
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7166  | https://doi.org/10.1038/s41598-022-11012-2

www.nature.com/scientificreports

Interpretability and fairness 
evaluation of deep learning models 
on MIMIC‑IV dataset
Chuizheng Meng1,2, Loc Trinh1,2, Nan Xu1,2, James Enouen1 & Yan Liu1*

The recent release of large-scale healthcare datasets has greatly propelled the research of data-driven 
deep learning models for healthcare applications. However, due to the nature of such deep black-
boxed models, concerns about interpretability, fairness, and biases in healthcare scenarios where 
human lives are at stake call for a careful and thorough examination of both datasets and models. In 
this work, we focus on MIMIC-IV (Medical Information Mart for Intensive Care, version IV), the largest 
publicly available healthcare dataset, and conduct comprehensive analyses of interpretability as 
well as dataset representation bias and prediction fairness of deep learning models for in-hospital 
mortality prediction. First, we analyze the interpretability of deep learning mortality prediction 
models and observe that (1) the best-performing interpretability method successfully identifies critical 
features for mortality prediction on various prediction models as well as recognizing new important 
features that domain knowledge does not consider; (2) prediction models rely on demographic 
features, raising concerns in fairness. Therefore, we then evaluate the fairness of models and do 
observe the unfairness: (1) there exists disparate treatment in prescribing mechanical ventilation 
among patient groups across ethnicity, gender and age; (2) models often rely on racial attributes 
unequally across subgroups to generate their predictions. We further draw concrete connections 
between interpretability methods and fairness metrics by showing how feature importance from 
interpretability methods can be beneficial in quantifying potential disparities in mortality predictors. 
Our analysis demonstrates that the prediction performance is not the only factor to consider when 
evaluating models for healthcare applications, since high prediction performance might be the result 
of unfair utilization of demographic features. Our findings suggest that future research in AI models for 
healthcare applications can benefit from utilizing the analysis workflow of interpretability and fairness 
as well as verifying if models achieve superior performance at the cost of introducing bias.

With the release of large scale healthcare datasets, research of data-driven deep learning methods for healthcare 
applications demonstrates their superior performance over traditional methods on various tasks, including 
mortality prediction, length-of-stay prediction, phenotyping classification and intervention prediction1–3. How-
ever, deep learning models have been treated as black-box universal function approximators, where prediction 
explanations are no longer available as their traditional counterparts, e.g., Logistic Regression and Random 
Forests. Lack of interpretability hinders the wide application of deep learning models in critical domains like 
healthcare. In addition, due to bias in datasets or models, decisions made by machine learning algorithms are 
prone to be unfair, where an individual or a group is favored compared with the others owing to their inherent 
traits. As a result, more and more concerns about interpretability, fairness and biases have been raised recently 
in the healthcare domain where human lives are at stake4. These concerns call for careful and thorough analyses 
of both datasets and algorithms. In this work, we focus on the latest version (version IV5) of a widely used large 
scale healthcare dataset MIMIC6, and conduct comprehensive analyses of model interpretability, dataset bias, 
algorithmic fairness, and the interaction between interpretability and fairness.

Interpretability evaluation First, we benchmark the performance of common interpretability methods for 
feature importance estimation on multiple deep learning models trained for the mortality prediction task. Due 
to the complexity of dynamics in electronic health record data, there is no access to the ground truth of feature 
importance. Therefore, we utilize ROAR (remove and retrain)7 to quantitatively evaluate different feature impor-
tance estimations. On all models considered, the ArchDetect8 outperforms other interpretation methods in 
feature importance estimation. Then we qualitatively analyze the feature importance estimation results given by 
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ArchDetect, and verify its effectiveness based on the observations that it distinguishes crucial features for mor-
tality prediction. Importantly, we also observe that: (1) ArchDetect can recognize critical features not appearing 
in domain knowledge for mortality prediction. (2) Demographic features are important for prediction, which 
leads to our following audits of dataset bias and algorithmic fairness.

Dataset bias and algorithmic fairness We adopt the following commonly used demographic features as pro-
tected attributes: (1) ethnicity, (2) gender, (3) marital status, (4) age, and (5) insurance type. For dataset bias, 
we analyze the average adoption and duration of five types of ventilation treatment on patients from different 
groups. There exists treatment disparity among patient groups split by different protected attributes. However, 
multiple confounders may lead to the observed disparity in treatment. For algorithmic fairness, we evaluate the 
performance of state-of-the-art machine learning approaches for mortality prediction in terms of AUC-based 
fairness metrics. Experiment results indicate a strong correlation between mortality rates and fairness: machine 
learning approaches tend to obtain lower AUC scores on groups with higher mortality rates. Moreover, we find 
that prediction models trained with the MIMIC-IV dataset rely on racial attributes unequally across subgroups.

Interactions between interpretability and fairness We examine the interaction of interpretability and fair-
ness by drawing connections between feature importance and fairness metrics, which is an understudied area 
in the community. We observe substantial disparities in the importance of each demographic feature used for 
in-mortality prediction across the protected subgroups, which raises a concern about how these demographic 
features should be used fairly in mortality prediction.

In summary, our main contributions are: 

1.	 We have conducted a comprehensive analysis on a diverse set of popular interpretability methods for deep 
neural networks in the healthcare setting. We specifically focuse on the in-hospital mortality prediction task 
where interpretability is a must and evaluate all models and interpretability methods on the recently released 
large-scale MIMIC-IV dataset.

2.	 On interpretability, we find that the feature importance estimation results successfully identify most criti-
cal features in domain knowledge and recognizes new ones. We also find that deep methods rely on some 
demographic features for prediction. On fairness, our findings show that there exists treatment disparity 
among patient groups, and that in-hospital mortality predictors trained with MIMIC-IV can rely on racial 
attributes unequally across subgroups. In the end, we connect interpretability and fairness to show that 
feature importance from interpretability methods can help to identify potential biases in deep predictive 
models.

3.	 Our findings suggest that future research in AI models for healthcare applications can avoid the lopsided 
focus on prediction performance via analyzing the interpretability and fairness of models, as well as verifying 
if models reach good performance while introducing bias.

Related work
Interpretability evaluation.  Interpretability of deep learning models.  Due to the complexity of deep 
learning models, interpretability research has developed diversely, and many methods have been used to inter-
pret how a deep learning model works from various aspects, including: (1) Feature importance estimation9–19. 
For a given data sample, these methods estimate the importance of each input feature with respect to a specified 
output. (2) Feature interaction attribution8,20–24. In addition to estimating the importance of individual features, 
these methods analyze how interactions of feature pairs/groups contribute to predictions. (3) Neuron/layer at-
tribution19,25–28. These methods estimate the contribution of specified layers/neurons in the model. (4) Explana-
tion with high-level concepts29–31. These methods interprete deep learning models with human-friendly concepts 
instead of the importance of low-level input features. In this paper, we focus on feature importance estimation 
due to its importance and the completeness of its evaluation methods.

Evaluation of feature importance interpretation.  Since feature importance estimation assigns an importance 
score for each input feature, the evaluation of results is equivalent to the evaluation of binary classification results 
when the ground truth of feature importance is available, where the label indicates whether the feature is impor-
tant for the problem32. constructs synthetic datasets with feature importance labels for evaluation33. obtains fea-
ture importance labels from both manually constructed tasks and domain experts34. derives importance labels 
from tasks with graph-valued data with computable ground truths. However, these evaluation methods require 
the accessibility of ground truth labels, which is hard to fulfill and is usually the problem itself we need to solve 
in domains such as healthcare.

For evaluation without ground truth, A common strategy to evaluate feature importance estimation is to 
measure the degradation of model performance with the gradual removal of features estimated to be important35. 
Perturbates features ranked by importance in test samples and calculates the area over the MoRF curve (AOPC): 
a higher AOPC means the information disappears faster with feature removal and indicates a better impor-
tance estimation7. Remove features from the entire dataset and retrain the model when obtaining AOPC, which 
excludes the interference of data distribution shifting32. Replace features with known feature distributions for 
evaluation on synthetic tasks to ensure the consistency of data distribution. In this paper, we utilize the evalu-
ation in7.

Fairness evaluation.  Bias and fairness in machine learning.  With the open access to large-scale data-
sets and the development of machine learning algorithms, more decisions in the real world are made by ma-
chine learning algorithms with or without human’s intervention, e.g., job advertisements promoting36, facial 
recognition37, treatment recommendation38, etc. Due to bias in datasets or models, decisions made by machine 
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learning algorithms are prone to be unfair, where an individual or a group is favored compared with the oth-
ers owing to their inherent traits. One well-known example is the software COMPAS (Correctional Offender 
Management Profiling for Alternative Sanctions), which was found a bias against African-Americans to assign a 
higher risk score of recommitting another crime than to Caucasians with the same profile39.

Based on the general assumption that the algorithm itself is not coded to be biased, the decision unfairness can 
be attributed to biases in the data, which is likely to be picked up and amplified by the trained algorithm40. Three 
major sources of data biases are40: (1) Biased Labels: the ground-truth labels for the machine learning algorithms 
to predict are biased; (2) Imbalanced representation: imbalanced representation of different demographic groups 
occurs when some protected groups are underrepresented with fewer observations in the dataset compared 
with other groups; (3) Data Quality Disparity: data from protected groups might be less complete or accurate 
during data collecting and processing. Mostly widely considered traits, such as gender, age, ethnicity, marital 
status, are considered as protected or sensitive attributes in literature41. Fairness has been defined in various ways 
considering different contexts or applications, two of them are the most widely leveraged for bias detection and 
correction: Equal Opportunity, where the predictions are required to have equal true positive rate across two 
demographics, and Equalized Odds, where an additional constraint is put on the predictor to have equal false 
positive rate42. To derive fair decisions with machine learning algorithms, three categories of approaches have 
been proposed to mitigate biases41,43: (1)Pre-processing: the original dataset is transformed so that the underly-
ing discrimination towards some groups is removed44; (2) In-processing: either by adding a penalization term in 
the objective function45 or imposing a fairness-relevant constraint46; (3) Post-processing: further recompute the 
results from predictors to improve fairness47.

