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ABSTRACT
◥

Purpose: Gene fusions involving R-spondin (RSPOfp) and
RNF43mutations have been shown to driveWnt-dependent tumor
initiation in colorectal cancer. Herein, we aimed to characterize the
molecular features of RSPOfp/RNF43 mutated (mut) compared
with wild-type (WT) colorectal cancers to gain insights into poten-
tial rationales for therapeutic strategies.

Experimental Design: A discovery cohort was classified for
RSPOfp/RNF43 status using DNA/RNA sequencing and IHC. An
independent cohort was used to validate our findings.

Results: The discovery cohort consisted of 7,245 colorectal
cancer samples. RSPOfp and RNF43 mutations were detected in
1.3% (n ¼ 94) and 6.1% (n ¼ 443) of cases. We found 5 RSPO
fusion events that had not previously been reported (e.g.,
IFNGR1–RSPO3). RNF43-mut tumors were associated with
right-sided primary tumors. No RSPOfp tumors had RNF43
mutations. In comparison with WT colorectal cancers, RSPOfp

tumors were characterized by a higher frequency of BRAF,
BMPR1A, and SMAD4 mutations. APC mutations were observed
in only a minority of RSPOfp-positive compared with WT cases
(4.4% vs. 81.4%). Regarding RNF43 mutations, a higher rate of
KMT2D and BRAF mutations were detectable compared with
WT samples. Although RNF43 mutations were associated with a
microsatellite instability (MSI-H)/mismatch repair deficiency
(dMMR) phenotype (64.3%), and a tumor mutation burden
≥10 mt/Mb (65.8%), RSPOfp was not associated with MSI-H/
dMMR. The validation cohort replicated our genetic findings.

Conclusions: This is the largest series of RSPOfp/RNF43-mut
colorectal cancers reported to date. Comprehensive molecular
analyses asserted the unique molecular landscape associated with
RSPO/RNF43 and suggested potential alternative strategies to
overcome the low clinical impact of Wnt-targeted agents and
immunotherapy.

Introduction
Colorectal cancer remains one of themajor causes of cancer-specific

morbidity and mortality worldwide (1, 2). Despite therapeutic
improvements, the prognosis of patients with metastatic disease
remains poor with a 5-year overall survival (OS) rate of approximately
14% (1). Thus, new therapeutic strategies are urgently needed to
improve survival.

Activation of the Wnt/b-catenin pathway, mostly facilitated by
genetic mutations encoding for the adenomatous polyposis coli (APC)

protein, can initiate tumorigenesis in colorectal cancer (3, 4). In vitro
experiments have determined that the restoration of functional APC
leads to tumor regression even in colorectal cancer cells with additional
oncogenic mutations (i.e., TP53 or KRAS; ref. 5). Therefore, Wnt/
b-catenin signaling represents a major oncogenic driver in colorectal
cancer. Over the last years, different genetic alterations activating the
Wnt signaling pathway have been discovered. Seshagiri and collea-
gues (6) described previously chromosomal rearrangements involving
members of the R-spondin family (RSPO) in colorectal cancer for the
first time, which can be observed in up to 8% of colorectal cancers.
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Studies suggest that such RSPO translocations alone are sufficient to
initiate carcinogenesis (7), as are mutations in RNF43, a negative
feedback regulator of the Wnt/b-catenin pathway. RSPO molecules
bind to the G-protein coupled receptor (LGR) family (LGR4/5/6) that
contains a leucine-rich repeat segment resulting in an upregulation of
the Wnt/b-catenin pathway by sequestering the E3 ubiquitin ligase
RNF43 (8). Mutations in RNF43 have been described previously in a
variety of malignancies, including colorectal cancer and gastric cancer,
with a frequency of up to 20% (9–15). Interestingly, the frequency of
RNF43 mutations was noted to be even higher in microsatellite-
unstable cancers (11). Most of the loss-of-function (LOF) mutations
in RNF43 have been determined to lead to an increased cell surface
abundance of theWnt receptor Frizzled, rendering the cells dependent
upon Wnt/b-catenin signaling (16). Therefore, these cells are sug-
gested to be more sensitive to inhibition of the porcupine homolog
(PORCN) protein (16), a posttranslational modificator of the Wnt
protein (17).

