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A B S T R A C T   

Migraine results in an enormous burden on individuals and societies due to its high prevalence, significant 
disability, and considerable economic costs. Current treatment options for migraine remain inadequate, and the 
development of novel therapies is severely hindered by the incomplete understanding of the mechanisms 
responsible for the pain. The sensory innervation of the cranial meninges is now considered a key player in 
migraine headache genesis. Recent studies have significantly advanced our understanding of some of the pro
cesses that drive meningeal nociceptive neurons, which may be targeted therapeutically to abort or prevent 
migraine pain. In this review we will summarize our current understanding of the mechanisms that contribute to 
the genesis of the headache in one migraine subtype – migraine with aura. We will focus on animal studies that 
address the notion that cortical spreading depression is a critical process that drives meningeal nociception in 
migraine with aura, and discuss recent insights into some of the proposed underlying mechanisms.   

Migraine is considered one of the most prevalent neurological dis
orders, affecting about 15% of the adult population worldwide (Global 
Burden of Disease Study, 2017) and the leading cause of disability in 
under 50s (Steiner et al., 2018). The biological origin of migraine re
mains unclear. However, it is now well accepted that the head pain 
during a migraine attack is mediated by increased activity in primary 
afferent nociceptive neurons that innervate the cranial meninges 
(Ashina et al., 2019; Levy, 2012; Olesen et al., 2009). Although the 
endogenous processes that drive meningeal nociception during a 
migraine attack remain unclear, a key theory suggests a local inflam
matory process triggered by exogenous or endogenous factors (Ashina 
et al., 2019; Levy et al., 2019). One consistent finding across all migraine 
patients is the presence of cortical hyperexcitability (Brennan and Pie
trobon, 2018; de Tommaso et al., 2014; Maniyar et al., 2014a; Maniyar 
et al., 2014b; Tolner et al., 2019; Vecchia and Pietrobon, 2012; Zielman 
et al., 2017). In a subset of patients and attacks, such cortical hyperex
citability is believed to drive episodes of cortical spreading depression 
(CSD) – a massive concentric wave of neuronal and astroglia depolari
zation, followed by a transient depression of cortical synaptic activity, 
that mediates the aura phase (Pietrobon and Moskowitz, 2013). The 
temporal proximity between the aura phase and the onset of the 

headache in migraine has led several investigators, almost four decades 
ago, to propose a link between the aura and the headache phases (Blau, 
1984; Moskowitz, 1984; Lauritzen, 1985), and further prompted basic 
research to examine a link between CSD and migraine pain. Here, we 
will summarize preclinical data that support the notion that CSD is a 
critical process that drives meningeal nociception in migraine with aura, 
and discuss recent insights into some of the proposed underlying 
mechanisms. 

Indirect evidence linking CSD and meningeal nociception 

Moskowitz and colleagues (Moskowitz et al., 1993) were the first to 
address the idea that CSD is a major endogenous event that drives the 
meningeal sensory system in a rat model. Using c-fos as a molecular 
marker of neural activation, they demonstrated an association between 
a series of CSD episodes evoked by cortical microinjections of hyper
osmolar potassium chloride (KCl) and the activation of neurons in the 
trigeminal dorsal horn, which process nociceptive afferent input from 
the head. The additional observation that the increase in trigeminal c-fos 
expression was inhibited by transecting the nasociliary nerve, a major 
sensory nerve that supplies the intracranial dura mater, led this group to 
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suggest that CSD is a noxious event that can activate the migraine pain 
pathway. Ingvardsen et al. (1997) argued against a causative role for 
CSD in driving the trigeminal pain in migraine. Using a similar 
approach, they reported a correlation between the number of KCl stimuli 
used to evoke the CSD events and the trigeminal c-fos expression, but not 
with the number of CSDs produced, suggesting that the stimulus in itself 
rather than the CSD events is responsible for the trigeminal activation. 
The concentration of KCl used in these studies can indeed activate dural 
nociceptors (Strassman et al., 1996). However, Moskowitz et al. also 
included a control arm in their study that tested the effect of sodium 
chloride (NaCl) stimulation, which can also trigger dural nociceptors 
(Strassman et al., 1996), and found it to be less efficient in producing 
TNC c-fos (Moskowitz et al., 1993), thus supporting their proposed link 
between CSD and the trigeminal ganglion (TG) activation observed. 