Bias and fairness in MIMIC‑III.  With clinical notes48,49 or temporal measurements4,50,51 or both52 from MIMIC-
III considered, fairness evaluation and bias mitigation have been studied recently for tasks such as mortality 
prediction4,48–52, phenotyping49,52, readmission50, length of stay51, etc. To evaluate data and prediction fairness 
for the aforementioned healthcare tasks, attributes like ethnicity4,48,49,51,52, gender49,51,52, insurance49,52, age48 and 
language49, are considered most often to split patients into different protected groups.

When making medical decisions based on text data like clinical notes, word embeddings, used as machine 
learning inputs, have been demonstrated to propagate unwanted relationships with regard to different genders, 
language speakers, ethnicities, and insurance groups49,52. With respect to gender and insurance type, differences 
in accuracy and therefore machine bias has been observed for mortality prediction50. To mitigate biases and 
improve prediction fairness, Chen et al. argued that collecting data with adequate sample sizes and predictive 
variables measures is an effective approach to reduce discrimination without sacrificing accuracy4. Martinez et al. 
proposed an in-processing approach where the fairness problem is characterized as a multi-objective optimiza-
tion task, where the risk for each protected group is a separate objective48. After well-trained machine learning 
models make predictions, equalized odds post-processing52 and updating predictions according to the weighted 
sum of utility and fairness51 were introduced respectively as effective post-processing approaches.

To continue the dataset bias and algorithmic fairness study on MIMIC-IV, we follow previous fairness study 
work and adopt the following commonly used demographic features as protected attributes: (1) ethnicity, (2) 
gender, (3) marital status, (4) Age, and (5) insurance type. For dataset bias, we analyze the average adoption and 
duration of five types of ventilation treatment on patients from different groups. For algorithmic fairness, we 
evaluate the performance of state-of-the-art machine learning approaches for mortality prediction in terms of 
accuracy and fairness.

Interactions between interpretability and fairness.  Besides accuracy, interpretability and fairness 
are two important aspects that businesses and researchers should take into consideration when designing, 
deploying, and maintaining machine learning models53.

It is well acknowledged that model interpretability methods, when applied to trained models, act as an impor-
tant tool towards developing fairer ML systems54 since interpretations can help detecting and mitigating bias 
during data collection or labeling55–57. When the feature importance is leveraged to interpret model predictions, 
failure of fairness can be identified by detecting whether the feature has a larger effect than it should have58,59. 
For instance, Adebayo et al. show that gender is of low importance among all studied demographic features in a 
bank’s credit limit model, which indicates that the bank’s algorithm is not overly dependent on gender in making 
credit limit determinations58. Recently, connections between interpretability and fairness have been quantitatively 
studied by comparing fairness measures and feature importance measure: there is a direct relation between SHAP 
value difference and equality of opportunity after removing bias with reweighing techniques and measuring 
feature importance with SHAP on Adult, German, Default and COMPAS datasets60.

However, the effect of enhancing or enforcing one aspect of interpretability/fairness directly in machine 
learning models is relatively unexplored. Kleinberg et al.61 demonstrate a fundamental inconsistency between 
the model interpretability (measured as model simplicity) and fairness (equity): every simple prediction func-
tion can be outperformed by a more complex one with improved efficiency and equity. Jabbari et al.62 discovers 
several different types of trad-offs between interpretability and fairness. Enforcing fairness may also hinder 
the interpretability: Wang & Han et al.63 discuss that common approaches to enforcing fairness, including pre-
processing of features and post-processing of predictions, involve non-interpretable manipulations and cannot 
be corrected for an interpretable model afterwards. In contrast, we leverage feature importance and interactions 
derived from both interaction and attribution approaches as tools to analyze models’ fairness and remove violat-
ing interactions within these models.
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MIMIC‑IV dataset
In this section, we describe the following preprocessing steps of the MIMIC-IV dataset: cohort selection, feature 
selection, and data cleaning. We also report the distributions of demographic, admission and comorbidity vari-
ables within the dataset.

Dataset description.  MIMIC-IV5,6 is a publicly available database of patients admitted to the Beth Israel 
Deaconess Medical Center (BIDMC) in Boston, MA, USA. It contains de-identified data of 383,220 patients 
admitted to an intensive care unit (ICU) or the emergency department (ED) between 2008 and 2019. Till the day 
when we finished all experiments, the latest version of MIMIC-IV is v0.4 and only provides public access to the 
electronic health record data of 50,048 patients admitted to the ICU, which is sourced from the clinical informa-
tion system MetaVision at the BIDMC. Therefore, we design the following data preprocessing procedures for the 
ICU data part of MIMIC-IV. [All methods were carried out in accordance with relevant guidelines and regula-
tions] on this dataset.

Preprocessing.  Cohort selection.  Following the common practice in1,3, we select ICU stays satisfying the 
following criteria as the cohort: (1) the patient is at least 15 years old at the time of ICU admission; (2) the ICU 
stay is the first known ICU stay of the patient; (3) the total duration of ICU stay is between 12 h and 10 days. 
After the cohort selection, we collect 45,768 ICU stays as the cohort. According to the cohort selection criterion 
(2), each ICU stay corresponds to one unique patient and one unique hospital admission.

Data cleaning and feature selection.  We follow the same data cleaning procedure in1 to handle: (1) Inconsistent 
units. We convert features with multiple units to their major unit. (2) Multiple recordings at the same time. We 
use the average value for numerical features and the first appearing value for categorical features. (3) Range of 
feature values. We use the median of the range as the value of the feature.

We select 164 features from the following groups, a detailed list of all selected features is in Table 8 in 
Appendix:

•	 Electronic healthcare records (EHR). We modify the feature list used in1 and extract 122 features after remov-
ing features that are no longer available in MIMIC-IV.

•	 Demographic features. We extract 5 from patients’ demographic information.
•	 Admission features. We extract 4 from admission records.
•	 Comorbidity features. We extract binary flags of 33 types of comorbidity using patients’ ICD codes.

Data filtering, truncation, aggregation and imputation.  Data Filtering After specifying the list of features, we 
further filter ICU stays from the cohort and only keep those that have records of selected EHR features for at 
least 24 h and at most 10 days, starting from the first record within 6 h prior to ICU admission time. We have 
43005 ICU stays after the filtering. Other works3 extract the first 30-hour data and drop data from the last 6 h 
to avoid information leakage of positive mortality labels to features measured within 6 h prior to deathtime. We 
find that most (96.02%) of the patients with positive in-hospital mortality labels have measurements for over 30 
h prior to their deathtime, thus we omit this processing step. Truncation For each ICU stay, we only keep the 
data of the first 24 h, starting from the first record within 6 h prior to its ICU admission time. Aggregation For 
each ICU stay, we aggregate its records hourly by taking the average of multiple records within the same hourly 
time window. Imputation We perform forward and backward imputation to fill missing values. For cases where 
certain features of some patients are completely missing, we fill with mean values of corresponding features in 
the training set.

Dataset summary.  After all preprocessing steps, we obtain features of the shape (N, T, F), where N = 43005 
is the number of ICU stays (data samples), T = 24 is the number of time steps with 1-h step size, and F = 164 
is the total number of features. We also process the data into the tabular form (N , F ′) by replacing sequential 
EHR features with the summary over time steps including minimum, maximum, and mean values (for the 
urinary_output_sum feature we have summation in addition), where F ′ = 409 . We show the distribution of 
demographic, admission, and comorbidity features grouped by patients’ in-hospital mortality status in Table 9 
in Appendix. We also demonstrate differences between the preprocessed MIMIC-IV data in this work and the 
preprocessed MIMIC-III data from1 in Table 1. 

Table 1.   Differences between preprocessed MIMIC-III in1 and preprocessed MIMIC-IV.

MIMIC-III MIMIC-IV (this work)

# Samples 35,627 43,005

# Temporal features 135 122

# Demographic features 1 5

# Admission features 1 4

# Comorbidity features 3 33
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Interpretability evaluation
In this section, we evaluate the performance of various feature importance interpretability methods on multiple 
models for the in-hospital mortality prediction task. We describe the task, models, interpretability methods, and 
the evaluation method in detail and report the evaluation results.

Task description.  Mortality prediction is one primary outcome of high interest of hospital admissions, and 
is widely considered in other benchmark works1–3,64. We use the in-hospital mortality prediction task to train 
different models and evaluate the performance of various interpretability methods. We formulate the in-hospital 
mortality prediction task as a binary classification task. Given the observed sequence of features X ∈ R

T×F of 
one patient (or its summary x ∈ R

F , depending on the model), the model gives the probability that the patient 
dies during his/her hospital admission after being admitted to ICU. In MIMIC-IV, a patient has in-hospital mor-
tality if and only if his/her deathtime exists in the mimic_core.admissions table. We randomly divide 60% data 
for training, 20% for validation and 20% for test.

Models.  We consider following models: (1) AutoInt65. A model that learns feature interaction automatically 
via self-attentive neural networks. (2) LSTM66. Long short-term memory recurrent neural network, which is 
a common baseline for sequence learning tasks. (3) TCN67. Temporal convolutional networks, which outper-
form canonical recurrent networks across various tasks and datasets. (4) Transformer68. A network architec-
ture based solely on attention mechanisms. Here we only adopt its encoder part for the classification task. (5) 
IMVLSTM69. An interpretable model that jointly learns network parameters, variable and temporal importance, 
and gives inherent feature importance interpretation. We use sequence data as input for (2–5), and the summary 
of sequence data as input for (1) since AutoInt only processes tabular data in its original implementation.

We use the area under the precision-recall curve (AUPRC) and the area under the receiver operating char-
acteristic curve (AUROC) as metrics for binary classification. The performance of all models considered in this 
work is shown in Table 2.

