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Abstract

The discovery of anti-neutrophil cytoplasmic antibodies (ANCA) and their antigenic targets, 

myeloperoxidase (MPO) and proteinase 3 (PR3), has led to further understanding as to the 

pathophysiologic processes that underlie vascular and tissue damage in ANCA vasculitis. ANCA 

trigger neutrophil activation leading to vascular damage in ANCA vasculitis. However, decades 

of study have determined that neutrophil activation alone is not sufficient to cause disease. 

Inflammatory stimuli are drivers of ANCA autoantigen expression and ANCA production. 

Certain infections or bacterial peptides may be crucial players in the initial steps of ANCA 

immunopathogenesis. Genetic and epigenetic alterations of gene encoding for MPO and PR3 

provide additional disturbances to the immune homeostasis which provide a substrate for 

pathogenic ANCA formation from an adaptive immune system predisposed to autoreactivity. 

Promoted by inflammatory cytokines, ANCA binding leads to neutrophil activation, a process 

characterized by conformational changes, production and release of cytotoxic substances, and 

alternative complement pathway activation, thus creating an intense inflammatory milieu. This 

cascade of events perpetuates a vicious cycle of further inflammatory cell recruitment and 

activation, culminating in tissue necrosis. Our understanding of the pathogenic process in ANCA 

vasculitis paves the way for the development of therapies targeting crucial steps in this process. 

The greater appreciation of the role for complement, monocytes, and the adaptive immune system 

has already led to novel complement blockers and is poised to lead to further innovations which 

will allow for tailored antigen- or cell-specific immunotherapy targeting the autoimmune process 

without exposure to undue risks or toxicities.
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Introduction to ANCA vasculitis

Anti-neutrophil cytoplasmic autoantibodies (ANCA) vasculitis is characterized by small-

vessel vasculitis associated with ANCA specific for proteinase 3 (PR3-ANCA) and 

myeloperoxidase (MPO-ANCA). Systemic vasculitis can affect any body tissue resulting 

in many injury patterns, including pauci-immune necrotizing crescentic glomerulonephritis, 

pulmonary capillaritis with hemorrhage, cutaneous leukocytoclastic angiitis causing purpura, 

and upper respiratory vasculitis causing sinusitis. We discuss what is known about 

the pathogenesis and immunopathogenesis of ANCA vasculitis leading to activation of 

neutrophils resulting in vascular inflammation. While the commonly used terminology has 

been “ANCA-associated vasculitis,” the preferred terminology is now shifting to simply 

“ANCA vasculitis.” This is to highlight the integral role ANCA are now known to play in 

initiating and perpetuating the vasculitis process as detailed below. ANCA are no longer 

considered possibly linked, as suggested by the term “ANCA-associated vasculitis” but 

rather drivers of the disease process. We therefore refer to it as ANCA vasculitis and propose 

this now to be the preferred nomenclature.

Pathogenic role of ANCA

ANCA targeting myeloperoxidase (MPO-ANCA) and proteinase 3 (PR3-ANCA) play a 

major role in the pathogenesis of ANCA vasculitis and is the rationale for antibody 

reduction therapies such as plasmapheresis and anti-CD20 medications. Experimental 

studies support the pathogenic role of ANCA in ANCA vasculitis. Little et al. showed 

that rats immunized with human MPO developed anti-MPO antibodies leading to leukocyte 

adhesion to vascular walls and small vessel vasculitis [1]. Xiao et al. demonstrated that 

mice injected with anti-MPO immunoglobulin, with or without functional lymphocytes, 

developed necrotizing crescentic glomerulonephritis and vasculitis [2]. An anecdotal 

example of the pathogenic potential of ANCA is the report of a pregnant woman with 

ANCA vasculitis whose disease flared during pregnancy. Her new-born baby developed 

pulmonary-renal syndrome and had circulating anti-MPO immunoglobulins similar to those 

in the mother [3]. No other example of this event has been published. All ANCA are not 

pathogenic because some individuals with ANCA vasculitis have long-lasting remission 

despite persistence of circulating ANCA. Rather, epitope specificity influences ANCA 

pathogenicity. MPO-ANCA and PR3-ANCA occur in plasma obtained from healthy blood 

donors [4]. Up to 20% of pauci-immune necrotizing small-vessel vasculitis cases have 

negative ANCA testing possibly due to an inability to detect the putative ANCA because 

of a circulating masking factor [5], or specificity for a neutrophil antigen that has not yet 

been identified. ANCA are required in the pathogenesis of ANCA vasculitis, but many other 

events influence the induction of the ANCA autoimmune response, and the mediation of 

inflammation participate in disease induction.

Exposure of MPO and PR3 autoantigens

Earlier studies established that most ANCA target one of two proteins, MPO and PR3, found 

in the granules of neutrophils and monocytes [6, 7]. Under normal homeostatic conditions, 

MPO and PR3 are formed and trafficked to granules during hematopoiesis. Myeloperoxidase 
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plays a role in innate cellular defense against pathogens by forming hypochlorous acid and 

various other bactericidal and cytotoxic substances [8]. PR3, an intracellular serine protease, 

has an important role in the post-transcriptional formation of antimicrobial peptides and 

pro-inflammatory cytokines through its protein-cleaving abilities [9, 10]. MPO and PR3 are 

most abundant in neutrophils and monocytes stored in azurophilic granules. The canonical 

theory is that granule proteins such as MPO and PR3 are not produced within mature, 

circulating cells but are already stored in granules. Alterations at the genetic, epigenetic, or 

protein levels for MPO and PR3 may be present in ANCA vasculitis.

