018). 
Czajkowska-Kośnik et al. (2018) paid attention to the excel-
lent use of NLCs loaded with different drug molecules, such 
as econazole, artemether, spironolactone, methotrexate, flur-
biprofen, ibuprofen, and meloxicam for dermal and trans-
dermal applications. To enhance the drug loading for brain 
disease, Wavikar et al. (2017) developed NLC-loaded riv-
astigmine. They revealed that this nanocarrier’s intravenous 
and intranasal administration exhibited an excellent regain 
of memory without signs of inflammation or toxicity. As 
well as, Tapeinos et al. (2017) showed the high efficiency 
of NLCs to deliver multiple drugs such as apomorphine for 
Parkinson’s disease, huperzine for Alzheimer’s disease, and 
vinpocetine for ischemic stroke. Moreover, NLCs revealed 
good biocompatibility for anticancer drug therapy. Olerile 
et al. (2017) developed a theragnostic system based on co-
loaded quantum dots (CdTe/CdS/ZnS) and paclitaxel with 
NLCs, which are found as splendid parenteral drug deliv-
ery system for cancer theragnostic against human hepato-
cellular carcinoma cells (HepG2). Li et al. (2018) prepared 
NLC-loaded Dox by using the melted ultrasonic dispersion 
method to treat breast cancer. Results revealed an enhanced 
delivery of Dox with potent anticancer effects. Similarly, 
the use of NLCs for the delivery of resveratrol demonstrated 
high photostability and anticancer treatment against human 
breast cancer cells (MCF-7) (Poonia et al. 2019). Kamel 
et al. (2019) investigated the efficacy of curcumin incorpo-
rated in NLCs for photodynamic therapy and showed that 
the nanocarrier enhanced the curcumin penetration into cells 
and improved the anticancer activity in dark/light conditions. 
The use of drugs Dox, gemcitabine (GEM), and vincristine 
(VCR) loaded on NLCs exhibited a high antitumour effect 
against human lymphoma cells compared to single drug-
loaded (Ni et al. 2017). Another study revealed the potent 
delivery of dual drugs Dox and β-elemene within NLCs in 
inhibiting lung tumour cells growth (Cao et al. 2019a).

Although the possible use of NLCs in mRNA COVID-19 
vaccines has gained much interest due to the pandemic with 
rapidly mutating viruses (Verbeke et al. 2021), NLCs are 
able for excellent encapsulation and protection of mRNA 
(Granados-Riveron and Aquino-Jarquin 2021; Papi et al. 
2022). The nucleoside-modified mRNA /NLCs COVID-19 

vaccines developed by BioNTech/Pfizer and Moderna 
encode the viral spike (S) glycoprotein of SARS-CoV-2 
that includes two proline substitutions (K986P and V987P 
mutations) on the one hand, and on the other hand neutral 
phospholipid, cholesterol, a polyethene-glycol (PEG)-lipid, 
and an ionizable cationic lipid; these components have an 
average size of 75 nm (McKay et al. 2020). To enhance the 
storage at ultra-low temperatures while maintaining the sta-
bility of mRNA/NLCs molecules, Schoenmaker et al. (2021) 
mentioned that the subcutaneous injection of BNT162b2/
Comirnaty-Onpattro patisiran vaccine (Pfizer) induced an 
active immunization of 98% after the first dose. Further-
more, the immune response can also be evaluated using 3D 
bioprinting tissues, which could expedite vaccine availability 
faster than in animal models (Papi et al. 2022).