Interpretability methods.  Interpretation of deep learning models is still a rapidly developing area and 
contains various aspects. In this work, we focus on the interpretation of feature importance, which estimates 
the importance of single features for a given model on a specific task. Estimation of feature importance helps 
improve the model, builds trust in prediction and isolates undesirable behavior7. Recent works7,32,35 have devel-
oped methods for evaluating feature performance estimation without access to the ground truth of feature 
importance, which fits scenarios in healthcare domains well: ground-truth feature importance for healthcare 
applications is either the problem we need to solve itself or requires extraction from a huge amount of domain 
knowledge. Therefore, we choose the interpretation of feature importance as the target aspect for evaluating 
interpretability methods.

Formally, given a function M : Rdin → R
dout and the input (flattened) feature vector x ∈ R

din , the interpreta-
tion of feature importance gives a non-negative score s(x) ∈ R

din , where s(x)i is the importance of xi to M(x).
We select the following interpretability methods to compare their feature importance estimation results. 

Notice that some interpretability methods give signed scores (or “attributions”), where signs reflect positive/
negative contributions of features to the output, and we use the absolute values of signed scores as importance 
scores. For methods requiring a baseline input vector, unless otherwise specified, we follow the method in32 and 
randomly sample x′ ∈ R

din , where x′i ∼ U[0, 1].

(1) Gradient based methods

•	 Saliency9 Saliency returns the gradients with respect to inputs as feature importance: s(x) = ∂M(x)
∂x

 . By taking 
the first-order Taylor expansion of the neural network at the input, M(x) ≈ (

∂M(x)
∂x

)⊺x + b , which is a linear 
approximation of the network, the gradient ∂M(x)

∂xi
= s(x)i is the coefficient of the i-th feature.

•	 IntegratedGradients10 IntegratedGradients assigns an importance score to each input feature by approximating 
the integral of gradients of the model’s output with respect to the inputs along the path (straight line) from 
given baselines 

 where x′ is the baseline.
•	 DeepLift11,12 DeepLift decomposes the output prediction of a neural network on a specific input by back-

propagating the contributions of all neurons in the network to every feature of the input. 

(1)IntegratedGradients(x)i = (xi − x′i)×

∫ 1

α=0

∂M(x′ + α(x − x
′))

∂xi
dα,

Table 2.   Classification performance of all considered deep models.

AutoInt LSTM TCN Transformer IMVLSTM

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

0.508 0.901 0.660 0.938 0.666 0.928 0.686 0.939 0.769 0.955
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 where ∂
gM(x)
∂xi

=
∑

p∈Pio
(
∏

(s,t)∈p wts
∏

(s,t)∈p g(zt)) . Pio is the set of all paths from the i-th input feature to the 
output neuron in the network. (s, t) is a pair of connected neurons in path p. Each neuron t contains a linear 
transformation zt =

∑

q∈Pa(t) wtqoq + bt followed by a nonlinear mapping ot = f (zt).
•	 GradientShap13 GradientShap approximates SHAP (SHapley Additive exPlanations) values by computing 

the expectations of gradients by randomly sampling from the distribution of baselines. It first adds white 
noise to each input sample and selects a random baseline from a given distribution, then selects a random 
point along the path between the baseline and the input with noise, and computes the gradient of outputs 
with respect to the random point. The procedure is repeated for multiple times to approximate the expected 
values of gradients E( ∂M(x)

∂x
) . The final SHAP value for the i-th feature is E( ∂M(x)

∂xi
)× (xi − x′i).

•	 DeepLiftShap13 It extends DeepLift algorithm and approximates SHAP values using DeepLift. For each input, 
it samples baselines from a given distribution and computes the DeepLift score for each input-baseline pair 
and averages the resulting scores per input example as the output.

•	 SaliencyNoiseTunnel14 SaliencyNoiseTunnel adds Gaussian noise to the input sample and averages the cal-
culated attributions using Saliency method as the output.

(2) Perturbation based methods

•	 ShapleySampling15,16 Shapley value gives attribution scores by taking each permutation of the input features 
and adding them one-by-one to a given value. Since the computation complexity is extremely high for large 
numbers of features, ShapleySampling takes some random permutations of the input features and averages 
the marginal contribution of features.

•	 FeaturePermutation17 FeaturePermutation permutes the input feature values randomly within a batch and 
computes the difference between original and shuffled outputs as the result.

•	 FeatureAblation18 FeatureAblation replaces each input feature with a given baseline value and computes the 
difference in output as the result.

•	 Occlusion19 Occlusion replaces each contiguous rectangular region with a given baseline and computing the 
difference in output as the result.

•	 ArchDetect8 It utilizes the discrete interpretation of partial derivatives. While the original paper considers 
both single features and feature pairs, we here only apply it to single features, since the evaluation method 
in this work is designed for single feature importance only. In the single feature case, the importance score 
of the i-th feature is 

 Here we select x′ = 0 ∈ R
din.

(3) Glassbox interpretation. If the model’s architecture provides feature importance scores directly as a part 
of the output of the model, such as the attention score of each feature, we call this interpretation as “Glassbox” 
and regard it as an extra baseline.

(4) Random baseline. As a baseline, we randomly shuffle all features as the feature importance ranking.
For models in “Models” Section, AutoInt maps categorical features to embeddings using learnable dictionaries 

and has no gradient on categorical features, thus gradient based methods are not applicable. Only IMVLSTM 
model has Glassbox interpretation.

Evaluation method.  Since acquiring the ground-truth feature importance is challenging for mortality pre-
diction tasks, we evaluate one feature importance estimation by gradually dropping most important features it 
gives at certain ratios from the dataset and observe the degradation of the model’s performance. The larger the 
degradation is, the better the estimation is, since it identifies the features most helpful for the model on the task.

More specifically, we use ROAR (remove and retrain) proposed in7 for evaluation. For each interpretability 
method, we replace the most important features of certain fractions of each data sample with a fixed uninforma-
tive value. We conduct this in both training and test sets. Then we retrain the model with the modified training 
set and evaluate its classification performance on the modified test set. By retraining the model on datasets with 
features removed, ROAR ensures that train and test data comes from a similar distribution and reduces the 
impact on the model’s performance of data distribution discrepancy, so that the degradation of performance is 
caused by the removal of information instead of the shift of data distribution.

For sequence input X ∈ R
T×F , we flatten it and give feature importance scores for all T × F features. For the 

i-th feature, we use its mean value in the training set as its uninformative value. We evaluate each interpretability 
method with feature drop ratios 10%, 20%, . . . , 100% and plot the curve of model performance with respect to 
feature drop ratio for each model.

Results.  Evaluation of interpretability methods.  Figure 1 shows the curves of model performance (meas-
ured with AUPRC and AUROC respectively) with respect to the feature drop ratio of different interpretability 
methods for the top-2 models (Transformer & IMVLSTM), refer to Section 8.3 for all curves. Table 3 gives the 

(2)DeepLift(x)i = (xi − x′i)×
∂gM(x)

∂xi
, g(zt) =

ft(zt)− ft(z
′
t)

zt − z′t
,

(3)ArchDetect(x)i =

(

M(x{i} + x
′
\{i})−M(x′{i})

xi − x′i

)2

, where (xI)i =

{

xi , if i ∈ I;

0, otherwise.
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quantitative results of area under the curve (AUC). A lower value of AUC means that the performance curve 
drops faster with the increase of feature drop ratio, thus indicates that the interpretability method gives a better 
ranking of feature importance.

We have the following observations: (1) ArchDetect gives the best performing feature importance estimation 
overall. From Fig. 1, we observe that the curve of ArchDetect drops the fastest for all models on both metrics. 
Quantitative results in Table 3 also show that ArchDetect has the lowest AUC. Therefore, for the in-hospital 
mortality task, the feature importance ranking given by ArchDetect is the most reasonable one among results of 
all interpretability methods considered in this work. (2) Gradient based methods perform well on LSTM, Trans-
former and IMVLSTM models, but are no better than a random guess on TCN. AUC of both metrics of gradi-
ent based methods is significantly lower than that of random guessing for LSTM, Transformer and IMVLSTM. 
But for TCN, even the best performing gradient based method SaliencyNoiseTunnel has AUC close to random 

Figure 1.   Curves of performance metric w.r.t feature drop ratio.

Table 3.   Area under the curve (AUC) of interpretability methods for each model and each classification 
performance metric evaluated using ROAR. AUC is measured for two prediction metrics (AURPC and 
AUROC) respectively. Lower AUC indicates more rapid prediction performance drop and better feature 
importance interpretation.

Interpreters

AutoInt LSTM TCN Transformer IMVLSTM

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Random 0.401 0.842 0.615 0.909 0.605 0.901 0.662 0.918 0.669 0.915

Glassbox × × × × × × × × 0.533 0.892

Saliency × × 0.558 0.898 0.587 0.893 0.616 0.909 0.566 0.884

IntegratedGradients × × 0.586 0.899 0.593 0.899 0.588 0.903 0.465 0.863

DeepLift × × 0.575 0.900 0.598 0.898 0.594 0.905 0.542 0.883

GradientShap × × 0.561 0.893 0.592 0.899 0.600 0.904 0.470 0.858

DeepLiftShap × × 0.569 0.897 0.607 0.901 0.619 0.909 0.554 0.887

SaliencyNoiseTunnel × × 0.551 0.892 0.581 0.896 0.578 0.899 0.475 0.851

ShapleySampling 0.456 0.866 0.628 0.910 0.613 0.898 0.655 0.916 0.668 0.917

FeaturePermutation 0.454 0.866 0.624 0.910 0.616 0.903 0.655 0.917 0.677 0.918

FeatureAblation 0.279 0.733 0.438 0.811 0.479 0.824 0.425 0.792 0.408 0.830

Occlusion 0.456 0.866 0.617 0.909 0.609 0.898 0.653 0.917 0.684 0.920

ArchDetect 0.251 0.696 0.369 0.774 0.446 0.818 0.379 0.784 0.382 0.805
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guessing (0.581 vs. 0.605 for AUPRC and 0.896 vs. 0.901 for AUROC). (3) Attention scores are not necessarily the 
best estimation of feature importance. In IMVLSTM, the Glassbox baseline utilizes attention scores the model 
gives as an estimation of feature importance. Although it outperforms the random guessing baseline, it is not 
among the best interpretation methods and is inferior to methods such as ArchDetect and IntegratedGradients. 
Similar observations also exist in the natural language processing domain70,71, where attention weights largely 
do not correlate with feature importance.