RSPOfp-positive/RNF43-mutated (mut) tumors represent a distinct
genetic subgroup of colorectal cancers. However, gene alterations co-
occurring in this subgroup are largely unknown. Thus, we set up this
study to define the molecular profile of RSPO/RNF43-positive colo-
rectal cancer that may provide important insights howWnt/b-catenin
pathway deregulation drives tumor growth in colorectal cancer. For
this, we performed extensive genomic and transcriptomic sequencing,
as well as IHC, to comparemolecular profiles ofRSPO/RNF43-positive
versus wild-type (WT) cases, and detected clusters of gene mutation
associations as well as several relations with microsatellite instability
(MSI-H) and tumor mutation burden (TMB).

Materials and Methods
Sample characterization of the discovery cohort

Colorectal carcinoma specimens of 7,245 patients were submitted to
Caris Life Sciences for genomic profiling. These cases were retrospec-
tively reviewed, and gene sequencing, amplification, and protein
expression data were analyzed. The pathology report was included
with the specimens and hematoxylin and eosin slideswere prepared for
each tumor sample to be reviewed by board-certified pathologists to
confirm the diagnosis of colorectal cancer. Tumors with a histologic

diagnosis that was not concordant with the diagnosis of colorectal
cancer were excluded from this analysis. During the recruitment
period, tests have varied because there were different requests by the
treating physicians and the testing technologies continuously evolved
over time. The next-generation sequencing (NGS) platform for tumors
tested in 2015 or earlier used the MiSeq platform (45 genes included)
whereas those tested after 2015 were sequenced with the NextSeq
platform (592 genes included). In keeping with 45 CFR 46.101(b), this
study was performed using retrospective, de-identified clinical data.
Therefore, this study is considered IRB exempt and no patient consent
was necessary from the subjects. Thus, only basic demographic
information was available. Patients were stratified into RSPOfp or
RNF43-positive and negative cases. RNF43 mutations included only
pathogenic or presumed pathogenic mutations. Tumors with benign
RNF43 mutations, presumed benign RNF43 mutations, or RNF43
variants of unknown significance were categorized as RNF43-WT.
Germline testing could not be performed because of the lack of access
to germline DNA.

Samples of the validation cohort
A total of 816 cases of colorectal cancers were recruited between

January 2016 and December 2017 at the Singapore General Hospital,
Singapore. A local Ethics Committee approval was obtained. Molec-
ular profiling was analyzed for RNF43 mutations (excluding the
specific G569fs variant) and co-mutations in Wnt and MEK signaling
pathways as well as MSI-H or mismatch repair deficiency (dMMR;
MSI-H/dMMR). RSPO fusions were not characterized.

Analyses performed
IHC was performed on 1,258 tumor samples on formalin-fixed

paraffin-embedded (FFPE) sections on glass slides for the discovery
cohort. Four micrometer sections were mounted on slides and stained
using an automated system (Benchmark, Ventana Medical Systems;
Autostainer, DAKO) according to the manufacturer’s instructions,
and were optimized and validated per CLIA/CAP and ISO require-
ments. All proteins of interest were evaluated on tumor cells. An
intensity score (0¼ no staining; 1þ¼ weak staining; 2þ¼moderate
staining; 3þ ¼ strong staining) and a proportion score to determine
the percentage of cells staining positive (0%–100%) was used. The
primary antibody used to detect PD-L1 expression was SP142 (Spring
Biosciences). The staining was deemed positive if its intensity on the
membrane of the tumor cells was ≥2þ and the percentage of positively
stained cells was ≥5%. Results were classified as positive or negative by
using previously defined thresholds specific to each marker, based on
published clinical literature that associates biomarker status to specific
treatment response. The primary antibody used for PD-L1 testing was
MRQ-22 (Ventana) and staining was scored as positive if the number
of PD-L1–positive cells was >1 cell per high power field. A single
board-certified pathologist independently evaluated immunohisto-
chemical results.