In an attempt to establish more controllable drug deliv-
ery, spherical bilayered nanometer phospholipid vesicles 
dispersed in an aqueous medium are getting more attention. 
According to their structure and modifications, different 
types of these vesicles (liposomes) like ethosomes, trans-
fersomes, and phytosomes are obtained (He et al. 2018). For 
instance, the liposomes can encapsulate the hydrophilic and 
lipophilic drug molecule, which improves the therapeutic 
effect. Many researchers have demonstrated the active role 
of liposomes in target cancer therapy due to their flexibility, 
biocompatibility, and biodegradability (Table 1). Tahover 
et al. (2015) investigated the efficiency of Dox incorporated 
in liposomes and showed potent anticancer activity against 
breast cancer cell line (MCF-7/MX cells). Later, Du et al. 
(2017) developed high sensitivity programmed cell death-1 
antibody based on liposome loaded with Dox and conjugated 
with a hybrid of IRDye800CW and 64Cu. They visualized 
the tumour successfully via NIRF/PET imaging and exhib-
ited potential inhibition of breast cancer. However, enzymes, 
macrophages, pH, and ions could affect drug delivery. Thus, 
using multibranched gold nanoantennas with thermosensi-
tive liposomes loaded with Dox could induce the delivery 
via photothermal actuators (Ou et al. 2016). The authors 
suggested that the low-temperature-sensitive liposome 
showed higher delivery (25 times) than the non-temper-
ature-sensitive liposome (Ou et al. 2016). A recent study 
enhanced the nanocarrier based on liposome-Dox through 
enrobing with triblock copolymers (PLGA-PEG-PLGA) to 
remove breast cancer with minimal side effects (Cao et al. 
2019b). Therefore, Caddeo et al. (2016) evaluated novel 
co-delivery of bioactive compounds, such as quercetin and 
resveratrol, within liposomes for skin lesion therapy. They 
found an excellent restoration of tissue, significant reduc-
tion of oedema, and leukocyte infiltration. The combina-
tion of curcumin and anti-(signal transducer and activator 
of transcription 3) siRNA using cationic liposomes was also 
reported to be effective in co-delivery against skin cancer 
(Jose et al. 2017). Moreover, liposomes proved their potent 
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nanodelivery of theranostic D-alpha-tocopheryl polyeth-
ylene glycol 1000 succinate mono-ester via crossing the 
blood–brain barrier for imaging and treating brain cancer 
(Sonali et al. 2016).

Dendrimers and cyclodextrin

Dendrimers are classified as artificial polymers, defined 
by nanodimension size and have been widely used in drug 
delivery systems (Huang and Wu 2018). They interact with 
drug molecules via two reactions, where the first consists of 
the formation of non-covalent interactions and the second of 
nanoconstruct bonds through covalent interactions (Chauhan 
2018). Generally, poly (amidoamine) (PAMAM) dendrim-
ers are the most used in drug delivery. Zhang et al. (2018) 
investigated their unique features to conjugate and delivered 
the Dox and showed high targeting anticancer activity.

Similarly, Almuqbil et  al. (2020) enhanced the Dox 
delivery by conjugating with 4-succinamic PAMAM via 
enzyme-liable tetrapeptide. They noticed an efficient deliv-
ery of Dox through dendrimers threefold greater than free 
Dox. In another study, Zhu et al. (2014) developed novel 
theranostic nanocarriers based on PAMAM functionalized 
with alpha-tocopheryl succinate, entrapped with AuNPs, 
and conjugated with Dox. The Dox delivery system exhib-
ited faster release of the drug under pH acid with specific 
chemotherapy and computed tomography imaging. Further-
more, the PAMAM was very promising in the co-delivery 
of cisplatin drug conjugated with Dox using an intrave-
nous way. The chemotherapy combination exhibited potent 
anticancer activity against breast cancer cells (MCF-7 and 
MDA-MB-231) (Guo et al. 2019). Therefore, another type 
of dendrimers like poly (propylene imine) has presented 
an excellent use for the delivery of maltose-histidine shell 
(G4HisMal) with promising results in Alzheimer’s disease 
prevention via synapse protection (Aso et al. 2019).

Cyclodextrins are recognized as natural cyclic oligosac-
charides with numerous characteristics and applications. 
They present a unique ability to form hydro-soluble inclu-
sion with many poorly organic and inorganic lipophilic com-
pounds (Shelley and Babu 2018). The ß cyclodextrins are 
commonly used in drug delivery. Previous studies showed 
that ß cyclodextrins-PEG-folic acid nanoparticles loaded 
with Dox are efficient against breast and liver cancer (Hyun 
et al. 2018; Fan et al. 2019). A recent study demonstrated 
that the reducing size of the ß cyclodextrins-Dox nanocar-
riers to 17 nm gave excellent stability, pH sensitivity, and 
enhanced activity for liver cancer therapy (Yang et al. 2019).