Identified important features.  Similarity of Important Features from Different Models We further investigate 
and compare important features given by different prediction models with the best performing interpretablity 
method ArchDetect in  “Results” Section for a qualitative evaluation of its effectiveness. Since ArchDetect gives 
local feature importance for each data sample respectively, we aggregate local results for a global qualitative 
evaluation with following steps: (1) for each sample, get the rank of importance for each feature; (2) calculate 
the average of ranks for each feature over all data samples; (3) sort the averaged ranks of features from (2) as the 
global ordering of importance for all features. We then verify the effectiveness of feature importance estimation 
given by ArchDetect from following aspects:

Similarity of important features from different models Figure 2 shows the Jaccard similarity of top-50 most 
important features identified in models. We observe that (1) the Jaccard similarity of top-50 most important 
features from any pair of two models is above 0.667; (2) each pair of models accepting sequential data (LSTM, 
TCN, Transformer, and IMVLSTM) has a Jaccard similarity over 0.786. This result demonstrates that ArchDetect 
identifies similar sets of important features when applied to various models, which is necessary for its correctness 
since the ground truth set of important features is unique.

Overlapping and disagreement of feature importance across models Since IMV-LSTM achieves the best mortal-
ity prediction performance, to take a closer look into the overlapping and disagreement of feature importance 
across models, we show differences of top-50 important features in other models from those in IMVLSTM 
in Table 4.

We observe several common anomalies across models: (1) Top-50 important features of AutoInt has larger 
discrepancy than others with those of IMVLSTM, which is coherent to its larger performance gaps in Table 2. 
(2) Importance of some comorbidities (features with indices falling into 123–125 and 134–163) tend to be over-
estimated by suboptimal models, while the importance of peripheral vascular (feature 138) is underestimated 
in AutoInt and LSTM. (3) Suboptimal models underestimate various labevent and chartevent features, and 
LACTATE (feature 57) is lacking in important features identified in each of them.

Visualization of Global Feature Importance Ranks and Comparison with Domain Knowledge With the aim to 
(1) verify feature importance estimation results with domain knowledge, and (2) give an intuitive explanation 
of what features are important for mortality prediction task, we compare feature importance results given by 
ArchDetect with existing domain knowledge. More specifically, we collect features used for calculating 6 types 
of scores measuring the severity of illnesses that are supported by MIMIC-IV (https://github.com/MIT-LCP/
mimic-code/tree/main/mimic-iv/concepts/score) and consider their union as important features for predicting 
mortality in domain knowledge. Scores include: Acute Physiology Score III (APS III)72, Logistic Organ Dysfunc-
tion Score (LODS)73, Oxford Acute Severity of Illness Score (OASIS)74, Simplified Acute Physiology Score II 
(SAPS II)75, Systemic inflammatory response syndrome (SIRS)76, Sequential Organ Failure Assessment (SOFA)77. 
We provide visualizations for all features in Figs. 9, 10, 11, 12, 13 and 14 in Appendix.

Denote as DK the union of features for calculating severity scores, and I the union of top-50 most important 
features identified by ArchDetect in all models. We visualize the global feature importance ranks given by Arch-
Detect for their overlapping parts ( DK ∩ I ) and non-overlapping parts ( DK \ I and I \ DK ) in Fig. 3. We observe 
that: (1) Most (70.3%, 26 out of 37) features considered important for mortality prediction in domain knowledge 
are also identified as important features via ArchDetect. (2) 11 features important in domain knowledge are not 
identified as important by ArchDetect (Fig. 3b). Instead, ArchDetect recognizes 39 features that are not covered 

Figure 2.   Jaccard similarity of top-50 most important features identified in all models.
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Table 4.   Comparison of top-50 important features between suboptimal models and the best performing one.
Importance of some comorbidities tend to be overestimated by suboptimal models, while the importance 
of peripheral vascular is underestimated in AutoInt and LSTM. Suboptimal models underestimate various 
labevent and chartevent features.

Model Extra (identified in model but not in IMVLSTM) Lacking (identified in IMVLSTM but not in model)

AutoInt

88. systolic_blood_pressure_abp_mean
90. body_temperature
134. congestive_heart_failure
135. cardiac_arrhythmias
140. paralysis
152.solid_tumor
153. rheumatoid_arthritis
160.alcohol_abuse
163. depression

31. HEMOGLOBIN
33. MCH
44. INR(PT)
45. PT
57. LACTATE
76. O2Flow
82. SpO2DesatLimit
91. pao2
138. peripheral_vascular

LSTM

32. MCHC
135. cardiac_arrhythmias
136. valvular_disease
143. diabetes_uncomplicated
146. renal_failure

39. CREATININE
57. LACTATE
82. SpO2DesatLimit
131. language
138. peripheral_vascular

TCN

77. Glucosefingerstick
134. congestive_heart_failure
136. valvular_disease
151. metastatic_cancer
152. solid_tumor

39. CREATININE
57. LACTATE
82. SpO2DesatLimit
93. urinary_output_sum

Transformer
135. cardiac_arrhythmias
136. valvular_disease
143. diabetes_uncomplicated
152. solid_tumor

45. PT
57. LACTATE
82. SpO2DesatLimit
124. HEM

(a) DK∩ I. (b) DK \ I.

(c) I \DK.

Figure 3.   Visualization of global feature importance ranks for the overlapping and non-overlapping features 
between domain knowledge (DK) and interpretation results (I).
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by domain knowledge (Fig. 3c), which mainly includes labevent features (laboratory based measurements of 
fluid of the patient’s body, feature 31–46 and 108–110), respiratory-related features (76), comorbidity features 
(123–125 and 134–163), and demographic features (127–133). Such mismatches may provide useful insights for 
doctors and experts of better evaluations of mortality. (3) We notice that demographic features play important 
roles in prediction models, which may raise the concern of fairness. Thus we further investigate the fairness of 
data and models in the following section.

Connection between interpretability and trustworthiness of deep learning models.  Besides 
understanding the reasons or insights behind particular predictions made from deep learning models, how 
much we can trust these predictions also deserves serious consideration, especially when making critical deci-
sions accordingly in domains such as autonomous driving, finance, and healthcare, etc. In order to study the 
connection between model interpretability and trustworthiness of deep learning models for our mortality pre-
diction task, we are interested in how the trustworthiness of deep predictive models varies when the given 
features are removed step by step according to the recognized importance from diverse interpretability models.

Firstly, we quantify the model trustworthiness following the metric NetTrustScore TM defined in78,79:

where x is the features that deep neural networks make predictions with, y and z are the predicted and true class 
label respectively, C(y|x) is the confidence represented by softmax outputs associated with the predicted class 
labels, α and β denotes reward and penalty relaxation coefficients, Ry=z|M denote the scenario that the prediction 
y from model M matches the oracle label z, P(x, y) is the probability of the occurrence of the sample (x, y), P(z) 
is the probability of occurrence for ground-truth label z.

For mortality prediction, we set α = 1 and β = 1 to penalize undeserved overconfidence and reward well-
placed confidence equally. Therefore, the trustworthiness of binary classification models is quantified by 
TM = 1

|D|

∑

(x,z)∈D C(z|x) , where D is the testing dataset. We illustrate the variation of trustworthiness along 
with the feature drop ratio in Fig. 4, where the feature importance is computed by different interpretability 
methods on different predictive models. Considering the fact that predictive models fed with less task-relevant 
information will lead to less trustworthy predictions, we also include the way of randomly removing features as a 
baseline to alleviate the influence of information loss. Regardless of the underlying predictive models, we observe 
that if we remove the features with high importance computed by ArchDetect or FeatureAblation, the trustwor-
thiness of all studied deep learning models drops massively compared with other interpretability methods as 
well as the random strategy. To quantify the connection between the feature importance provided by interpret-
ability model and the trustworthiness of predictive models, we calculate the AUC of Fig. 4 and list the results in 
Table 5. We find that the two interpretability methods, ArchDetect and FeatureAblation, have consistently lower 
AUC values compared with the random feature removal strategy. This is consistent with our prior visual analysis 
that important features recognized by ArchDetect and FeatureAblation contribute a lot to the trustworthiness of 
predictions from deep learning models.

Qz(x, y) =

{

C(y|x)α , if x ∈ Ry=z|M

(1− C(y|x))β , if x ∈ Ry �=z|M
,

TM(z) =

∫ ∫

P(x, y)Qz(x, y)dydx,

TM =

∫

P(z)TM(z)dz,

Figure 4.   Curves of trustworthiness metric w.r.t feature drop ratio.
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Fairness evaluation
In this section, we first describe the set of demographic features considered as protected attributes. We then 
investigate the extent of which disparate treatment exists within the MIMIC-IV dataset. Given that the in-hospital 
mortality predictors can be further utilized in a down-stream decision-making policy, we audit their fairness 
across various protected attributes.

Protected attributes.  MIMIC-IV came with a set of demographic features that are helpful for the task 
of auditing in-hospital mortality predictors for prediction fairness. Protected classes under the Equal Credit 
Opportunity Act (ECOA) include the following: age, color, marital status, national origin, race, recipient of public 
assistance, religion, sex80. For our task, we consider a subset of such protected classes available within the dataset. 
To remove uncertainty within our analysis, we further identify and drop examples with unclear attributes, such 
as ‘None’, ‘Unknown’, or ‘Unable to obtain’. Table 6 lists the attributes and subgroups used within our analysis. 
Note that age is grouped by quartiles. Refer to Table 9 in the Appendix for more information on each subgroup.