NGS was performed on FFPE tumor samples using the NextSeq
platform (Illumina, Inc.). A custom-designed SureSelect XT assay was
used to enrich 592 whole-gene targets (Agilent Technologies). All
variants were detected with >99% confidence based on allele frequency
and amplicon coverage with an average sequencing depth of coverage
of >500 and with an analytic sensitivity of 5%. Genetic variants
identified were interpreted by board-certified molecular geneticists
and categorized as “pathogenic,” “presumed pathogenic,” “variant of
unknown significance,” “presumed benign,” or “benign,” according to
the American College of Medical Genetics and Genomics (ACMG)
standards. When assessing mutation frequencies of individual genes,

Translational Relevance

To provide meaningful rationales to develop new impactful
targeted approaches for patients with colorectal cancer, we com-
prehensively described previously the mutational landscape of
R-spondin fusion proteins (RSPOfp) and RNF43mutations, which
are known to induce Wnt signaling. Using a cohort of 7,245
colorectal cancer samples, we could identify five new RSPO rear-
rangements and could describe the unique molecular portrait of
RSPOfp and RNF43 mutations in colorectal cancers. The genetic
profile of RSPOfp-positive tumors is similar to RNF43-mutated
colorectal cancer and is characterized by a higher frequency of
BRAF, SMAD4, and KMT2D mutations in comparison with
RSPOfp/RNF43-negative cases. Of note, a subgroup of RNF43-
mutated tumors is associated with microsatellite instability. Our
data could support clinical and preclinical research developing
treatments targeting the Wnt pathway and could also provide a
rationale for combinational approaches to overcome primary
resistance to immunotherapy in colorectal cancer.
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“pathogenic,” and “presumed pathogenic,” were defined as mutations
whereas “benign” or “presumed benign” variants and “variants of
unknown significance” were defined as WT.

A combination of multiple test platforms was used to determine the
MSI orMMRstatus of the tumors profiled, including fragment analysis
(Promega), IHC [MLH1, M1 antibody; MSH2, G2191129 antibody;
MSH6, 44 antibody; and PMS2, EPR3947 antibody (Ventana Medical
Systems, Inc.)], and NGS (for tumors tested with NextSeq platform,
7,000 target microsatellite loci were examined and compared with the
reference genome hg19 from the University of California).

Statistical analysis
Statistical comparisons were performed with the x2 test and the

Mann–WhitneyU test when appropriate. A two-sided P value of <0.05
was considered as statistically significant. P values were further
corrected for multiple comparisons using the Benjamini–Hochberg
method to avoid type I error, and an adjusted P value (q value) of <0.05
was considered as a significant difference.

Real-world OS information was obtained from insurance claims’
data in an updated larger cohort (incorporating the initially described
discovery cohort) and calculated from first specimen collection to last
contact. Kaplan–Meier estimates were calculated for the molecularly
defined patient cohorts.

Availability of data and materials
The deidentified sequencing data are owned by Caris Life Sciences.

The datasets generated during and analyzed during the current study
are available from the authors upon reasonable request and with
permission of Caris Life Sciences. Qualified researchers may contact
the corresponding author with their request.

Results
Patients’ characteristics and prognosis

In total, 7,245 patients with colorectal cancer were tested for
alterations in RSPO and RNF43 (see Table 1). Of those, 443 (6.1%)
and 94 patients (1.3%) showed an RNF43 mutation or an RSPOfp,
respectively. RSPO3 fusions were more frequently detected than
RSPO2 translocations (89 vs. 5 cases). Patients with an RSPOfp were
younger than patients harboring an RNF43mutation (61 vs. 69 years,
P ¼ 0.0003). No difference in distribution by gender was noted
between RSPOfp and WT cases (P ¼ n.s.). For RNF43 mutations, a
significant female predominance was observed compared with male
patients (P < 0.001). Furthermore, we found a higher percentage of

cases with RNF43mutations in right-sided than in left-sided colorectal
cancer (14.3 vs. 3.1%, P < 0.001). However, no site-specific difference
was observed for RSPOfp.