Studies have demonstrated that patients with ANCA vasculitis have increased expression of 

MPO or PRTN3, the genes that encode for MPO and PR3, respectively, compared to healthy 

controls [11] and that quiescent neutrophils may constitutively express ANCA antigens [12, 

13]. Many patients demonstrate dynamic changes in the expression of MPO or PRTN3 
with high expression during disease relapse and lower expression during remission [13, 

14]. The level of expression of ANCA antigens may be genetically determined for a given 

individual [15]. This suggests that greater constitutive surface expression of ANCA antigen 

may be relevant to the pathogenesis of ANCA vasculitis but may not be so. Trauma from 

centrifugation during neutrophil isolation may be enough to cause PR3 surface expression 

and must be considered when evaluating experimental in vitro data that show an increased 

surface expression [16]. Individuals with MPO-ANCA or ANCA-negative vasculitis, and 

non-vasculitic inflammatory disorders such as rheumatoid arthritis, have a higher frequency 

of high PR3 membrane expression compared to healthy individuals [17]. Surface expression 

of ANCA antigens may be a manifestation of occult systemic inflammation or an inherent 

tendency for neutrophils to produce more ANCA antigens due to a greater expression of 

MPO and PRTN3 genes and thus release more antigens upon stimulation.

Although MPO and PRTN3 expression levels may be increased in patients with ANCA 

vasculitis, these expression levels are derived from mRNA of circulating leukocytes that 

theoretically consist of mature neutrophils. What is driving the mRNA expression in what 

should be transcriptionally “silent” peripheral cells? Epigenetic modifications that include 

DNA methylation, histone methylation, histone acetylation, and other mechanisms have 

the capacity to alter gene activity and expression. Several epigenetic alterations have been 

discovered in ANCA vasculitis.

Histone modifications in the MPO and PRTN3 gene loci may be involved in the 

pathogenesis of ANCA vasculitis. Ciavatta et al. found that chromatin modification of 

H3K27me3 levels, associated with gene silencing, was depleted at MPO and PR3 loci in 

neutrophils from ANCA vasculitis patients [11], indicating that epigenetic modifications 

associated with gene silencing may contribute to aberrant expression of MPO and PR3. 

Another study found that ANCA vasculitis patients with decreased DNA methylation, a gene 

silencing process, at the PRTN3 promoter had a greater risk of relapse [18]. Thus, DNA 

methylation of PRTN3 may predict disease remission and relapse. These studies suggest that 

epigenetics may be important in the development of ANCA vasculitis and perpetuation of 

aberrant expression of autoantigen genes.
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Increased transcription and inferred translation of MPO and PR3 alone are not enough to 

drive the disease. For ANCA to form against MPO or PR3, they need exposure to the 

adaptive immune system either via mobilization from the intracellular space to the cell 

surface or a release into the extracellular space after activation of the neutrophils. During 

priming and activation, neutrophils go from a quiescent state to one that is optimized for 

anti-microbial activity via the expression of adhesion molecules, the generation of reactive 

oxygen species (ROS), and the release of granule contents [19]. Neutrophils are the first 

cellular line of defense against pathogens, and inflammatory cytokines such as TNF-α and 

bacterial components such as lipopolysaccharides have been shown to be major stimulants 

for the expression and mobilization of ANCA antigens [20–23]. Another important mediator 

is the complement component anaphylatoxin C5a through binding to its receptor on 

neutrophils [24], discussed below. The release of MPO and PR3 from neutrophils can be 

triggered by many different stimuli because of the important role they play in innate immune 

defense, for example against pathogens. Even events with low morbidity and mortality 

such as transient infections, or minor inflammatory stimuli such as surgical procedures or 

cigarette smoking, release MPO and PR3 from neutrophils [25].

ANCA vasculitis is a rare disease with an incidence of 1–2 cases and a prevalence of 5–20 

cases per 100,000 individuals [26], despite frequent if not constant exposure to ANCA 

antigens released from neutrophils. This supports the role of dysregulation at the level of the 

adaptive immune system that can turn ANCA antigen exposures to immunogenic ones that 

cause ANCA disease, as discussed in the next section.

The theory of molecular mimicry and complementary proteins is proposed as mechanisms 

that initiate a pathogenic ANCA response. In PR3-ANCA, patients have antibodies 

recognizing a peptide translated from anti-sense PR3 (thereby complementary PR3, cPR3). 

Through a series of serendipitous experiments, it was determined that a subset of PR3-

ANCA vasculitis patients also harbors autoantibodies that react to cPR3 [27]. To determine 

cause and effect, mice injected with the cPR3 peptide and monitored for both antibodies 

to PR3 and cPR3 developed antibodies to both proteins, supporting the theory that 

complementary proteins can promote the development of antibodies to both sense and anti-

sense proteins [27]. However, where would anti-sense or complementary protein sources 

emerge in the human population? Through sequence analysis and Basic Local Alignment 

Search Tool of peptide sequences, the cPR3 sequence shares high levels of homology with 

numerous microbial sources including Staphylococcus aureus and E. histiolytica [27]. This 

underscores the relevance of molecular mimicry in the development of autoimmune disease 

and ANCA vasculitis, especially as many patients report symptoms of infection during the 

weeks leading up to disease onset and diagnosis.

Apoptosis may provide another path for exposure of ANCA antigens to become 

immunogenic. Apoptotic neutrophils display ANCA antigens, allowing immune cells to 

interact with them [28]. Dysregulated apoptosis, through the display of autoantigens to 

the immune system, has been hypothesized as a major pathway in the pathogenesis of 

some autoimmune diseases, particularly systemic lupus erythematosus [29]. Neutrophil 

extracellular traps (NETs), discussed below, contain MPO and PR3 antigens, DNA, and 

the immunostimulatory antimicrobial protein LL37 [30]. Exteriorized DNA with LL37 from 
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NETs trigger self-recognition of DNA by dendritic cells in other autoimmune conditions 

such as psoriasis [31]. Exteriorized MPO and PR3, along with LL37, from NETs could 

play a role in the aberrant self-recognition of antigens by the immune system leading to the 

formation of ANCA.

Targeting of ANCA antigens by the adaptive immune system

With any immune response to antigen, whether a foreign pathogen or self-antigen, the 

interaction between innate and adaptive immunity rests with MHC and peptide presentation. 