Liquid crystalline systems

Finally, the liquid crystalline systems are extensively used 
in drug delivery due to their thermodynamically stability, 

non-toxicity, photo-degradation, and high control release. 
They are categorized as hexagonal, cubic, or lamellar meso-
phases (Aida et al. 2018). Their application is preliminary 
and limited for some chemopreventive treatments by con-
jugating with Celecoxib. In vitro experiments showed that 
cubic liquid crystalline mesophases enhanced the delivery 
and the release of celecoxib against skin cancer (Dante et al. 
2018). Therefore, the lamellar and hexagonal liquid crys-
talline mesophases demonstrated great ability to conjugate 
with the peptide p1025. This peptidic drug is responsible 
for inhibiting the formation of dental biofilm by Strepto-
coccus mutans. The drug delivery system displayed high 
p1025 delivery with enhanced antibiofilm activity (Calixto 
et al. 2017).

Gene delivery

The efficient delivery of the nucleic acid gained attention 
to its target tissue and nanocarriers. Generally, the exog-
enous genetic material must be delivered to the nucleus 
of the targeted cells, where they manufacture the protein 
products of the introduced gene. The ideal vector transfers a 
precise amount of genetic material into a specific cell type 
that achieves the level and duration of transgene expression 
sufficient to correct the defect and be non-immunogenic and 
harmless, allowing expression of the gene product without 
causing toxicity (Shillitoe 2009).

Organic nanocarriers

Polymeric nanocarriers

In materials, sciences offer biodegradable products and 
environmentally friendly, biocompatible, and highly novel 
polymeric systems for targeted delivery. Gene-loaded poly-
meric nanocarriers (PNCs) have been showing as a novel 
promising strategy for the treatment of cancer, as they may 
not only improve the pharmacokinetics of the drug but also 
as an additional response to the permeation and retention 
effects, which improve the accumulation of drugs at the site 
of the tumour during cancer treatment (Kapoor et al. 2015). 
The use of biodegradable PNCs such as chitosan, dextran, 
gelatin, pullulan, and synthetic analogues with sophisticated 
characteristics like guanidinylated bio-reducible polymers 
has emerged a crucial role in gene therapy due to their facile 
synthesis and flexible properties (Rai et al. 2019). As shown 
in Fig. 3, cationic polymers showed high performance for 
non-viral gene delivery systems by conjugating via elec-
trostatic bonds at physiological pH (Samal et al. 2012). In 
addition, biodegradable poly(beta-amino ester) (PBAE) 
nanoparticles were also described as biodegradable cationic 
polymers for treating pediatric central nervous system (CNS) 
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malignancies. The PBAE conjugated with HSVtk suicide 
gene (Plasmid DNA) designed for intracellular gene delivery 
to orthotopic tumour xenografts revealed significant survival 
of mice and excellent therapeutic effects (Choi et al. 2020). 
The PBAE demonstrated exemplary performance in the 
siRNA and miRNA delivery, offering effective nanocarriers 
for pediatric malignant CNS tumours (Kozielski et al. 2014; 
Lopez-Bertoni et al. 2018).

Therefore, the polyethylenimine polymeric particles 
conjugated with extracellular vesicles and complexed with 
siRNAs or antimiRs showed dose-dependent inhibition of 
miRNAs and a decrease in xenographts size after 12 days 
(Zhupanyn et  al. 2020). Zhang et  al. (2019) developed 
hyaluronic acid–modified chitosan nanoparticles labelled 
with cyanine 3 (Cy3) to deliver the gene BCL2 siRNA to 
human lung cancer cells (A549), which induced inhibition 
of cell proliferation via BCL2 downregulation. The curdlan 
polymer loaded with FITC siRNA enhanced the endosomal 
escape and inhibited the Hela and HepG2 cells through DNA 
damage (Su et al. 2020). The alkylation procedure improves 
the STAT3 siRNA delivery to human HepG2 and a murine 
B16 cell line with a high anticancer effect (Erdene-Ochir 
et al. 2020).

Lipid‑based nanocarriers

Lipid-based nanocarriers (NLCs) are efficient in delivering 
vectors for gene therapy. In recent years, LNPs have been 
widely used to encapsulate RNA within particles (Francia 
et al. 2020). Lipid vectors are generated by a combination 
of plasmid DNA and a lipid solution, resulting in a lipo-
some nanocarrier that can be merged with cellular mem-
branes of various types of cells (Mali 2013). The cationic 
solid lipid nanoparticles (SLNPs) have gained attention 

in gene delivery due to their excellent physical stabil-
ity and biocompatibility (Jin and Kim 2014). Positively 
charged nanoparticles are most likely to be captured by 
cells via electrostatic interaction with negatively charged 
cell membranes (Remaut et al. 2014). However, cationic 
NLCs should be able to complex RNA similarly to protect 
RNA from degradation by complexation and condensa-
tion (Démoulins et al. 2016). Recent research confirmed 
that lipoplexes are mainly associated with the periphery of 
tumour spheroids, possibly resulting in their positive sur-
face charge, leading to fusion with the cells at the spheroid 
surface or aggregation (Niora et al. 2020).