The most frequently detected RSPOfp was the PTPRK–RSPO3
fusion protein (n¼ 89). Of note, we detected 5 fusion partners (CPSF1,
CDH17, MATN2, and ADAM9) that had not been described before
(see Supplementary Table S1). The most frequently detected point
mutations in RNF43 were G659fs, followed by R117fs and P660fs (see
Supplementary Table S2).

Until now, the prognostic relevance of RNF43 mutations and
RSPOfp remains largely unclear. Therefore, we performed survival
analyses using real-world data obtained from insurance claims.
Patients with colorectal cancer harboring an RNF43 mutation or
an RSPOfp are associated with a poor survival compared with WT
cases (Fig. 1A and B). Moreover, in the MSS sub-cohort patients
harboring RSPOfp or RNF43 mutations were characterized by poor
survival [RSPOfp vs. WT: HR, 0.61, 95% confidence interval (CI),
0.47–0.79, P < 0.001; RNF43-mut vs. WT: HR, 0.65; 95% CI,
0.57–0.75; P < 0.001].

Molecular landscape of RSPO fusion proteins and RNF43
mutations

RSPOfp-positive colorectal cancers were associated with a higher
rate of co-incidentmutations inBRAF (35.9 vs. 6.3%), SMAD4 (30.0 vs.
13.5%), BMPR1A (5.4 vs. 0.2%), AKT1 (3.3 vs. 0.4%), and ERBB3
(5.4 vs. 1.6%, all q < 0.05) compared with WT cases (Fig. 2A).

Compared with RNF43-mut cancers, co-incident mutations in
TP53 (79.1%), KRAS (53.3%), and SMAD4 (30.0%) occurred more
frequently in RSPOfp-positive cancers (RNF43: 54.1%, 18.8%, and
15.3%, respectively; all q < 0.05). Importantly, in RSPOfp-positive
colorectal cancers we discovered no concomitantRNF43mutations. In
contrast, tumors containing RNF43 mutations exhibited a different
molecular landscape as compared with RSPOfp-positive tumors:
ARID1A (75.6% vs. 35.7%), ASXL1 (65.8 vs. 6.3%), BRAF (53.6 vs.
35.9%), KMT2D (43.3 vs. 2.5%), and PTEN (18.2 vs. 4.3%) gene
alterations were more frequently detected (all q < 0.05). Of note, APC
mutations were observed in 19.3% of RNF43-mut cases, in 4.4% of
RSPOfp-positive tumors and in 81.4% of WT cases (all q < 0.05).
Regarding BRAFmutations, themost prevalent genetic variant was the
V600E mutation (78.8%).

Copy-number alterations (CNA) in MYC and AKT2 genes were
differently distributed between RSPOfp-positive tumors compared
with RNF43-mut tumors (4.4 vs. 1.1%, and 2.2 vs. 0.0%, respectively;
all q < 0.05). Among others, CNAs in CDX2 gene were found more
often in WT cases (11.3%) than in RSPOfp-positive (3.3%) or RNF43-
mut (2.3%) samples (all q < 0.05; Fig. 2B).

Validation cohort
An independent validation cohort was used to confirm our findings

in terms of RNF43 mutations. The retrospective use of a NGS panel
without analyses on fusions prohibited further validation of the
findings generated in the RSPOfp subset of the discovery cohort.
The validation cohort consisted of 816 patients with colorectal
cancer (Table 2). This cohort was obtained from a time period between
2016 and 2017 and was retrospectively analyzed. The data were mined
for molecular status of RNF43 and other mutations, including
APC, KRAS, BRAF, NRAS, and other genes. MSI-H/dMMR was also
included in this analysis. In line with the findings from our discovery
cohort, the incidence of RNF43mutations was similar (7.97% vs. 6.1%,
P ¼ n.s.). Moreover, the co-activation of Wnt and MAPK signaling
(including, APC, KRAS, BRAF, and NRAS) was strongly associated

Table 1. Characteristics of the discovery cohort.