To prevent autoimmune disease, the immune system contains checks and balances that 

inform the discrimination between self and non-self antigens, termed tolerance. Tolerance is 

broken in autoimmunity, permitting the immune system to target, recognize, and activate in 

response to self-antigen.

Autoimmune disease results from multiple hits that break tolerance. One hit is genetic 

predisposition, often involving HLA antigen binding capabilities. Genome-wide association 

studies (GWAS) have been performed in patient cohorts with various autoimmune 

diseases. The top genetic association with autoimmune disease is human leukocyte antigen 

(HLA) [32]. GWAS performed in two cohorts of patients with ANCA vasculitis, one 

a European cohort [33] and another North American cohort [34], determined that HLA-

DPB1 was associated with ANCA vasculitis and notably enriched in the PR3-ANCA 

vasculitis population. HLA-DQ (specifically DQA1 and DQB1) has been associated with 

MPO-ANCA vasculitis, although both the European and North American cohorts were 

underpowered for detection within the MPO-ANCA vasculitis subgroup.

Each HLA gene encodes for a variety of alleles that determine the HLA antigen-binding 

groove. Therefore, different HLA proteins (encoded for by different alleles) have a lower 

or higher affinity for certain antigenic peptides. Several HLAs associated with MPO- or 

PR3-ANCA vasculitis have a strong affinity for binding peptides from both autoantigens. 

Through in silico predictions that were confirmed with in vitro HLA-binding assays, HLA-

DPB1*04:01 has strong affinity for several MPO and PR3 peptides [35, 36].

Studies to elucidate the role of HLA and binding autoantigenic peptides were key to 

understanding the formation of autoreactive T and B cells that leads to the production 

of ANCA. By understanding the interaction of certain HLA with autoantigen peptides, 

tetramers (HLA multimers loaded with selected peptides and conjugated to a fluorophore) 

can be utilized to further profile the immune system specificity. Tetramers will bind to T 

cell receptors that recognize the presented antigen. This tool permitted quantification and 

characterization of MPO-reactive CD4 + T cells in the periphery of patients with ANCA 

vasculitis [35]. Autoreactive, MPO-specific T cells are detectable in the peripheral blood of 

ANCA vasculitis, and these T cells are pro-inflammatory and clonally expanded [35]. The 

detection of these T cells indicates that ANCA are high-affinity, class-switched antibodies 

that require antigen-specific T cell help to B cells and highlight the role T cells play in 

pathogenesis.
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Current clinical assays detect ANCA that are a polyclonal pool of autoantibodies with 

multiple different epitope specificities. Epitope mapping to determine where ANCA bind to 

MPO or PR3 may lead to clinical epitope-specific ANCA assays that provide more useful 

information for patient care than assays for polyclonal ANCA. Studies using recombinant 

mutants, human/mouse chimeric proteins, or epitope-excision mass spectrometry have 

elucidated a key region of MPO that is targeted by MPO-ANCA [5, 37–39]. Certain 

ANCA epitope pairings correlate with disease activity and may be better markers of relapse 

compared to the traditional measurement of total polyclonal ANCA [5]. Studies elucidating 

the precise targeting of autoantigens by the immune system are key to developing 

personalized therapies.

ANCA binding resulting in neutrophil activation

Immunopathogenesis leading to the formation of autoreactive T cells and autoantibodies 

is critical for the formation of ANCA (see Fig. 1 for a summary of the antigen 

recognition and immune recognition process detailed above), but the essential interaction 

that leads to vasculitis is the binding of ANCA to their cognate antigen on neutrophils 

and monocytes, inducing activation, degranulation, and release of injurious factors on the 

vascular endothelium.

The interaction between ANCA and its antigenic target on neutrophils is key in the 

pathogenesis of ANCA vasculitis. Binding of ANCA to antigens occurs through interaction 

of the Fab′2 segment with its corresponding antigen. The Fc regions of ANCA bound 

to antigen engage Fc receptor on the surface of neutrophils [40, 41], initiating a series 

of intracellular signals culminating in neutrophil activation [42]. Neutrophil activation 

in response to ANCA is present to a much greater extent in individuals with ANCA 

vasculitis compared to healthy controls [43], suggesting an inherent predisposition for a 

greater inflammatory response in affected patients. ANCA-activated neutrophils increase 

the production of ROS and release the contents of their intracellular granules [22, 44]. 

This process is amplified with prior exposure to neutrophil-activating factors [22, 45] 

that can lead to a self-amplifying loop of ANCA antigen expression on the cell surface, 

causing further activation by ANCA and perpetuating the inflammatory response. The 

ability of MPO- and PR3-ANCA to activate neutrophils may differ, possibly accounting for 

differences in disease phenotypes. PR3-ANCA may induce more neutrophil degranulation 

and ROS formation than MPO-ANCA [44], which may explain why the former has more 

active lesions (e.g., crescents and fibrinoid necrosis) and the latter more often manifests with 

greater chronicity and sclerosis on biopsy [46, 47]. The reasons underlying these differences 

in presentation between MPO-ANCA and PR3-ANCA vasculitis are unknown.

If interaction of ANCA with MPO or PR3 is at the core of ANCA vasculitis pathogenesis, 

why are immune complexes and immunofluorescence staining for immunoglobulin so rarely 

seen in ANCA vasculitis (pauci-immune disease)? Immune complexes are likely degraded 

during the pathogenic process and become undetectable during testing. Animal models 

and human studies of ANCA vasculitis have shown that positive immunofluorescence 

staining for immunoglobulins and complement can be seen [48, 49] but then disappear 

with infiltration of immune cells and ensuing inflammatory damage [50]. A similar process 

Massicotte-Azarniouch et al. Page 6

Semin Immunopathol. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is seen in Arthus reaction, a type III immune complex hypersensitivity reaction, induced 

in the skin of Guinea pigs where immunoglobulin and complement staining on histological 

exam of lesions were detectable up to 18 h after the initial reaction and then could not be 

detected, suggesting they were degraded or eliminated by the inflammatory reaction over 

time [51]. Despite the paucity of immune complexes found on histopathologic examination 

of biopsy specimens, ANCA vasculitis is driven by the interaction of ANCA antibodies with 

their target antigens, which is therefore a variant of immune complex-mediated disease.