Over the past two decades, optimizing NLC formulation 
for nucleic acid delivery has led to establishing a body of 
knowledge, which resulted in the first RNA interference 
therapy using NLC technology (Cullis and Hope 2017). 
Onpattro® Apolipoprotein E is among proteins that can be 
adsorbed at the surface of NLCs, allowing specific target-
ing for hepatocytes. In addition, this work demonstrated 
the possible use of NLCs for biomolecular corona target-
ing (Francia et al. 2020).

In recent times, various therapeutic agents targeting 
several types of diseases have reached different stages 
of clinical trials. The NLCs were developed by Alnylam 
Pharmaceuticals Company using enhanced stabilization 
chemistry-GalNAc conjugate delivery technology. For 
example, ALN-TTRsc (targeting TTR for the treatment 
of transthyretin-mediated amyloidosis) and ALN-PCS02 
(targeting proprotein convertase subtilisin/Kexin type 9 
(PCSK9) for the treatment of hypercholesterolemia) are 
being used in clinical trials. At the same time, ALN-
TTR02 is known as newly published clinical NLCs for 
the sustained reduction of serum Transthyrétine protein 
(96%) (Fitzgerald et al. 2014).

Fig. 3   Design of polymeric gene delivery process. Polymeric nano-
carriers for DNA and siRNA delivery: (1) polyplexes are formed by 
combining anionic DNA and siRNA with cationic polymers. (2) cel-
lular uptake of polyplexes via various endocytic routes, (3) enclosure 
and subsequent release of polyplexes from endo-lysosomal compart-

ments, (4) release of free DNA and siRNA from polyplexes leaving 
behind polymer remnants, and (5) transfer of DNA to the nucleus 
for expression by nuclear membrane transport proteins and binding 
of siRNA by the RNA-induced silencing complex (RISC). Copyright 
2019, MDPI and ACS Style. (Rai et al. 2019)
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Inorganic nanoparticles

Inorganic nanomaterials have recently emerged as robust 
and versatile nanocarriers for efficient gene delivery appli-
cations. Moreover, inorganic nanomaterials offer an attrac-
tive set for practical applications, including scalability in 
synthesis and simple functionalization with silane or thiol 
groups leading to enhance interaction with biomolecules 
via chemical and thermal stability (Markman et al. 2013). 
Generally, there are three strategies for modifying inorganic 
nanoparticles for gene delivery: (i) the use of inorganic nan-
oparticles positively charged to form a complex with the 
negatively charged genetic material, (ii) the direct conjuga-
tion of the genetic material on the inorganic nanoparticles 
with a reactive linker, and (iii) the use of a cationic amphi-
philic polymer derived from the nanoparticles to induce the 
complexation of the inorganic nanoparticles and the genetic 
material (Loh et al. 2016).

Gold nanoparticles

AuNPs have been widely studied as nanocarriers of mul-
tifunctional genes due to their facile synthesis, excellent 
biocompatibility, well-defined surface chemistry, and easy 
molecular imaging (Yeo et al. 2018). Peng et al. (2016) dem-
onstrated AuNPs for simultaneous gene and antimicrobial 
therapy by conjugating antimicrobial peptides with cati-
onic AuNPs for gene delivery to mesenchymal stem cells. 
The typical methodology for the AuNP-based gene deliv-
ery is the functionalization on the surface of AuNPs with 
positively charged molecules, such as amino acids, cationic 
peptides, and molecules containing tertiary amines (Ye and 
Loh 2013; Ye et al. 2015). AuNPs conjugated with oligo-
nucleotides have proved their practical application in gene 
therapy (Mendes et al. 2017). AuNPs functionalized with an 
antisense oligonucleotide against BCR-ABL mRNA, which 
is translated to give active tyrosine kinase, induced an effec-
tive silencing and increased in K562 cell death (leukemo-
genesis) (Vinhas et al. 2017).

Moreover, the Au-nanobeacons demonstrated their effi-
ciency for in vivo silencing fli-enhanced green fluorescence 
protein (fli-EGFP) transgenic zebrafish embryos (Cordeiro 
et al. 2017). While Abrica-González et al. (2019) functional-
ized AuNPs with chitosan oligosaccharide for higher deliv-
ery of DNA transfection in HEK-293 cells.