Characteristic

RSPO
fusion
positive

RNF43-
mut

RNF43 and
RSPO
wild-type

Total, no. (%) 94 (1.3) 443 (6.1) 6,708 (92.6)
Age, y Median age 61 69 62

Range 36–90 18–93 15–98
Sex, no. (%) Female 46 (49) 263 (59) 2,922 (44)

Male 48 (51) 180 (41) 3,786 (56)
Tumor location, no. (%) Left 23 (25) 66 (15) 2,156 (32)

Rectal 29 (31) 39 (9) 1,640 (24)
Right 24 (26) 232 (52) 1,612 (24)
Transverse 8 (9) 46 (10) 293 (4)
Unclear 10 (11) 60 (13.5) 1,007 (15)

Molecular Analysis of RSPO/RNF43-Positive Colorectal Cancer
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with RNF43 mutations (in total: 88%); 12% had no detectable coin-
cident mutations. Of the RNF43-mut cases, 11% showed an MSI-H/
dMMR status, 64% showed an MSS/pMMR status, whereas 25% had
no data for MSI-H/dMMR status available.

RNF43 mutations are associated with MSI-H
Next, we analyzed biomarkers associated with a predictive value for

response to immune checkpoint inhibitors. In samples harboring an
RSPO fusions, no individual with an MSI-H/dMMR genotype was
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Figure 1.

Real-world overall survival stratified by RSPO/RNF43 status.A, Comparison of RSPOfp versus RNF43/RSPOfp-WTpatients (RSPOfp vs.WT: HR, 0.62; 95% CI, 0.48–
0.81; P < 0.001). B, Comparison of RNF43-mut versus RNF43/RSPOfp-WT patients (HR, 0.86; 95% CI, 0.78–0.94; P < 0.001).

Figure 2.

Molecular landscape of the discovery cohort.A,Comparison of the genetic landscape ofRNF43-mut,RSPOfp, andRNF43/RSPOfp-WT tumors. Shown aremutations
that are significantly different between RSPOfp and RNF43-mut tumors (all q < 0.05; ns: P < 0.05, but q < 0.05 was not reached). B, Copy-number alterations
in RNF43-mut, RSPOfp, and RNF43/RSPO-WT tumors. � , q < 0.05; �� , q < 0.01; and ��� , q < 0.001. C, MSI, TMB, and PDL-1 status in RNF43-mut, RSPOfp and
RNF43/RSPOfp-WT tumors. None of the RSPOfp patients showed a TMB >10 mt/Mb or an MSI-H/dMMR status.� , q < 0.05; ��, q < 0.01; and ��� , q < 0.001.

Seeber et al.

Clin Cancer Res; 28(9) May 1, 2022 CLINICAL CANCER RESEARCH1866



detected (0.0%), compared with an MSI-H/dMMR rate of 64.3% in
RNF43-mut samples (q < 0.001), and 2.3% in WT tumors (q < 0.001;
Fig. 2C). Moreover, in RSPOfp-positive tumors no case presented
with a TMB of ≥10 mt/Mb. However, in RNF43-mut samples, 65.8%
had a TMB ≥10 mt/Mb (q < 0.001), which was also higher than for
WT cases (4.8%, q < 0.001). Positive staining for PD-L1 was detected
in 15.7% of RSPOfp-positive specimens, 19.1% of RNF43-mut sam-
ples, and 2.7% of WT cases (q < 0.001 for RSPOfp vs. WT, and
RNF43-mut vs. WT).