Cascade of neutrophil activation in ANCA vasculitis

The binding of ANCA to their antigens leads to neutrophil activation and initiates a cascade 

of events that culminates in vascular inflammation. There may be dysregulation of multiple 

steps along a series of events, and not just ANCA production and binding to antigens that 

lead to end-organ damage in ANCA vasculitis.

Cytoskeleton changes

Neutrophils are 12–14 μm diameters and require some degree of deformability to pass 

through the glomerular capillary network where segments may have a diameter smaller 

than 10 μm [52]. Binding of ANCA to their antigenic targets on neutrophils not only 

causes morphologic changes allowing it to get to its site of action but also contributes to 

small-vessel damage characteristic of ANCA vasculitis. Tse et al. demonstrated that ANCA-

activated neutrophils had polymerization of their actin via interaction with the Fc receptor, 

which took on a filamentous form [53]. Neutrophils developed a more rigid structure, 

lending it resistant to deformation, demonstrated by slower transfer into a micropipette of 

5 μm [53]. This may account for ANCA vasculitis predilection for small vascular beds 

such as those in the kidneys, lungs, and skin, all of which have capillaries smaller than the 

diameter of a normal neutrophil [52, 54, 55]. A non-deformable neutrophil is unable to pass 

through the capillary bed, leading to obstruction of flow and allowing for adhesion to the 

endothelium with subsequent release of effectors of local damage. This may explain why 

the liver and spleen, having sinusoidal capillaries of larger diameter than regular capillaries, 

are not classically affected by ANCA vasculitis. It is unclear why this occurs less frequently 

in other organ micro-circulation such as the gastrointestinal tract or musculoskeletal system. 

Cases of ANCA vasculitis leading to muscle necrosis have been reported [56]. Overall, 

ANCA vasculitis predilection for certain organs is incompletely understood and unlikely to 

be explained solely by neutrophil cytoskeleton changes.

Vascular adherence

A neutrophil that is physiologically activated mediates an inflammatory response, adheres 

to the endothelium, and then undergoes a series of structural changes that allow it to roll 

across the endothelium and transmigrate through to gain access to the stimulus of the 

inflammation, for example, tissue trauma or a microbial pathogen. In ANCA vasculitis, 

the inflammatory response is inappropriately directed against normal vessels. Inflammatory 

cytokines involved in the activation of neutrophils promote adherence of neutrophils to 

the endothelium. TNF-α activates neutrophil integrins, adhesive membrane receptors that 

will bind to endothelial ligands, causing endothelial adherence [57]. Hu et al. demonstrated 
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that both TNF-α and IL-8 induced a downregulation of neutrophil chemokine receptors 

CXCR1 and CXCR2 in patients with ANCA vasculitis compared to controls, regardless 

of disease activity [58]. Normally, CXCR1 and CXCR2 serve as signals to indicate where 

neutrophils transmigrate across the endothelium towards injured tissue. If these receptors are 

downregulated in patients with ANCA vasculitis, their activated neutrophils remain adherent 

to the endothelium. Circulating ANCA then have the liberty to bind to their antigens 

expressed on the surface of neutrophils adherent to endothelium. Moreover, when ANCA 

bind to their Fcγ receptor, they activate integrins so that neutrophils become aberrantly 

fixed to endothelium, effectively halting the normal rolling process [59]. Therefore, activated 

neutrophils from patients with ANCA vasculitis seem predisposed to remain within the 

vascular space. The ensuing massive inflammatory response will be focused along the 

endothelium and within the vascular space.

Reactive oxygen species production and degranulation

Major components of the neutrophil’s weapons against pathogens are ROS, highly toxic 

substances for any living organism, as well as the contents of their intracellular azurophilic 

granules, including MPO and PR3, involved in the degradation of microbes. When 

neutrophils adhere to the endothelium and are activated by ANCA, the damage caused 

by the release of ROS and granule contents will be misdirected against the endothelium. 

One consequence of damage to endothelial cells is detachment and endothelial cell 

apoptosis. An important oxygen radical produced by neutrophils is H2O2, which is toxic 

to endothelial cells [60]. The granule protease elastase can also damage endothelial cells 

causing detachment [61]. Released ANCA antigens have been shown to bind to endothelial 

cells, contributing to vascular damage. Indeed, internalization of PR3 into the endothelial 

cell leads to apoptosis [62–64]. Internalization of MPO into endothelial cells leads to release 

of ROS causing endothelial damage and detachment and promotes complement-mediated 

cytotoxicity resulting from ANCA interaction with endothelial cell-bound MPO [62, 65]. 

Airway endothelial cells internalize MPO but not PR3 [62]. Denudation of the endothelium 

exposes thrombogenic basement membranes and perivascular matrix to the circulation, 

initiating the coagulation cascade leading to activation of coagulation factors resulting in 

fibrin formation and the characteristic fibrinoid necrosis of ANCA vasculitis. These varying 

pathogenic interactions with the endothelium between the neutrophil granule proteins MPO 

and PR3 offer another hypothesis to account for the differences in disease phenotypes 

between MPO and PR3-ANCA vasculitis. Along with possible time-dependent degradation 

of immune complexes, the internalization of ANCA antigens by endothelial cells may also 

explain why ANCA vasculitis rarely shows intense immunoglobulin staining on biopsy.

Neutrophil extracellular trap release

NETs are a meshwork of granule proteins (including proteases such as elastase and MPO), 

and nuclear components (deoxyribonucleic acid [DNA], histone) that are released by 

neutrophils upon activation, providing another weapon in the neutrophil armamentarium 

against pathogens. They are released as a mesh that binds gram-positive and gram-negative 

bacteria; the meshwork effectively locks pathogens in place allowing proteases from 

granules within the NETs to degrade bacterial virulence factors and facilitate disposal by 

other leukocytes [66].
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A potential role for NETs in the pathogenesis of ANCA vasculitis is suggested by the fact 

that NETs contain MPO and PR3 [30, 66]. Patients with ANCA vasculitis may have higher 

levels of circulating NET remnants during active disease compared to healthy controls, and 

activation of neutrophils by ANCA has been shown to initiate the release of NETs [30, 67]. 