Diverse AuNPs have been developed for gene delivery, 
such as mixed monolayer-protected AuNPs, complexes of 
polymer and AuNPs, double-stranded DNA-functionalized 
AuNPs, and single-stranded DNA-functionalized AuNPs 
(Agbasi-Porter et al. 2006; Rosi et al. 2006). These nano-
carriers demonstrated greater gene expression, higher bind-
ing affinity for target DNA, higher nuclease immunity, and 

lower cellular toxicity than antisense DNA delivered by 
lipofectamine or cytofectin (Loh et al. 2016).

Iron nanoparticles

Iron oxide nanoparticles (IO NPs) and superparamagnetic 
iron oxide nanoparticles (SPIO NPs) present an essential 
type of inorganic nanoparticles used in gene delivery due to 
their low toxicity, efficient biodegradability, low cost of pro-
duction, and ease of surface modification (Liu et al. 2011). 
Furthermore, magnetic nanoparticles can ameliorate gene 
transfection of viral vectors and non-viral vectors (McBain 
et al. 2008). The gene delivery vehicle was constructed with 
a core of IO NPs and a shell of alkylated polyethyleneimine 
where the siRNA is attached to IO NPs, and the delivery 
to targeted cells has been achieved through the use of high 
field/high gradient magnets (Liu et al. 2011). Results showed 
an excellent efficiency of the siRNA-loaded nanocarriers 
for the downregulation of luciferase (fluc-4T1). In addition, 
Shakil et al. (2019) successfully conducted IO NPs as thera-
nostic agents for breast cancer gene therapy. It was demon-
strated that the efficacy of DNA transfer increases by using 
a magnetic field leading to an increase in the delivery into 
the cellular compartments. Another study (Jin et al. 2019) 
proved that IO NPs could potentiate the gene silencing effect 
via targeting B-cell lymphoma-2 (BCL2) in Ca9-22 oral can-
cer cells. Interestingly, SPIO NPs delivered siRNA against 
HIV‐1 nef (anti‐nef siRNA) into two cell lines, HEK293 
and macrophage RAW 264.7 (Kamalzare et al. 2019). They 
showed that the coating of nanocarriers with carboxymethyl 
dextran improves the uptake of siRNA into both cells and 
reduces the expression of HIV-1 nef.

Silica nanoparticles

Silica-based vectors have deflected some attention from viral 
and non-viral vectors due to the presence of the silanol group 
on the surface of nanoparticles, which provide a positive 
charge for functionalization with nucleic acids (Kameg-
awa et al. 2018). However, the silanol groups can interact 
with cell membrane components leading to membranoly-
sis (Narayan et al. 2018). Silica-based vectors with smaller 
molecular weight (Namgung et al. 2011) or with modified 
hyaluronic (Li et al. 2016a, b) achieved excellent results in 
transfection. The application of silica nanoparticles in gene 
delivery systems using in vitro cellular models facilitated the 
integration of genetic material and raised the sedimentation 
of nanoparticles (Carvalho et al. 2020). At the same time, 
the functionalization of silica nanoparticles with 3-amino-
propyltrimethoxysilane leads to binding electrostatically 
with plasmid DNA to deliver in vitro models like COS-7 
and 293 T cell lines (Bhakta et al. 2011). The combination of 
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silica with other materials, like polymers, lipids, or inorganic 
particles, improved its nanocarrier characteristics.

Carbon nanotubes

Carbon nanotubes (CNTs) have shown promising deliv-
ery of vectors due to their high aspect ratio and capacity to 
translocate through plasma membranes (Wen et al. 2014). 
In addition, their nanoneedle properties allow their diffu-
sion into the cytosol and protect the delivered gene from 
enzyme degradation (Mu et al. 2009). Based on these fea-
tures, CNTs with different diameters have been coated with 
polyallylamine leading to a positively charged nanocarrier 
to conjugate with GFP plasmid, while results showed potent 
delivery to 3T3 cells (Cifuentes-Rius et al. 2017).