BecauseMSI-H/dMMR statusmay trigger secondarymutations, we
performed a subgroup analysis in MSS cases. A higher prevalence of
females and right-sided primary locations in theMSS subset of patients
harboring an RNF43 mutation was observed. Comparing the molec-
ular profile of the RSPOfp-positive and the MSS/RNF43-mut cases,
no differences in the frequency of TP53 mutations (79.1% vs. 85.2%,
P ¼ n.s.) and BRAF mutations (35.9% vs. 43.7%, P ¼ n.s.) were
observed. However, there were more KRASmutations in the RSPOfp-
positive group than in the MSS/RNF43-mut group (53.3% vs. 24.2%,
q < 0.001). Moreover, the rate of APC mutations in the MSS/RNF43-
mut subgroup was only 11.5%, compared with 81.6% in MSS/WT
cases (q < 0.01; Fig. 3A). Interestingly, in the MSS/RNF43-mut
subgroup, ARID1A and ASXL1 mutations were identified in 22.7%
and 2.2%, respectively, compared with 75.6% and 65.8% in the overall
RNF43-mut cohort.

In the MSS/RNF43-mut subgroup (n ¼ 158) and MSS/RNF43/
RSPOfp WT cases (n ¼ 6,533), only 6.4% of the RNF43-mut samples
and 2.6% of the WT samples had a TMB ≥10 mt/Mb (q < 0.001).
Furthermore, PD-L1–positive staining was observed in 12.9% of
the MSS/RNF43-mut subgroup and in 2.4% of the MSS WT samples
(q < 0.001; Fig. 3B). In terms of CNA within the MSS subgroup, we
observed more frequent CDX2 CNAs within the RNF43/RSPO WT
(11%) compared with RSPOfp-positive (3%) and RNF43-mut (6%)
cancers (all, q<0.05). In contrast, CNAs in TFEB,AKT2,HNRNPA2B1
as well as in HSP90AB1 were frequently less detected in RNF43/RSPO
WT compared with RNF43/RSPO-positive tumors (all, q < 0.05;
Fig. 3C).

Regarding the MSI-H/dMMR subcohort, it revealed that patients
harboring RNF43 mutations are characterized by increased frequen-
cies of BRAF, KMT2D,HNF1A, and BRCA2mutations (all, q < 0.001).
In contrast, a lower prevalence of APC, KRAS, CTNNB1, and PIK3CA
mutations compared with RNF43 WT patients was observed (all,
q < 0.05; Supplementary Fig. S1).

Because literature is conflicting regarding the functional loss of the
specific RNF43 G659fs variant we evaluated the subset of RNF43
G659fs patients. Of note, virtually all of these cases showed an
MSI-H/dMMR (99.2%) and a high TMB (99.6%) status. A comparison

of RNF43 non-G569fs variants and RNF43/RSPO WT cases is
displayed in Supplementary Fig. S2.

Discussion
Inappropriate activation of Wnt/b-catenin signaling is a key onco-

genic event in a significant subset of colorectal cancers (18) and is
associated with tumor cell proliferation and drug resistance (19, 20).
Although the most frequent LOF mutation in the Wnt/b-catenin
pathway, namely APC, has been very well studied (21), genetic
alterations in the Wnt receptor complex emerged only recently as a
potential new therapeutic target (21, 22). LOFmutations inRNF43 and
RSPO fusion proteins were described previously to occur in a small
subgroup of colorectal cancers (15, 23, 24). However, the molecular
landscape of these genetic alterations in colorectal cancer remains
previously unexplored. Herein, we studied the molecular profile of
patients with colorectal cancer harboring an RNF43 mutation or an
RSPOfp. Our study revealed that the molecular landscape of RNF43-
mut colorectal cancer substantially differs from the genetic portrait of
RSPOfp colorectal cancer. In fact, a higher rate of MSI-H/dMMR was
observed in RNF43-mut compared with RSPOfp-positive tumors. This
is in line with findings previously reported in the literature, thatRNF43
mutations are more frequently encountered in patients with MSI-H/
dMMR cancers (15), both in sporadic cases, and, to a lesser extent, in
patients with a Lynch syndrome (25). However, when focusing on the
subgroup of MSS/RNF43-mut tumors, the genetic profile exhibited
greater similarity to that observed in RSPOfp-positive tumors. From
this first perspective this finding might indicate that a part of RNF43
mutations might be a secondary mutation effect triggered by MSI.
However, when analyzing the subset of MSI-H patients, distinct
differences of the molecular landscape according to RNF43 status
were observed. Hence, it remains elusive to which extent the genomic
landscape is altered either due to MSI-H/dMMR status or RNF43
mutations.