NETs have been localized at sites of vascular injury in individuals with ANCA vasculitis 

[68, 69] and have been proposed as potential triggers for the immunogenic formation of 

ANCA by providing MPO to myeloid dendritic cells, a process that could be prevented by 

treatment with DNAse [70]. NETs may also be involved in the pathogenic process in ANCA 

vasculitis through activation of the complement cascade. Wang et al. showed that ANCA-

induced NETs could activate the alternative complement pathway both locally, resulting 

in the deposition of C3b and C5b-9 on NETs, and systemically, resulting in higher levels 

of serum complement degradation products than if NETs were degraded by DNAse [71]. 

The role of the complement cascade in the pathogenesis of ANCA vasculitis is discussed 

below. Finally, NETs may have pro-coagulant properties that could account for the increased 

risk for thrombotic events in patients with ANCA vasculitis and for the fibrin deposition 

seen within fibrinoid necrosis, a classic histologic lesion. The meshwork of proteinaceous 

substances released from neutrophils may contain tissue factor and tissue-factor bearing 

microparticles, which could trigger the extrinsic pathway of the coagulation cascade [72]. 

Levels of tissue factor containing NETs and microparticles decrease in serum of patients 

with ANCA vasculitis once remission is achieved compared to active disease [73]. This 

may explain the thromboembolic risks in ANCA vasculitis being the greatest during active 

disease [74]. NETs may be a key mediator in the pathogenesis of ANCA vasculitis and 

potential target for future therapies; however, this requires further study.

Contribution of the complement system to pathogenesis of ANCA 

vasculitis

The complement cascade comprises a complex series of serum and cell-bound proteins 

that is an important part of the innate immune system critical for appropriate homeostatic 

and defense mechanisms. It also functions as a mediator of injury in many autoimmune 

and auto-inflammatory diseases. Complement can be activated via the classical pathway 

(immune complex mediated), lectin pathway (recognition of carbohydrate patterns on 

microbial and other surfaces), and the constitutively active alternative pathway. As part of 

the innate immune system, pathogens, microbial substances, and damaged or apoptotic cells 

are major activators of the complement cascade [75]. The most important pathway involved 

in the pathogenesis of ANCA vasculitis is the alternative pathway [76, 77].

Recent ANCA vasculitis research highlights the importance of complement as a driver of 

inflammation and tissue damage. Complement products and membrane attack complex are 

detected immunohistologically in necrotizing crescentic glomerulonephritis [76]. Wu et al. 

demonstrated that patients with both MPO-ANCA vasculitis and PR3-ANCA vasculitis have 

higher plasma levels of complement activation products C3a, C5a, and soluble C5b-9 than 

healthy controls [78]. In the same individuals, complement activation products tended to be 

lower in remission than during active disease, and patients achieving long-term remission off 

therapy had similar levels to healthy controls [78]. Xing et al. analyzed renal biopsies from 
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7 patients with anti-MPO necrotizing crescentic glomerulonephritis (NCGN) and observed 

soluble C5b-9, C3d, and the alternative pathway regulators factor B and factor P, but not 

in controls [76]. Furthermore, mannose-binding lectin and C4d were not detected in the 

biopsies of patients having anti-MPO ANCA vasculitis, suggesting a major role for the 

alternative pathway and less so for the classical and lectin pathways.

To further support this, Xiao et al. administered anti-MPO IgG to mice with knockout 

(KO) C5 required for all pathways of complement activation, C4 required for classical 

and lectin binding pathway complement activation, or factor B required for alternative 

pathway activation [79]. They found that C5 KO mice and C4 KO did not develop NCGN. 

They demonstrated that incubation of primed neutrophils with anti-MPO and anti-PR3 IgG 

led to significantly greater C3a generation than controls, suggesting that ANCA-induced 

neutrophil activation releases activators of the complement cascade [77]. Chen et al. 

demonstrated the importance of the alternative pathway in ANCA vasculitis by examining 

the role of complement factor H, an alternative pathway regulator that serves to prevent 

C3b-mediated amplification and facilitates the decay of C3-convertase [80]. They found 

that activation of neutrophils by ANCA and endothelial damage was prevented by factor H. 

They also found that factor H from patients with ANCA vasculitis was not as effective in 

inhibiting neutrophil activation and endothelial damage as factor H from healthy controls. 

Thus, aberrant factor H function may influence risk for developing ANCA vasculitis. 

Furthermore, endothelial damage due to ROS and proteolytic enzymes after neutrophil 

activation may lead to a loss of alternative pathway regulators normally found on the 

endothelial cell membrane such as decay-accelerating factor and membrane co-factor protein 

[81], predisposing to unchecked alternative pathway activation. These findings support the 

hypothesis that the alternative complement pathway plays prominently in causing vascular 

inflammation in ANCA vasculitis.

An important participant in the pathogenic role of complement in ANCA vasculitis is 

the complement anaphylatoxin C5a. ANCA-induced neutrophil activation generates C5a, 

which can bind to the C5a receptor (C5aR; CD88) on neutrophils, prime them, and 

create an activation and inflammatory loop [79, 82]. C5a has pro-inflammatory effects 

by increasing vascular permeability and expression of endothelial cell adhesion molecules, 

and as a chemoattractant recruiting more neutrophils [82]. Stimulation of neutrophils by 

C5a and ANCA results in respiratory burst and degranulation, activation of the coagulation 

cascade, generation of thrombin, and release of properdin and factor B, key activators of 

the alternative pathway [72, 76]. C5a also leads to the release of NETs, an important step 

in disease pathogenesis as detailed above, and C5a priming of neutrophils can release high 

mobility group box 1 (HMGB1), a nuclear protein found in chromatin, to the extracellular 

space. This may facilitate translocation of ANCA antigens, respiratory burst, degranulation, 

and NET formation from ANCA-activated neutrophils [83, 84]. Blockade of the C5aR 

prevents or reduces ANCA-induced glomerulonephritis in an experimental mouse model 

[24, 85]. A variant of this model with knocked out mouse C5aR and knocked in human 

C5aR demonstrated that an inhibitor of human C5aR reduced glomerulonephritis [86]. 