Fair treatment analysis.  Disparate treatment is unlawful discrimination in US labor law. Title VII of the 
United States Civil Rights Act is created to prevent unequal treatment or behavior toward someone because of a 
protected attribute (e.g. race, gender, or religious beliefs). Although the type and duration of treatment received 
by patients are determined by multiple factors, analyzing treatment disparities in MIMIC-IV can give us insights 
in potential biases in treatment received by different groups. Previously, there have been a few works pointing 
out the racial disparities in end-of-life care between cohorts of black and white patients within MIMIC-III81,82. In 
a similar spirit, we additionally investigate treatment adoptions and duration across not only ethnicity, but also 
gender, age, marital status, and insurance type.

Evaluation method.  In MIMIC-IV, 5 categories of mechanical ventilation received by patients have been 
recorded: HighFlow, InvasiveVent, NonInvasiveVent, Oxygen, and Trach. We first extract the treatment dura-
tion and then label the patients with no record as no intervention adoption. If a patient had multiple spans, such 
as an intubation-extubation-reintubation, then we consider the patient’s treatment duration to be the sum of the 
individual spans.

Results.  Figure  5 plots the intervention adoption rate and intervention duration across different protected 
attributes. We observe that: (1) There exists disparate treatments, which is most evident across different ethnic 
groups. The first column in Fig. 5 indicates that on average the Black cohort is less likely to receive ventilation 
treatments, while also receiving a shorter treatment duration. Similar observations that people from different 
racial groups tend to receive different treatment83,84 or health care plans81,82 have been reported in literature. Sim-
ilarly, this is also observed across groups split by marital status, where single patients tend to receive shorter and 
fewer ventilation treatments as opposed to married patients, and similarly with patients with public or private 
insurances. (2) There are numerous hidden confounders in analyzing disparate treatment. The fourth column in 
Fig. 5 indicates more treatments provided to older patients. However, one can imagine that cause of this is medi-
cally relevant as the older cohort tends to require more care. Similarly, patients with generous public insurance 
can more easily afford more treatments. In particular, we note that it is difficult to precisely determine whether 
the differences in treatment are due to intentional discrimination or differences caused by other confounders. At 
the current junction, we suspect a closer look at causal analysis in future works can help address this problem.

Table 5.   Area under the curve (AUC) of interpretability methods for each model and the model 
trustworthiness metric evaluated using ROAR. Lower AUC indicates more rapid trustworthiness drop. Lower 
is better. Best values are in [bold].

Interpreters AutoInt LSTM TCN Transformer IMVLSTM

Random 0.893 0.919 0.908 0.924 0.924

Glassbox × × × × 0.910

Saliency × 0.911 0.914 0.922 0.914

IntegratedGradients × 0.912 0.907 0.918 0.902

DeepLift × 0.910 0.912 0.918 0.909

GradientShap × 0.910 0.908 0.916 0.901

DeepLiftShap × 0.911 0.914 0.921 0.911

SaliencyNoiseTunnel × 0.915 0.916 0.913 0.900

ShapleySampling 0.902 0.924 0.917 0.920 0.925

FeaturePermutation 0.898 0.920 0.913 0.921 0.925

FeatureAblation 0.881 0.894 0.900 0.901 0.894

Occlusion 0.901 0.919 0.912 0.919 0.926

ArchDetect 0.880 0.892 0.894 0.894 0.891
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Fair prediction analysis.  Fairness in machine learning is a rapidly developing field with numerous defini-
tions and metrics for prediction fairness with respect to two notions: individual and group fairness. For our 
binary classification task of in-hospital mortality prediction, we consider the group notion where a small num-
ber of protected demographic groups G (such as racial groups) is fixed, and we then ask for the classification 
parity of certain statistics across all of these protected groups.

Fairness metrics.  Most recently, a multitude of statistical measures have been introduced for group fairness, 
most notable are statistics that ask for the equality of the false positive or negative rates across all groups G (often 
known as ‘equal opportunity’42) or the equality of classification rates (also known as statistical parity). Interest-
ingly, it has been proven that some of the competing definitions and statistics previously proposed are mutually 
exclusive85. Thus, it is impossible to satisfy all of these fairness constraints.

In our case, it is often necessary for mortality assessment algorithms to explicitly consider health-related pro-
tected characteristics, especially the age of the patients. Hence, an age-neutral assessment score can systematically 
overestimate a young person’s mortality risk, and can in turn encourage unnecessarily medical interventions. 
Similarly, enforcing equality of mortality classification rates can likewise lead to discriminatory decision making. 
Hence, we choose AUC (area under the ROC curve) as our evaluation metrics to audit fairness across subgroups. 
First, it encompasses both FPR and FNR, which touches on the notion of equalized opportunity and equalized 
odds. Second, it is robust to class imbalance, which is especially important in the task of mortality prediction 
where mortality rates are ∼ 7% , Lastly, AUC is threshold agnostic, which does not necessitate setting a specific 
threshold for binary prediction that is used across all groups.

Evaluation method.  To evaluate fairness on the MIMIC-IV dataset, we stratify the test set by groups (Table 6), 
and compute the model’s AUC for each protected group, similarly to86. In addition, we also added a stratifica-
tion for the patient group with the largest common comorbidity, with HEM/METS for patients with lymphoma, 
leukemia, multiple myeloma, and metastatic cancer. We report (1) AUC(min): minimum AUC over all pro-
tected groups, (2) AUC(macro-avg): macro-average over all protected group AUCs and (3) AUC(minority): 
AUC reported for the smallest protected group in the dataset. Higher AUC is better for all three metrics.

Additionally, as MIMIC-IV is an ongoing data collection effort, we also investigate the relationships between 
the predictive performance of the mortality predictors and the data distribution with respect to each protected 

Table 6.   Protected attributes and subgroups within MIMIC-IV.

Protected attributes Groups

Ethnicity [‘ASIAN’, ‘BLACK/AFRICAN AMERICAN’, ‘HISPANIC/LATINO’, ‘OTHER’, ‘WHITE’]

Gender [‘FEMALE’, ‘MALE’]

Marital status [‘MARRIED’, ‘SINGLE’, ‘DIVORCED/WIDOWED’]

Age [‘<55 YRS’, ‘55-67 YRS’, ‘67-78 YRS’, ‘>=78 YRS’]

Insurance [‘MEDICAID/MEDICARE’, ‘PRIVATE’]

(a) Average Intervention Adoption

(b) Average Intervention Hours

Figure 5.   Average adoption and hours of intervention in general and in subjects from different groups.
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group. It was shown in87 that if the risk distributions of protected groups in general differ, such as mortality rates, 
threshold-based decisions will typically yield error metrics that also differ by group. Hence, we are interested in 
studying the potential source of the bias/differences in predictive performances from the MIMIC-IV training set.

Results.  Figure 15 shows the training data distribution, mortality rates, and testing AUCs across each pro-
tected attribute for all patients and patients with HEM/METS, summarized over all five classifiers: AutoInt, 
LSTM, IMV-LSTM, TCN, and Transformer. Smaller gaps in AUC indicate equality in predictive performances, 
and larger gaps indicate potential inequalities. Table 7 gives the quantitative results of the area under the curve 
(AUC). Higher values of AUCs for each of the min, avg, and minority AUC metrics indicate better predictive 
performance with respect to the protected groups.

We have the following observations: (1) IMV-LSTM performs the best overall on fairness measure with 
respect to AUC across different protected groups. Quantitatively, from Table 7, it is clear that IMV-LSTM has 
the highest AUC for both overall samples and the subgroups. We see that the minimum AUC for the protected 
subgroups is highest among the methods considered in this work. This indicates a higher lower bound over all 
protected attributes. Moreover, the AUC gap for minimum over protected groups is much larger than the next 
best model, Transformer, for the patient groups with HEM, and METS. (2) The in-hospital mortality predictors 
are in general fair, but less so for the subgroup of patients with the comorbidity HEM/METS. From Fig. 15, we 
observe that the maximum AUC gap across all attributes is at most 0.08, which is smaller than the maximum 
AUC gap for patients with HEM and METS at 0.11. The difference is more pronounced in the Ethnicity class, 
but can similarly be observed for other protected classes. In general, we note that all models are quite fair across 
ethnic groups, with small deviations in gender, and patient’s insurance. Across both sets of patients, we see that 
all classifiers are in general more accurate for younger patients ( < 55 years) versus older patients. (3) There 
exists a strong correlation between mortality rates and AUCs for each of the protected attributes. We observe 
that there is a strong correlation between group mortality rates and group AUC, with Pearson’s r = − 0.922 and a 
p-value < 0.00001. This shows that groups with higher mortality rates indicate lower AUC scores. From Fig. 15, 
we also observe that data with imbalanced representation between each subgroup does not impact predictive 
performance substantively.

Interactions between interpretability and fairness
Fairness and interpretability are two critical pillars of the recent push for fairness, accountability, and transpar-
ency within deep learning. Overall, most interpretability works concern with explaining how the input features 
impact the final prediction, whether through feature importance or attributions, interactions, and knowledge 
distillation. Fairness on the other hand considers fairness metrics, optimization for fairness constraints, and the 
trade-off between accuracy and fairness. However, to the best of our knowledge, few work attempts to answer 
the question of how can interpretability help with fairness. What can we learn from our interpretability methods 
that would indicate either algorithmic bias or representation bias? In this section, we present concrete evidence 
to establish the initial connection between the two areas, but admittedly leave the fully investigation on the 
strength of this interaction for future work.

Feature importance correlation with fairness metrics.  Given mortality predictions made by state-
of-the-art models on MIMIC-IV, we study the connections between feature importance induced by different 
interpretation approaches and the fairness measures in Fig. 6. For all the five protected attributes, we compute 
their respective feature importance by averaging the values produced from interpretability models across time 
and patients. Taking the feature importance as x axis and the minimum AUC from subgroups split by protected 
attributes as y axis, we are expecting to see a decreasing trend, where more important features have a higher 
possibility to lead to performance divergence in the split subgroups. We observe the expected trend consist-
ently among all prediction models, when the interpretability approach DeepLift and DeepLiftShap are utilized. 
As shown in Fig. 6, age (black dot) is the most important feature compared with other protected attributes and 

Table 7.   Summarized Area under the curve (AUC) performance of the in-hospital mortality predictors 
evaluated on sets of protected groups. Higher AUC indicates better predictive performance.