Up to now, conflicting data exist regarding the pathogenicity of
specific RNF43 mutations. In 2019, Tu and colleagues (26) reported
that the G659fs mutation does not seem to have an impact on
carcinogenesis and seems to be fully functional. In contrast, two
studies published in 2020were not able to corroborate thisfinding (27).
In particular, Yu and colleagues (16) could show that the G659fs
mutation induces LOF. The current uncertainty whether the G659fs
mutation represents a LOF is also reflected in our analyzed cohorts. In
the discovery cohort, the G659fs mutational variant was considered
pathogenic whereas this specificmutationwas excluded in the analyses
of the validation cohort. Of note, we observed that virtually all patients
harboring an RNF43 G659fs mutation were characterized by an MSI-
H/dMMR and a TMB-high phenotype. Up to now, the impact of the
G659fs mutation on WNT activation remains elusive. Therefore,
further mechanistic studies are highly desirable to unravel the path-
ogenic interplay between MSI-H/dMMR and different RNF43
mutations.

To date, only limited data are available regarding prognostic
significance of the respective alterations. Matsumoto and collea-
gues (28) reported that RNF43 mutations are associated with an
aggressive phenotype in BRAF-mut colorectal cancer leading to poor
outcome. In line with this finding, survival analysis of the discovery
cohort showed that patients harboring RNF43 mutations are charac-
terized by inferior overall survival. In addition, for the first time we
observed that RSPO fusions represent a poor prognostic factor.

Anatomic location, or “sidedness,” of colorectal cancer has
emerged over the past several years as an important predictive and

Table 2. Characteristics of the validation cohort.

Characteristics No. (%)

Colorectal cancer cases 816
RNF43 mutation status

Mutated 65 (7.97)
Wild-type 751 (92.03)

Comutations in APC, KRAS, BRAF, and NRAS 57 (88)
No comutation in the respective genes 8 (12)
Microsatellite status

MSI-H/dMMR (%) 7 (11)
MSS/pMMR (%) 42 (64)
Not reported (%) 16 (25)

Molecular Analysis of RSPO/RNF43-Positive Colorectal Cancer
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prognostic biomarker in this cancer entity (29, 30). In particular,
enrichment of mutations in BRAF, and also co-association with
MSI-H/dMMR in right-sided colorectal cancer tumors is associated
with a worse prognosis (31, 32), and many of the additional
molecular factors associated with this worse outcome are under
active investigation. Thus, we hypothesized that RNF43 and/or
RSPOfp are associated with this genomic signature. In pursing this
hypothesis, we detected a higher prevalence of RNF43 mutations in
right-sided colorectal cancer primaries compared with tumors
originating in left-sided locations irrespective of MSI status. This
observation opens further options to combinational treatment
approaches in this subset of patients with colorectal cancer. Indeed,
in patients with MSI-H/dMMR tumors immune checkpoint inhi-
bition has been proven to be efficacious (33, 34). To date, the
reasons why patients with MSS cancers do not respond to immu-
notherapy have not been fully elucidated at the cellular and
molecular levels, so far. Besides the hypothesis of reduced neoanti-
gen formation in MSS tumors (35), other authors have reported
that T cells are actively excluded from the tumor (36). One possible
pathway that modulating T-cell activity is the Wnt pathway,
whose activation has been shown to prevent antitumor response
in melanoma (37). Hence, inhibition of Wnt signaling seems to
activate the immune system by activating dendritic cells as well as
T cells (38, 39).

Many studies reported, that RSPOfp alterations do not occur in
tumors with APCmutations (6, 15), although it is not clear if RSPOfp
mutations have a functional redundancy with APC mutations. How-
ever, in both (experimental and validation) cohorts, we observed that
some RNF43-mut/RSPOfp-positive tumors harbor co-mutations in
APC, which represents a novel finding.