This led to clinical trials using avacopan that demonstrated efficacy in treating ANCA 

vasculitis [86, 87]. These studies and others highlight the central role of complement in the 

pathogenesis of ANCA vasculitis.
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Tissue necrosis/damage in ANCA vasculitis — role of the monocyte

Inflammatory cell infiltration of the small blood vessel walls leading to vascular injury and 

tissue necrosis is the hallmark of ANCA vasculitis (Fig. 2). As discussed, primed neutrophils 

release MPO and PR3 at the cell surface and in the microenvironment of activated 

neutrophils that can bind to ANCA, which then initiates a cascade of events (cytoskeleton 

changes, vascular adhesion, ROS and proinflammatory cytokine release, complement 

activation, NET formation) that mediates acute inflammation and vascular damage. Factors 

that can prime neutrophils include infection-induced cytokines, complement proteins such as 

C5a, and proteins exposed on NETs among others [21, 88]. While neutrophils are integral to 

pathogenesis, other leukocytes such as monocytes also play an important role.

ANCA vasculitis is a relapsing and remitting disease in which acute lesions during each 

flare are followed by resolution or tissue scarring [89] (Fig. 3). During the acute phase 

of a flare, neutrophils and monocytes are first recruited into tissues causing necrotizing 

vasculitis [90]. Within days, neutrophils undergo leukocytoclasis and disappear. If resolution 

of acute lesions does not resolve, neutrophils are replaced by mononuclear cells such as 

monocytes, macrophages, and T cells [89]. Most glomerular macrophages originate from 

peripheral blood monocyte precursors [91] that enter tissue by adhering to endothelial cells 

via vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 

(ICAM-1) [92, 93]. In the glomeruli, monocytes differentiate into macrophages and express 

HLA class II antigens to present antigens to T cells and produce proinflammatory cytokines, 

such as TNF-α and IL-1 [91]. Increased intermediate (CD14 + CD16 +) monocytes were 

recently identified in the peripheral blood of patients with active ANCA vasculitis [94, 

95]. These cells show an elevated expression of CD14, TLR 2/4, MHC II, and MPO, and 

PR3, suggesting increased activation and migration of these cells to inflamed tissue [94, 

96]. CD68 + macrophages accumulate in the glomeruli of patients with ANCA vasculitis 

[97]. Macrophages amplify glomerular inflammation and, along with glomerular epithelial 

cells, form glomerular crescents in Bowmans space that are characteristic of severe GN in 

ANCA vasculitis [98–100]. Macrophages are heterogeneous and their functional phenotype 

is influenced by the cytokine milieu of their surrounding microenvironment [101]. M1-

type macrophages release cytokines that damage tissue and M2-type macrophages release 

cytokines that promote the proliferation of cells for tissue repair [102]. Monocytes 

predominantly differentiate into M2-type macrophages that are involved in phagocytosis 

and cell-clearance but can lead to fibrosis [91]. In ANCA vasculitis, the phagocytic function 

of macrophages can be impaired by cytoplasmic proteases and apoptotic neutrophils [91], 

causing a cycle of macrophage inflammatory mediator release and subsequent neutrophil, T 

cell, and B cell activation [91].

ANCA vasculitis is a systemic disease that can affect multiple organs, especially the 

upper respiratory tract, lungs, and kidneys [103, 104]. Granulomatosis with polyangiitis 

(GPA) predominantly associated with PR3-ANCA [103] and eosinophilic granulomatosis 

with polyangiitis (EGPA) predominantly associated with MPO-ANCA, are characterized 

by necrotizing granulomatous inflammation that most often affects the respiratory tract. 

These granulomas, consisting of an organized collection of predominantly monocytes 

and macrophages forming a nodule, often develop along the respiratory tract of patients 
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with ANCA vasculitis and are a key characteristic of GPA and EGPA [103, 104]. It 

is hypothesized that granulomatosis lesions form when a respiratory infection or other 

inflammatory condition primes neutrophils for activation by ANCA vasculitis in the airway 

mucosa [103]. Activated neutrophils lead to acute lesions resembling micro abscesses, 

and eventually mononuclear cells replace the neutrophils. Epithelioid macrophages then 

encapsulate or wall off the necrotic debris, forming the granuloma (Fig. 4). Over time, the 

necrotic debris may be replaced by collagen and lymphoid cells such as dendritic cells, 

memory T cells, B cells, and plasma cells. Depending on the timing of biopsy, a granuloma 

may reveal evidence of acute inflammatory damage or alternatively a healing phase to 

the process [103, 105]. However, chronic granulomas should not be considered clinically 

quiescent lesions as they may have immunogenic properties. Within granulomatous lesions, 

T cells may participate in the generation of ANCA and sustain autoimmune responses via 

interactions with dendritic cells and B cells [106]. This cellular activity within granulomas 

may provide a constant source of autoantibody formation and account for the greater relapse 

risks in patients with GPA [107]. In contrast to GPA and EGPA that predominantly affect 

the respiratory tract in addition to the kidneys, microscopic polyangiitis (MPA) does not 

have granulomatosis, more often has renal involvement, and its predominant ANCA type 

is MPO-ANCA [108, 109]. Approximately 80–100% of patients with MPA have renal 

manifestations [110, 111] that can range from asymptomatic hematuria to necrotizing 

crescentic GN causing end-stage kidney disease [110, 112]. Tissue necrosis and damage 

involve complex interactions among various immune cell types. Figure 5 summarizes the 

steps involved in the pathogenesis of vascular damage discussed so far. Given the substantial 

role that monocytes and macrophages play in the formation of necrotizing lesions and tissue 

injury resolution in GPA, EGPA, and MPA, they may present a promising target for therapy 

in ANCA vasculitis.