Methods Patient group
AUC 
overall

Minimum AUC over all 
protected groups

Macro-average AUC over 
all protected group

AUC For the smallest protected 
group

AutoInt

All

0.900 0.832 0.897 0.882

LSTM 0.941 0.896 0.939 0.932

TCN 0.937 0.883 0.936 0.948

Transformer 0.941 0.898 0.939 0.953

IMV-LSTM 0.955 0.918 0.954 0.968

AutoInt

HEM, METS

0.795 0.546 0.783 0.546

LSTM 0.842 0.726 0.830 0.777

TCN 0.832 0.696 0.822 0.696

Transformer 0.839 0.778 0.830 0.823

IMV-LSTM 0.884 0.845 0.879 0.862
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the accuracy difference between young and old is more obvious than other group divisions. Similarly, ethnicity 
(red dot) and gender (green dot) are the least important features, which leads to much higher minimum AUC 
than other protected attributes. We plotted but did not observe obvious connections between feature importance 
from other interpretability approaches and other two fairness evaluation metrics.

Feature importance scores across protected attributes.  Interpretability often concerns with global 
feature importance for the entire model and local feature importance for an individual sample with respect to its 
prediction. Here, we consider the group feature importance that builds upon local feature importance. Ideally, we 
want to measure how important each feature is across different groups with certain protected attributes. Hence, 
we define the group feature importance gi for feature i and protected attribute A, gi,A = 1

NA

∑NA
j=1 φ

j
i , where NA 

is the size of the group with attribute A, and φj
i is the local feature importance of the feature i for a person j with 

attribute A. The parity between gi,A would indicate a parity in how each feature is being used for different groups 
within a certain class of protected attributes. In the MIMIC-IV setting, we are interested in the importance of 
each of the demographic features used for the in-mortality prediction across the protected subgroups.

Since the scales of the feature importance scores are different for each interpretability method, we calculate 
the group feature importance for each demographic feature and rank their importance relative to other features 
within each interpretability method. Since feature importance is provided for {each hour timestep} x {each 
feature} within the first 24 h in the ICU, for all models, we additionally average the feature importance across 
timesteps. Figure 7 presents the box plot of the feature rankings for each demographic feature for the four models: 
Transformer, TCN, LSTM, and IMV-LSTM, and each of the 12 interpretability methods: ArchDetect, DeepLiftS-
hap, FeaturePermutation, IntegratedGradients, SaliencyNoiseTunnel, DeepLift, FeatureAblation, GradientShap, 
Saliency, and ShapleySampling. A lower ranking indicates higher feature importance.

We observe that similar trends exist across different models of varying architectures, where a demographic 
feature is more important (has lower ranking) for specific groups. Out of 164 features used for each timestep, 
the feature ethnicity has the highest feature importance for the WHITE patients, similarly for the MALE 
patients with the feature gender, and the age group >= 78 YRS with the feature age, and so on. The protected 
attribute age is the most intuitive in this setting, where in-hospital mortality predictors would attribute high 
importance to elderly patients since that is a strong signal for mortality prediction. A similar case can be made the 
feature insurance, as patients with Medicare are often elderly. However, it is less intuitive for the ethnicity feature, 
as to why one subgroup would use the ethnicity feature more strongly than the other subgroups. This stark parity 
exists for all models, even for different methods of interpretability to obtain feature importance. In summary, we 
do note that feature importance, especially when viewed as group importance, can concretely reveal how a feature 
is being used for different groups. However, it is difficult to identify the confounders or features that strongly 
correlate with the ethnicity feature. Therefore we leave further study from causal perspectives for future work.

(a) DeepLift

(b) DeepLiftShap

Figure 6.   Interactions between Feature Importance from two interpretability approaches and fairness evaluation 
value Min AUC​ based on mortality predictions from four models.
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Summary
Limitations Though we attempt to comprehensively evaluate the interpretability and fairness of deep learning 
models on MIMIC-IV, our works are not without its limitations. For evaluation of interpretability techniques, 
we examine the feature importance against domain knowledge from SAPS-II, which is a common but coarse 
patient severity score used by experts. However, the evaluation of feature importance can benefit from a more 
labelled healthcare dataset with known ground truth on feature importance ranks. For evaluation of fairness, we 
look at how sensitive features can influence both a model’s feature importance as well as hospital interventions. 
Although we touch on the interaction between interpretability and fairness in this work, future work using medi-
cal knowledge on causal influence will allow key insights into existing biases throughout healthcare applications.

Conclusion In this work, we conduct analysis on the MIMIC-IV dataset and several deep learning models in 
terms of model interpretability, dataset bias, algorithmic fairness, and the interaction between interpretability 
and fairness. We present quantitative evaluations of interpretability methods on deep learning models for mortal-
ity prediction, demonstrate the dataset bias in treatment in MIMIC-IV, verify the fairness of studied mortality 
prediction models, and reveal the disparities of feature importance among demographic subgroups.

Figure 7.   Feature rankings for each demographic feature for the four models: Transformer, TCN, LSTM, and 
IMV-LSTM, and each of the 12 interpretability methods: ArchDetect, DeepLiftShap, FeaturePermutation, 
IntegratedGradients, SaliencyNoiseTunnel, DeepLift, FeatureAblation, GradientShap, Occlusion, Saliency, and 
ShapleySampling.
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Data availability
Figures are created using Matplotlib88 under the free software PSF license.

Appendix
List of Features.  See Table 8.

Distributions of demographic, admission, and comorbidity features.  See Table 9.

Model Performance w.r.t Feature Drop Ratio.  See Fig. 8.

Visualization of Global Feature Importance Ranks.  See Figs. 9, 10, 11, 12, 13 and 14.

Figure for Interpretability and Fairness Interactions.  see Fig. 15

Feature Interpretability for Indicating Unfairness.  We use a simple and synthetic medical dataset to 
illustrate how model interpretability can lead to correcting unfairness. In our dataset, we have a feature X which 
we use as an indicator of sickness. We have a sensitive feature S representing the groups we are trying not to 
discriminate over. We have a treatment T which will help those who are actually sick have a much lower chance 
of mortality ( 10% ) rather than the expected ( 50% ) if the disease is left untreated. We assume that the disease is 
monotonically more likely with the symptom X ( σ(5x − 5) ). First, we only treat those patients who are very sick, 
with X greater than one. Second, we condition the dataset to be specifically unfair, treating only 40% of those 
with S = 1 and 80% of those with S = 0, see Figure 16. Despite the relatively minimal effect this has on the overall 
mortality by sensitive group, the model has learned to pick up directly on this important characteristic. We train 
a model both for a dataset (X, S) where the model has no idea about the latent treatment T and also for a dataset 
which includes (X, S, T). In the first case, the model must explicitly depend on the discrimination against the 
group S = 1 to achieve optimal predictions, whereas in the second dataset, the model is able to condition on the 
treatment T instead of the sensitive feature S.

For our experiments we generated 70,000 samples and trained on 80% of the data. For our model, we trained 
a deep neural network with hidden layers of sizes (256,128,64) with input layers of size 2 and 3 and output layers 
of size 1. We used a sigmoid activation and mean-squared error loss with a learning rate of 5e-3.

In the above Fig. 17, we can see on the left how when T is hidden from the model, it explicitly depends on the 
biases inherited from the latent variable for its predictions. We can also see how this is drastically reduced on 
the right when we include the latent variable which is the cause of the bias. Regardless, we still see that the blue 
curves remain above the red curves both for the treated and untreated populations. The model still tries to picks 
up on the correlations of greater deaths in the S=1 population and hence has a slight upwards bias for this group.

These experiments portray a clear case where interpretability helps point out the unfairness of a model. First 
spotting the feature importance of the sensitive attribute S would indicate to a practitioner that there is some 
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i-th feature Feature name Group Tablename

0 Gastric gastric tube EHR mimic_icu.outputevents

1 Stool out stool EHR mimic_icu.outputevents

2 Urine out incontinent EHR mimic_icu.outputevents

3 Fecal bag EHR mimic_icu.outputevents

4 Chest tube #1 EHR mimic_icu.outputevents

5 Chest tube #2 EHR mimic_icu.outputevents

6 Jackson pratt #1 EHR mimic_icu.outputevents

7 OR EBL EHR mimic_icu.outputevents

8 Pre-admission EHR mimic_icu.outputevents

9 TF residual EHR mimic_icu.outputevents

10 Albumin 5% EHR mimic_icu.inputevents

11 Fresh frozen plasma EHR mimic_icu.inputevents

12 Lorazepam (Ativan) EHR mimic_icu.inputevents

13 Midazolam (Versed) EHR mimic_icu.inputevents

14 Phenylephrine EHR mimic_icu.inputevents

15 Furosemide (Lasix) EHR mimic_icu.inputevents

16 Hydralazine EHR mimic_icu.inputevents

17 Norepinephrine EHR mimic_icu.inputevents

18 Nitroglycerin EHR mimic_icu.inputevents

19 Insulin - regular EHR mimic_icu.inputevents

20 Morphine sulfate EHR mimic_icu.inputevents

21 Packed red blood cells EHR mimic_icu.inputevents

22 D5 1/2NS EHR mimic_icu.inputevents

23 LR EHR mimic_icu.inputevents

24 Solution EHR mimic_icu.inputevents

25 Sterile water EHR mimic_icu.inputevents

26 Piggyback EHR mimic_icu.inputevents

27 KCL (Bolus) EHR mimic_icu.inputevents

28 Magnesium sulfate (Bolus) EHR mimic_icu.inputevents

29 HEMATOCRIT EHR mimic_hosp.labevents

30 PLATELET COUNT EHR mimic_hosp.labevents

31 HEMOGLOBIN EHR mimic_hosp.labevents

32 MCHC EHR mimic_hosp.labevents

33 MCH EHR mimic_hosp.labevents

34 MCV EHR mimic_hosp.labevents

35 RED BLOOD CELLS EHR mimic_hosp.labevents

36 RDW EHR mimic_hosp.labevents

37 CHLORIDE EHR mimic_hosp.labevents

38 ANION GAP EHR mimic_hosp.labevents

39 CREATININE EHR mimic_hosp.labevents

40 GLUCOSE EHR mimic_hosp.labevents

41 MAGNESIUM EHR mimic_hosp.labevents

42 CALCIUM, TOTAL EHR mimic_hosp.labevents

43 PHOSPHATE EHR mimic_hosp.labevents

44 INR(PT) EHR mimic_hosp.labevents

45 PT EHR mimic_hosp.labevents

46 PTT EHR mimic_hosp.labevents

47 LYMPHOCYTES EHR mimic_hosp.labevents

48 MONOCYTES EHR mimic_hosp.labevents

49 NEUTROPHILS EHR mimic_hosp.labevents

50 BASOPHILS EHR mimic_hosp.labevents

51 EOSINOPHILS EHR mimic_hosp.labevents

52 PH EHR mimic_hosp.labevents

53 BASE EXCESS EHR mimic_hosp.labevents

54 CALCULATED TOTAL CO2 EHR mimic_hosp.labevents

55 PCO2 EHR mimic_hosp.labevents

Continued
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i-th feature Feature name Group Tablename