Furthermore, despite the observation thatWnt/b-catenin activation
is one of the key drivers of tumorigenesis in colorectal cancer,
inhibition of the Wnt/b-catenin pathway has not been proven to be
an efficacious therapeutic strategy to date (40). However, new attempts
are being made to efficiently target the Wnt/b-catenin signaling
pathway. One strategy could consist of inhibiting ligand-mediated
activation of the Wnt/b-catenin cascade by PORCN inhibitors in
patients with colorectal cancer carrying RSPO rearrangements (17).
For the RNF43 G659fs mutation as a predictive marker for a Wnt/
b-catenin inhibiting treatment is still inconclusive, as some authors
suggest that thismutation does not alter the protein’s function (26, 41).
However, others provide evidence that this frameshift mutation leads
to a responsiveness to PORCN inhibition (16). Other strategies may
include to target the DKK-1, a modulator of Wnt/b-catenin activi-
ty (42), for which themonoclonal antibodyDKN-01 is currently under
clinical investigation in several gastrointestinal malignancies (e.g.,
NCT04057365 or NCT04166721) or targeting the Wnt co-receptor
LRP5/6 for which the inhibitor BI905677 is currently under early

Figure 3.

Molecular landscape of theMSS subcohort.A,Genetic landscape comparison between RSPOfp andRNF43-mut tumors in theMSS subgroup. KRASmutationwas the
only statistically different genetic alteration. ��� , q < 0.001. B, TMB and PDL-1 status in RNF43-mut, RSPOfp and RNF43/RSPOfp-WT colorectal cancers. None of
the RSPOfp patients showed a TMB >10 mt/Mb or an MSI-H/dMMR status; � , q < 0.05; ��� , q < 0.001. C, Copy-number alterations in RNF43 mutations,
RSPO rearrangements, and RNF43/RSPO-WT samples; � , q < 0.05.
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clinical investigation (NCT03604445).Moreover, drugs directly block-
ing the interaction of b-catenin and CREB are currently being inves-
tigated in clinical trials (43). Taken together, it is tempting to speculate
that the emergence of effective Wnt/b-catenin inhibitors, such as the
PORCN inhibitors LGK974 (44), ETC-159 (45), or CGX1321 (41)
might reshape the immunologic sensitivity of a subset of colorectal
cancers overcoming resistance to immunotherapeutical approaches,
especially in the MSS subcohorts.

Several limitations apply to our study: (i) Validation of our findings
regarding RSPO rearrangements was not feasible, because in the
validation cohort no fusion panel analysis was performed. (ii) Because
of the retrospective study design, a potential selection bias might have
existed. (iii) Lacking the option of prospective longitudinal analyses, we
were not able to account for the possibility of sub-clonal RNF43
mutations. (iv) Because of limited availability of tissue and specific
restrictions, no additional IHC stainings, depicting a variety of immu-
nogenic markers and immune cell infiltration, and respective correla-
tion with RNF43/RSPO status, could be conducted. Future prospective
trials using sequential analyses during the molecular patient journey
and further techniques (i.e., liquid biopsy, single-cell analysis) are
desirable to dismantle the above mentioned limitations.

Taken together, in this large cohort of patients with colorectal
cancer whose tumors underwent molecular profiling, we have iden-
tified a significant subset of colorectal cancers harboring an RNF43
mutation or anRSPO fusion protein that are characterized by a distinct
genetic landscape. Thus, these detectable gene alterations represent a
potential new therapeutic target and several clinical trials are currently
ongoing to prove the efficacy of different Wnt/b-catenin signaling
inhibitors in RNF43/RSPO-positive tumors. Furthermore, MSI-H/
dMMR were observed in a subgroup of RNF43-mutated tumors
suggesting that immune checkpoint inhibition with and without
Wnt/b-catenin signaling inhibitors may be a reasonable combination-
al therapeutic approach that should be tested in prospective trials.
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