Biological and environmental factors influencing disease activity in ANCA 

vasculitis

ANCA vasculitis is a multifactorial disease in which numerous factors, such as genetics, 

infections, certain drugs, and environmental exposures, may contribute to disease initiation 

and relapse.

Genetic associations with ANCA vasculitis

GWAS have implicated genetic makeup in the onset and progression of ANCA vasculitis. 

Polymorphisms having strong associations with ANCA vasculitis have been found in 

HLA genes, as discussed in prior sections. In addition to polymorphisms in HLA genes, 

polymorphisms in the protein tyrosine phosphatase, non-receptor type 22 (PTPN22) gene 

have been associated with both MPA and GPA [113, 114]. PTPN22 encodes lymphoid 

tyrosine phosphatase and variations in PTPN22 can lead to dysregulated B cell receptor 

and T cell receptor signaling, causing autoimmunity. Additionally, cytotoxic T-lymphocyte 

antigen 4 (CTLA4) polymorphisms have been associated with GPA [115]. CTLA4 is 

expressed on CD4 + T cells and acts as a regulatory molecule of T cell activation; 

thus, CTLA4 polymorphisms may contribute to the dysregulation of regulatory T cell 

responses and contribute to sustaining autoimmunity. Furthermore, PRTN3, is of interest 
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because it codes for PR3. Eight SNPs have been identified in the PRTN3 promotor region 

and exons [104, 116]. Polymorphisms in PRTN3 have also been associated with more 

severe disease and more frequent relapse in patients with PR3-ANCA vasculitis [117]. The 

proteolytic activity of PR3 is naturally inhibited by α1-antitrypsin, which is encoded by the 

SERPINA1 gene [118]. Polymorphisms of SERPINA1 may result in decreased function of 

α1-antitrypsin and increased damage to inflamed tissues in ANCA vasculitis [116]. Overall, 

additional studies to identify genetic associations in ANCA vasculitis will provide insight to 

new pathogenic mechanisms and potential therapeutic targets.

Infections

In addition to the role of genetics in ANCA vasculitis, infections can contribute to the onset 

of ANCA vasculitis and facilitate the autoimmune response. Pathogens are potential antigen 

sources that induce pro-inflammatory signals (such as stimulation of pathogen-associated 

molecular pattern receptors) and trigger innate and adaptive immune cell activation. The 

involvement of these factors may initiate a break in immune tolerance and the development 

of chronic or recurrent autoimmunity. For example, S. aureus has been associated with 

increased risk of relapse in patients with GPA. Approximately two thirds of patients with 

GPA are nasal carriers of S. aureus and have an increased risk for disease relapse [119]. 

S. aureus produces superantigens that are powerful, non-specific activators of T- and B-cell 

proliferation and can induce significant cytokine release [120, 121] and expansion of Th17 

cells. These IL-17 producing CD4 + T cells are central in the development of autoimmunity 

[122, 123]. Th17 cells recruit inflammatory cells and generate a pro-inflammatory cytokine 

milieu, making them resistant to control by T-regulatory cells and presenting a break in 

tolerance [124]. Furthermore, bacterial antigens may initiate granuloma formation and 

contribute to autoantibody formation. The repertoire of immunoglobulin heavy chain 

genes found within granulomas of patients with GPA is suggestive of an antigen-driven 

process and bares similarities to heavy chain genes from B-cell with affinity to S. aureus 
superantigen [125]. A study examining toll-like receptor gene mutations in patients with 

ANCA vasculitis found mutations in TLR9 to be more closely associated with PR3-ANCA 

vasculitis than MPO-ANCA vasculitis [126]. Therefore, bacterial infections could play a 

major role in granuloma formation, creating a source of autoantibody formation, particularly 

PR3-ANCA. This could account for the greater relapse risk seen in patients with GPA, 

PR3-ANCA vasculitis, and respiratory tract involvement [107, 127]. Molecular mimicry 

is another theory through which S. aureus may contribute to autoimmunity where breaks 

in immune tolerance occur due to microbial antigens sharing sequence similarities to host 

proteins or autoantigens. Ooi et al. demonstrated that the peptide 6PGD391–410, part of 

a plasmid-encoded 6-phosphogluconate dehydrogenase found in some S. aureus strains, 

induced anti-MPO T- and B-cell autoimmunity in mice [128]. This implicates bacterial 

plasmid-derived antigens in the loss of tolerance to self-antigens and its potential role in the 

induction of autoimmunity in ANCA vasculitis.

Drugs associated with ANCA vasculitis disease onset and relapse

Drugs associated with ANCA vasculitis disease induction and relapse include hydralazine, 

a common vasodilator used to treat hypertension. One study correlated hydralazine 

administration and the onset of ANCA vasculitis with pulmonary-renal syndrome 
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in a patient [129]. Hydralazine may induce vasculitis because it decreases DNA 

methyltransferase expression and inhibits extracellular signal-regulated kinase, thus inducing 

autoimmunity by dysregulating the suppression of MPO and PR3 antigen expression [130]. 

Hydralazine is also hypothesized to be metabolized by MPO to form reactive intermediates 

that lead to the formation of anti-MPO antibodies [131]. Other drugs associated with 

ANCA vasculitis include penicillamine, levamisole-adulterated cocaine, propylthiouracil, 

minocycline, allopurinol, and diphenylhydantoin [103, 132].

Environmental exposures

Environmental triggers have been associated with the onset of ANCA vasculitis, including 

silica exposure [133, 134]. Silica can activate the NLRP3 inflammasome complex and 

generate IL-1β and other proinflammatory mediators that propagate autoimmune responses 

in ANCA vasculitis [135]. In addition, occupational exposures to inhaled pesticides, dust, 

fumes, and hydrocarbons have been associated with ANCA vasculitis [136, 137].