Moreover, Ohta et al. (2016) developed a nanocarrier sys-
tem based on single-walled CNTs designed of polycationic 
and amphiphilic peptides modified by PEG. The cellular 
uptake of CNTs-peptide-PEG by A549 human lung adeno-
carcinoma epithelial cells showed the potential functional 
complex as an attractive candidate for anticancer activity. 
Similarly, Taghavi et al. (2016) fabricated single-walled 
CNTs loaded with PEG and polyethylenimine (PEI) modi-
fied by alkylcarboxylation to increase lipophilicity for vector 
delivery. Results demonstrated that the nanocarrier could 
condense DNA into a size of 150 nm and improve the gene 
delivery of sh-RNA to MCF7 cells. Another study enhanced 
the co-delivery by using single-walled CNTs-PEG-PEI con-
jugated with Bcl-xL-specific shRNA and shallow content 
of Dox for an effective and simultaneous intrinsic apoptotic 
against AGS and L929 cancer cells (Taghavi et al. 2017).

Protein‑based nanoparticles

Protein-based nanoparticles (PNPs) are getting attention 
in gene delivery vectors because of their biocompatibility, 
biodegradability, minimal toxicity, and amphiphilic nature 
(Lohcharoenkal et al. 2014). Many different proteins are 
used for gene delivery, such as ferritin, gelatin, albumin, heat 
shock protein 16.5 (Hsp 16.5), and Silk (Riley and Vermer-
ris 2017; Faria et al. 2018). Ferritin is the most used PNPs 
for chemotherapeutics delivery where the encapsulation 
depends on siRNA sequence and high intrinsic immune-
activated T- and B-cells (Li et al. 2016a, b, c). In addition, 
albumin was often utilized to assist other molecules in deliv-
ering their gene cargo and is usually obtained from bovine 
serum albumin or human serum albumin (Lohcharoenkal 
et al. 2014). Even Karimi et al. (2013) revealed the potential 
co-delivery of genetic material by using nanocarrier-based 
albumin-chitosan. Similarly, Kumari et al. (2018) enhanced 
the albumin properties through binding with a natural oli-
gosaccharide, oligochitosan, for an efficient non-viral gene 
delivery vector. Results showed the protection of plasmid 

DNA from enzymes with good stability and high transfect 
ability.

Different deposit challenges 
of nanocarriersS

Over the past few decades, the global efforts for cancer treat-
ment have increased by developing plenty of active targets 
(Morales-Cruz et al. 2019). Thus, nanomedicine established 
multiple types of nanosystems to enhance cancer therapy by 
facilitating the extravasation of nanocarriers into the targeted 
cells (El-Say and El-Sawy 2017). Metallic nanoparticles, 
especially AuNPs, are broadly used in drug and gene deliv-
ery systems due to their biocompatibility, straightforward 
functionalization, and variety in shapes and size (Kumar 
et al. 2019; Ding et al. 2020). Notably, the AuNPs can con-
jugate surfaces with different drug molecules, peptides, 
and vectors simultaneously (Singh et al. 2018). In addition, 
cationic lipids as liposome and polymer nanoparticles have 
shown an exciting transport of hydrophobic and hydrophilic 
molecules and intracellular nucleic acid delivery due to their 
biodegradability, low toxicity, and high toxicity tissue pen-
etration in cancer therapy, and large-scale production (Pala 
et al. 2020). However, their low targeting capability and 
low storage stability lead to moderate crystallization after 
an extended period, and non-degradable polymers cause 
allergic reactions, limiting their applications in clinical tri-
als (Garcia-Pinel et al. 2019; Rai et al. 2019). Therefore, 
protein-based nanoparticles revealed significant delivery of 
vectors by reducing the immune response and protecting 
gene material from enzymatic degradation, but they limited 
transfection efficiency and required more in vivo studies 
(Gaber et al. 2017).

Conclusion

The greatest challenge in nanodelivery is selecting the appro-
priate nanocarriers for targeted sites, whatever tumoural or 
viral cells. In this regard, AuNPs offer clear advantages as 
a nanocarrier for drug and gene delivery by increasing the 
retention time, improving the therapeutic effects, minimiz-
ing the side effects, protecting the delivery molecule, and 
holding high specific targeting. Nonetheless, it is essential 
to understand the involving mechanisms in the delivery to 
avoid any related circumstances. In addition, other promis-
ing nanocarriers, including lipid-based and polymeric nano-
particles, demonstrated another aspect of nanodelivery in 
the future. However, the challenge remains to precise the 
adequate formula for better material release. Furthermore, 
it appears that these nanocarriers hold wide-open prospects 
in nanomedicine.
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