56 SPECIFIC GRAVITY EHR mimic_hosp.labevents

57 LACTATE EHR mimic_hosp.labevents

58 ALANINE AMINOTRANSFERASE (ALT) EHR mimic_hosp.labevents

59 ASPARATE AMINOTRANSFERASE (AST) EHR mimic_hosp.labevents

60 ALKALINE PHOSPHATASE EHR mimic_hosp.labevents

61 ALBUMIN EHR mimic_hosp.labevents

62 ArterialBloodPressurediastolic EHR mimic_icu.chartevents

63 ArterialBloodPressuremean EHR mimic_icu.chartevents

64 RespiratoryRate EHR mimic_icu.chartevents

65 AlarmsOn EHR mimic_icu.chartevents

66 MinuteVolumeAlarm-Low EHR mimic_icu.chartevents

67 Peakinsp.Pressure EHR mimic_icu.chartevents

68 PEEPset EHR mimic_icu.chartevents

69 MinuteVolume EHR mimic_icu.chartevents

70 TidalVolume(observed) EHR mimic_icu.chartevents

71 MinuteVolumeAlarm-High EHR mimic_icu.chartevents

72 MeanAirwayPressure EHR mimic_icu.chartevents

73 CentralVenousPressure EHR mimic_icu.chartevents

74 RespiratoryRate(Set) EHR mimic_icu.chartevents

75 PulmonaryArteryPressuremean EHR mimic_icu.chartevents

76 O2Flow EHR mimic_icu.chartevents

77 Glucosefingerstick EHR mimic_icu.chartevents

78 HeartRateAlarm-Low EHR mimic_icu.chartevents

79 PulmonaryArteryPressuresystolic EHR mimic_icu.chartevents

80 TidalVolume(set) EHR mimic_icu.chartevents

81 PulmonaryArteryPressurediastolic EHR mimic_icu.chartevents

82 SpO2DesatLimit EHR mimic_icu.chartevents

83 RespAlarm-High EHR mimic_icu.chartevents

84 SkinCare EHR mimic_icu.chartevents

85 Gcsverbal EHR mimic_icu.chartevents

86 Gcsmotor EHR mimic_icu.chartevents

87 Gcseyes EHR mimic_icu.chartevents

88 Systolic_blood_pressure_abp_mean EHR mimic_icu.chartevents

89 Heart_rate EHR mimic_icu.chartevents

90 Body_temperature EHR mimic_icu.chartevents

91 Pao2 EHR mimic_hosp.labevents

92 Fio2 EHR mimic_hosp.labevents

93 Urinary_output_sum EHR mimic_icu.outputevents

94 Serum_urea_nitrogen_level EHR mimic_hosp.labevents

95 White_blood_cells_count_mean EHR mimic_hosp.labevents

96 Serum_bicarbonate_level_mean EHR mimic_hosp.labevents

97 Sodium_level_mean EHR mimic_hosp.labevents

98 Potassium_level_mean EHR mimic_hosp.labevents

99 Bilirubin_level EHR mimic_hosp.labevents

100 ie_ratio_mean EHR mimic_icu.chartevents

101 Diastolic_blood_pressure_mean EHR mimic_icu.chartevents

102 Arterial_pressure_mean EHR mimic_icu.chartevents

103 Respiratory_rate EHR mimic_icu.chartevents

104 Spo2_peripheral EHR mimic_icu.chartevents

105 Glucose EHR mimic_icu.chartevents

106 Weight EHR mimic_icu.chartevents

107 Height EHR mimic_icu.chartevents

108 Hgb EHR mimic_hosp.labevents

109 Platelet EHR mimic_hosp.labevents

110 Chloride EHR mimic_hosp.labevents

111 Creatinine EHR mimic_hosp.labevents

Continued
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i-th feature Feature name Group Tablename

112 Norepinephrine EHR mimic_icu.chartevents

113 Epinephrine EHR mimic_icu.chartevents

114 Phenylephrine EHR mimic_icu.chartevents

115 Vasopressin EHR mimic_icu.chartevents

116 Dopamine EHR mimic_icu.chartevents

117 Midazolam EHR mimic_icu.chartevents

118 Fentanyl EHR mimic_icu.chartevents

119 Propofol EHR mimic_icu.chartevents

120 Peep EHR mimic_hosp.labevents

121 Ph EHR mimic_hosp.labevents

122 Age Demographic mimic_core.patients, mimic_icu.icustays

123 AIDS Comorbidity mimic_hosp.diagnoses_icd

124 HEM Comorbidity mimic_hosp.diagnoses_icd

125 METS Comorbidity mimic_hosp.diagnoses_icd

126 AdmissionType_mimic3_processed Admission mimic_core.admissions

127 Gender Demographic mimic_core.patients

128 Admission_type Admission mimic_core.admissions

129 Admission_location Admission mimic_core.admissions

130 Insurance Admission mimic_core.admissions

131 Language Demographic mimic_core.admissions

132 Marital_status Demographic mimic_core.admissions

133 Ethnicity Demographic mimic_core.admissions

134 Congestive_heart_failure Comorbidity mimic_hosp.diagnoses_icd

135 Cardiac_arrhythmias Comorbidity mimic_hosp.diagnoses_icd

136 Valvular_disease Comorbidity mimic_hosp.diagnoses_icd

137 Pulmonary_circulation Comorbidity mimic_hosp.diagnoses_icd

138 Peripheral_vascular Comorbidity mimic_hosp.diagnoses_icd

139 Hypertension Comorbidity mimic_hosp.diagnoses_icd

140 Paralysis Comorbidity mimic_hosp.diagnoses_icd

141 Other_neurological Comorbidity mimic_hosp.diagnoses_icd

142 Chronic_pulmonary Comorbidity mimic_hosp.diagnoses_icd

143 Diabetes_uncomplicated Comorbidity mimic_hosp.diagnoses_icd

144 Diabetes_complicated Comorbidity mimic_hosp.diagnoses_icd

145 Hypothyroidism Comorbidity mimic_hosp.diagnoses_icd

146 Renal_failure Comorbidity mimic_hosp.diagnoses_icd

147 Liver_disease Comorbidity mimic_hosp.diagnoses_icd

148 Peptic_ulcer Comorbidity mimic_hosp.diagnoses_icd

149 Aids Comorbidity mimic_hosp.diagnoses_icd

150 Lymphoma Comorbidity mimic_hosp.diagnoses_icd

151 Metastatic_cancer Comorbidity mimic_hosp.diagnoses_icd

152 Solid_tumor Comorbidity mimic_hosp.diagnoses_icd

153 Rheumatoid_arthritis Comorbidity mimic_hosp.diagnoses_icd

154 Coagulopathy Comorbidity mimic_hosp.diagnoses_icd

155 Obesity Comorbidity mimic_hosp.diagnoses_icd

156 Weight_loss Comorbidity mimic_hosp.diagnoses_icd

157 Fluid_electrolyte Comorbidity mimic_hosp.diagnoses_icd

158 Blood_loss_anemia Comorbidity mimic_hosp.diagnoses_icd

159 Deficiency_anemias Comorbidity mimic_hosp.diagnoses_icd

160 Alcohol_abuse Comorbidity mimic_hosp.diagnoses_icd

161 Drug_abuse Comorbidity mimic_hosp.diagnoses_icd

162 Psychoses Comorbidity mimic_hosp.diagnoses_icd

163 Depression Comorbidity mimic_hosp.diagnoses_icd

Table 8.   Full list of selected 164 features.
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Feature Value Name In-hospital Mortality = 0 In-hospital Mortality = 1 All

Age [.25, .50, .75] quantile 54.51, 66.63, 77.94 62.14, 74.44, 84.20 55.02, 67.13, 78.59

AIDS y
Negative 99.57% [39,644] 99.50% [3172] 99.56% [42,816]

Positive 0.43% [173] 0.50% [16] 0.44% [189]

HEM
Negative 97.67% [38,890] 94.76% [3021] 97.46% [41,911]

Positive 2.33% [927] 5.24% [167] 2.54% [1094]

METS
Negative 94.81% [37,749] 86.89% [2770] 94.22% [40,519]

Positive 5.19% [2068] 13.11% [418] 5.78% [2486]

AdmissionType_mimic3_
processed

medical 68.17% [27,145] 83.28% [2655] 69.29% [29,800]

scheduled 3.57% [1420] 0.44% [14] 3.33% [1434]

unscheduled 28.26% [11,252] 16.28% [519] 27.37% [11,771]

Gender
F 43.81% [17,443] 47.15% [1503] 44.06% [18,946]

M 56.19% [22,374] 52.85% [1685] 55.94% [24,059]

Admission_type

AMBULATORY OBSERVA-
TION 0.02% [7] 0.00% [0] 0.02% [7]

DIRECT EMER. 3.56% [1418] 3.23% [103] 3.54% [1521]