Overall, an interplay of multiple factors such as genetics, infectious triggers, certain drugs, 

and environmental exposures can contribute to the onset, progression, and relapse of ANCA 

vasculitis. Polymorphisms in innate and adaptive immune cell genes contribute to the 

disruption of immune tolerance. A better understanding of signaling pathways of these genes 

may lead to targeting pathways in ANCA vasculitis. In addition, studies investigating host 

genetic and environmental interactions may lead to a better understanding of interactions in 

ANCA vasculitis and may elucidate avenues for disease prevention and treatment.

Conclusion and future directions

The initial treatment of ANCA vasculitis focused on decreasing inflammation and 

suppressing the immune system in a non-specific manner. For decades, standard treatment 

has been glucocorticosteroids and cyclophosphamide. Over the last decade, a better 

understanding of the pathogenesis and of the main drivers of tissue damage in ANCA 

vasculitis led to randomized controlled trials examining more targeted therapies. Table 1 

summarizes major clinical trials in ANCA vasculitis, the main mechanisms of action of 

the agents, and conclusions. Our understanding of the pathogenesis of ANCA vasculitis 

continues to improve, with novel pathways and cell types implicated in the pathogenesis. 

We are starting to gain a better understanding of the differences which underlie MPO- and 

PR3-ANCA vasculitis and how, even though they share a similar nomenclature, they likely 

represent distinct disease processes (Table 2). This will lead to the discovery of additional 

targeted therapies in ANCA vasculitis.

Increased understanding of the immunogenicity of MPO and PR3 combined with the 

specific targeting of the adaptive immune system has provided the foundation for future 

antigen-specific immunotherapies. Utilization of the MPO peptide to induce tolerance in 

a mouse model of MPO-induced GN and ameliorate established disease is incredibly 

informative to begin the generation of antigen-specific therapies [158]. Generation of 

chimeric autoantibody receptor (CAAR) T cells analogous to those being tested in 

pemphigus vulgaris may now be possible [159]. As we learn more about autoantigen-
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targeted therapies, the field is poised to produce therapies tailored to directly address the 

autoimmune response thereby decreasing overall immunosuppression and risks for infection.

The search continues for the drug that provides optimal treatment of ANCA vasculitis in a 

targeted manner with minimal adverse effects. As discussed, ANCA vasculitis pathogenesis 

is a multi-step process with multiple potential triggers, implicating multiple different cell 

types. Combination therapies will likely remain essential for induction of remission of active 

ANCA vasculitis. Current therapies offer high rates of remission and the focus for induction 

therapy is to find less toxic means of inducing remission. However, the main challenge in 

management of ANCA vasculitis is our limited understanding and ability to prevent the high 

rate of long-term relapses despite newer therapies. As our understanding of the pathogenesis 

continues to improve, there is hope in eventually preventing autoantigen formation, tolerance 

induction, and maintenance of remission with disease-specific treatments.
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Fig. 1. 
ANCA antigen expression and immune recognition. Caption: under normal circumstances, 

neutrophils constitutively express some level of MPO/PR3 on their surface, but most 

are stored in granules. Chromatin modifications, loss of gene silencing, and decreased 

DNA methylation may contribute to higher MPO/PR3 expression. Neutrophil activation, 

via inflammatory stimuli, leads to degranulation, greater surface expression, and release 

of MPO/PR3. Peptides from these antigens bind with high affinity to HLA, leading to 

antigen presentation and auto-antibody formation. Auto-antibodies may also occur from 

the formation of antibodies against anti-cPR3 or against antibodies targeting cPR3-like 

microbial peptides, which then cross react with regular PR3. These auto-antibodies against 

MPO/PR3 constitute ANCA. Abbreviations: ANCA, anti-neutrophil cytoplasmic antibodies; 

cPR3, complementary PR3; DNA, deoxyribonucleic acid; HLA, human leukocyte antigen; 

MPO, myeloperoxidase; PR3, proteinase 3
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Fig. 2. 
ANCA MPA arteritis. Arteritis in a kidney interlobular artery with segmental fibrinoid 

necrosis (long arrows), leukocytoclastic debris (short arrows), and transmural and 

perivascular mixed inflammatory infiltrate of neutrophils and mononuclear cells
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Fig. 3. 
ANCA glomerulonephritis. Left panel: active glomerulonephritis with segmental fibrinoid 

necrosis (short arrow) and cellular crescent (double arrow). Right panel: sclerotic 

glomerulonephritis with segmental sclerosis (short error) and fibrotic crescent (double 

arrow)
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Fig. 4. 
ANCA GPA granuloma. Pulmonary granulomatous inflammation with a central necrotic 

core of leukocytoclastic debris (short double arrow) surrounded by granulomatous 

inflammation with a predominance of monocytes and macrophages (long double arrow), 

and a few giant cells (curved arrow)
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Fig. 5. 
Pathogenesis of vascular damage in ANCA vasculitis. Caption: binding of ANCA to their 

antigens on the neutrophil surface leads to activation, degranulation, release of MPO/PR3 

and neutrophil recruitment. This is enhanced in the context of inflammatory stimuli such 

as TNF-α and C5, and provides more ANCA antigens leading to a neutrophil activation 

amplification loop. Activation causes morphologic and surface protein expression changes 

which promote neutrophil adherence to the endothelium. The ensuing release of ROS and 

MPO/PR3 causes endothelial damage and denudation. Activation also leads to alternative 

complement pathway activation with subsequent MAC formation on the endothelium, and to 

NET release which may contain TF, thus promoting fibrin thrombi formation and massive 

recruitment with further activation of neutrophils and monocytes. The accumulation of 

inflammatory cells and necrotic debris lead to micro abscesses which may then become 

organized into early granulomas and then late granulomas. The late granulomas may contain 

ANCA antigens, and serve as a source of perpetual ANCA formation. Abbreviations: 

ANCA, anti-neutrophil cytoplasmic antibodies; MAC, membrane attack complex; MPO, 

myeloperoxidase; NET, neutrophil extracellular trap; PR3, proteinase 3; TF, tissue factor; 

TNF-α, tumor necrosis factor α
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