DIRECT OBSERVATION 0.09% [37] 0.06% [2] 0.09% [39]

ELECTIVE 4.39% [1749] 0.78% [25] 4.13% [1774]

EU OBSERVATION 0.22% [86] 0.03% [1] 0.20% [87]

EW EMER. 50.37% [20,057] 61.48% [1960] 51.20% [22,017]

OBSERVATION ADMIT 10.53% [4192] 10.04% [320] 10.49% [4512]

SURGICAL SAME DAY 
ADMISSION 12.66% [5040] 1.35% [43] 11.82% [5083]

URGENT 18.16% [7231] 23.02% [734] 18.52% [7965]

Admission_location

AMBULATORY SURGERY 
TRANSFER 0.06% [23] 0.03% [1] 0.06% [24]

CLINIC REFERRAL 0.83% [330] 1.60% [51] 0.89% [381]

EMERGENCY ROOM 48.93% [19,483] 58.91% [1878] 49.67% [21,361]

INFORMATION NOT 
AVAILABLE 0.29% [117] 0.41% [13] 0.30% [130]

INTERNAL TRANSFER TO 
OR FROM PSYCH 0.01% [3] 0.00% [0] 0.01% [3]

PACU​ 0.56% [222] 0.31% [10] 0.54% [232]

PHYSICIAN REFERRAL 24.22% [9643] 7.59% [242] 22.99% [9885]

PROCEDURE SITE 1.69% [673] 0.53% [17] 1.60% [690]

TRANSFER FROM HOS-
PITAL 21.20% [8442] 27.51% [877] 21.67% [9319]

TRANSFER FROM 
SKILLED NURSING 
FACILITY

0.74% [293] 1.54% [49] 0.80% [342]

WALK-IN/SELF REFERRAL 1.48% [588] 1.57% [50] 1.48% [638]

Insurance

Medicaid 7.15% [2846] 5.96% [190] 7.06% [3036]

Medicare 42.77% [17,029] 54.80% [1747] 43.66% [18,776]

Other 50.08% [19,942] 39.24% [1251] 49.28% [21,193]

Language
? 9.78% [3894] 10.92% [348] 9.86% [4242]

ENGLISH 90.22% [35,923] 89.08% [2840] 90.14% [38,763]

Marital_status

DIVORCED 7.17% [2855] 5.58% [178] 7.05% [3033]

MARRIED 46.68% [18,588] 40.15% [1280] 46.20% [19,868]

None 6.63% [2641] 17.57% [560] 7.44% [3201]

SINGLE 27.08% [10,784] 19.64% [626] 26.53% [11,410]

WIDOWED 12.43% [4949] 17.06% [544] 12.77% [5493]

Ethnicity

AMERICAN INDIAN/
ALASKA NATIVE 0.17% [66] 0.06% [2] 0.16% [68]

ASIAN 2.88% [1147] 3.26% [104] 2.91% [1251]

BLACK/AFRICAN AMERI-
CAN 9.31% [3708] 7.34% [234] 9.17% [3942]

HISPANIC/LATINO 3.60% [1432] 2.51% [80] 3.52% [1512]

OTHER 4.81% [1914] 4.14% [132] 4.76% [2046]

UNABLE TO OBTAIN 1.33% [531] 2.20% [70] 1.40% [601]

UNKNOWN 9.06% [3609] 20.14% [642] 9.88% [4251]

WHITE 68.84% [27,410] 60.35% [1924] 68.21% [29,334]

Continued
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Feature Value Name In-hospital Mortality = 0 In-hospital Mortality = 1 All

Congestive_heart_failure
Negative 98.66% [39,284] 98.90% [3153] 98.68% [42,437]

Positive 1.34% [533] 1.10% [35] 1.32% [568]

Cardiac_arrhythmias
Negative 99.56% [39,640] 99.97% [3187] 99.59% [42,827]

Positive 0.44% [177] 0.03% [1] 0.41% [178]

Valvular_disease
Negative 96.11% [38,267] 99.50% [3172] 96.36% [41,439]

Positive 3.89% [1550] 0.50% [16] 3.64% [1566]

Pulmonary_circulation
Negative 99.37% [39,568] 99.34% [3167] 99.37% [42,735]

Positive 0.63% [249] 0.66% [21] 0.63% [270]

Peripheral_vascular
Negative 98.78% [39,333] 98.78% [3149] 98.78% [42,482]

Positive 1.22% [484] 1.22% [39] 1.22% [523]

Hypertension
Negative 99.68% [39,689] 99.91% [3185] 99.70% [42,874]

Positive 0.32% [128] 0.09% [3] 0.30% [131]

Paralysis
Negative 100.00% [39,816] 99.97% [3187] 100.00% [43,003]

Positive 0.00% [1] 0.03% [1] 0.00% [2]

Other_neurological
Negative 99.40% [39,577] 99.72% [3179] 99.42% [42,756]

Positive 0.60% [240] 0.28% [9] 0.58% [249]

Chronic_pulmonary
Negative 99.52% [39,625] 99.78% [3181] 99.54% [42,806]

Positive 0.48% [192] 0.22% [7] 0.46% [199]

Diabetes_uncomplicated
Negative 99.40% [39,578] 99.97% [3187] 99.44% [42,765]

Positive 0.60% [239] 0.03% [1] 0.56% [240]

Diabetes_complicated
Negative 99.73% [39,710] 99.87% [3184] 99.74% [42,894]

Positive 0.27% [107] 0.13% [4] 0.26% [111]

Hypothyroidism
Negative 99.99% [39,813] 100.00% [3188] 99.99% [43,001]

Positive 0.01% [4] 0.00% [0] 0.01% [4]

Renal_failure
Negative 99.88% [39,768] 99.97% [3187] 99.88% [42,955]

Positive 0.12% [49] 0.03% [1] 0.12% [50]

Liver_disease
Negative 99.45% [39,597] 99.25% [3164] 99.43% [42,761]

Positive 0.55% [220] 0.75% [24] 0.57% [244]

Peptic_ulcer
Negative 99.97% [39,805] 100.00% [3188] 99.97% [42,993]

Positive 0.03% [12] 0.00% [0] 0.03% [12]

Aids
Negative 99.90% [39,776] 99.84% [3183] 99.89% [42,959]

Positive 0.10% [41] 0.16% [5] 0.11% [46]

Lymphoma
Negative 99.80% [39,739] 99.40% [3169] 99.77% [42,908]

Positive 0.20% [78] 0.60% [19] 0.23% [97]

Metastatic_cancer
Negative 99.09% [39,456] 98.84% [3151] 99.07% [42,607]

Positive 0.91% [361] 1.16% [37] 0.93% [398]

Solid_tumor
Negative 97.80% [38,943] 97.24% [3100] 97.76% [42,043]

Positive 2.20% [874] 2.76% [88] 2.24% [962]

Rheumatoid_arthritis
Negative 99.97% [39,805] 99.87% [3184] 99.96% [42,989]

Positive 0.03% [12] 0.13% [4] 0.04% [16]

Coagulopathy
Negative 99.96% [39,801] 99.97% [3187] 99.96% [42,988]

Positive 0.04% [16] 0.03% [1] 0.04% [17]

Obesity
Negative 99.94% [39,792] 100.00% [3188] 99.94% [42,980]

Positive 0.06% [25] 0.00% [0] 0.06% [25]

Weight_loss
Negative 99.99% [39,813] 100.00% [3188] 99.99% [43,001]

Positive 0.01% [4] 0.00% [0] 0.01% [4]

Fluid_electrolyte
Negative 99.66% [39,682] 99.87% [3184] 99.68% [42,866]

Positive 0.34% [135] 0.13% [4] 0.32% [139]

Blood_loss_anemia
Negative 99.97% [39,807] 99.97% [3187] 99.97% [42,994]

Positive 0.03% [10] 0.03% [1] 0.03% [11]

Deficiency_anemias
Negative 99.98% [39,808] 100.00% [3188] 99.98% [42,996]

Positive 0.02% [9] 0.00% [0] 0.02% [9]

Alcohol_abuse
Negative 99.54% [39,635] 100.00% [3188] 99.58% [42,823]

Positive 0.46% [182] 0.00% [0] 0.42% [182]

Drug_abuse
Negative 99.94% [39,794] 100.00% [3188] 99.95% [42,982]

Positive 0.06% [23] 0.00% [0] 0.05% [23]

Continued
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Feature Value Name In-hospital Mortality = 0 In-hospital Mortality = 1 All

Psychoses
Negative 99.97% [39,807] 100.00% [3188] 99.98% [42,995]

Positive 0.03% [10] 0.00% [0] 0.02% [10]

Depression
Negative 100.00% [39,817] 100.00% [3188] 100.00% [43,005]

Positive 0.00% [0] 0.00% [0] 0.00% [0]

Table 9.   Distributions of demographic, admission and comorbidity features grouped by the in-hospital 
mortality label.

Figure 8.   Curves of performance metric w.r.t feature drop ratio.
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Figure 9.   Visualization of global feature importance ranks (feature 0-27).

Figure 10.   Visualization of global feature importance ranks (feature 28-55).

Figure 11.   Visualization of global feature importance ranks (feature 56-83).
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Figure 12.   Visualization of global feature importance ranks (feature 84-111).

Figure 13.   Visualization of global feature importance ranks (feature 112-139).

Figure 14.   Visualization of global feature importance ranks (feature 140-163).
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type of different treatment by group of S. Next, seeing the curve on the left would allow a practitioner to realize 
that there is some larger bias within the dataset that they are training with. Finally, adding the treatment T to the 
model and realizing the underlying T variable is holding all of the bias from the underlying data generation pro-
cess allows them to not only spot the cause of the bias, but mostly eliminate the bias from their prediction model.

Figure 15.   Training data distribution, mortality rates, and testing AUCs across each protected attribute for all 
patients and patients with HEM/METS, summarized over all five classifiers: AutoInt, LSTM, IMV-LSTM, TCN, 
and Transformer.

Figure 16.   Data model predictions for the synthetic medical dataset with a biased latent treatment variable.
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