Bolay and colleagues (Bolay et al., 2002) provided, almost a decade 
later, the first indirect evidence that CSD can trigger activity in dural 
nociceptors. In that study, a single CSD, evoked using a pinprick stim
ulus in a rat’s cortex, produced a prolonged increase in dural blood flow 
associated with increased plasma protein leakage, both of which were 
abrogated by surgical deafferentation of the intracranial dura. CSD- 
evoked prolonged dural vasodilation was later replicated in a mouse 
model (Karatas et al., 2013). Of note, similar to the provocation of CSD 
using local application of hyperosmolar KCl, a pinprick (mechanical) 
stimulus can also activate dural nociceptors and potentially enhance 
their response properties by causing dural injury. However, the contri
bution of these factors to the emergence of persistent activation of dural 
nociceptors in that study was likely minimal given that CSD-related 
meningeal vascular response was inhibited in animals pretreated with 
the N-methyl-D-aspartate (NMDA) receptor antagonist MK801, which 
blocked the CSD propagation (Bolay et al., 2002). 

Direct evidence that CSD can drive the meningeal sensory system 

Using single-unit recording from TG neurons in a rat model, we 
demonstrated that CSD could produce dural nociceptor activation 
(Zhang et al., 2010). We found that a single CSD event leads to a two- 
fold increase in the activity of about half of the nociceptors tested, an 
effect that lasted for approximately one hour. In that study, CSD was 
associated with several patterns of dural nociceptor responses: acute 
nociceptor discharge restricted to the brief CSD event; a prolonged 
activation that starts during the CSD event; and a biphasic pattern of 
activation, involving acute discharge, followed by a delayed and pro
longed activation that commences 10–20 min after the CSD event. The 
possibility that stimuli used to induce CSD, which were administered 
near the nociceptors’ receptive field, contributed to the post-CSD noci
ceptive responses was not directly addressed in that study. However, the 
finding that similar patterns of dural nociceptor activation emerged 
regardless of the method used to elicit the CSD event (i.e., pinprick, 
topical KCl application, or electrical stimulation of the cortex), suggest 
that CSD itself, rather than the method used to produce it, drives dural 
nociceptors. In a later study, we were able to exclude the possibility that 
the method used to elicit CSD in itself influences the activity of dural 
nociceptors: we showed comparable delayed and prolonged dural no
ciceptor activation patterns when CSD was triggered remotely and then 
propagated under the receptive field of the recorded nociceptors (Zhao 
and Levy, 2015). Using this modified preparation, we further found that 
the propensity to develop prolonged nociceptor activation follo
wing CSD is related to the presence of basal ongoing activity, but neither 
to the transient activation during the CSD phase nor to the nociceptors’ 
responsiveness to inflammatory mediators. We also found an inverse 
correlation between the onset of the prolonged nociceptor activation 
and the number of their dural receptive fields. Thus, from a mechanistic 
approach, the prolonged meningeal nociceptive responses following 
CSD may not be related to the chemosensitivity of the nociceptors but 
rather to other properties such as basal ongoing activity and the number 
of dural terminal arborizations. The presence of basal ongoing activity 

before CSD induction may be a possible indicator of nociceptor sensiti
zation that develops in response to the surgical exposure in these studies, 
which causes a mild meningeal inflammatory response (Levy et al., 
2007). Whether such surgery-related nociceptor sensitization is a pre
requisite to developing a prolonged nociceptor response following CSD, 
similar to a nociceptive priming effect (Burgos-Vega et al., 2016), re
mains unclear. The shorter delay in activation after CSD in nociceptors 
with more receptive fields may be related to a spatial summation 
mechanism that facilitates the onset of the persistent nociceptors’ 
activation. 

In addition to increased ongoing activity, increased mechanosensi
tivity (i.e., sensitization) of dural nociceptors is also considered to play a 
key role in driving migraine pain, in particular, the exacerbation of the 
headache during conditions that momentarily increase intracranial 
pressure, such as head movements and coughing (Strassman and Levy, 
2006; Strassman et al., 1996). Using a rat model, we discovered that CSD 
also provokes a pronounced and persistent mechanical sensitization of 
dural nociceptors (Zhao and Levy, 2016). Importantly, that study 
showed that the sensitization and increased ongoing activity following 
CSD are not correlated. We also found that the sensitizing effect of CSD 
generally lasts longer than the increase in ongoing activity, suggesting 
that CSD-evoked mechanical sensitization of dural nociceptors may play 
a more substantial role in the development of the headache phase during 
a migraine attack. 

To examine whether the CSD-evoked dural nociceptors responses are 
sufficient to drive the central migraine pain pathway, we also recorded 
in a rat model CSD-evoked responses of second-order neurons located in 
the medullary dorsal horn that receive convergent input from the dura 
and cephalic skin (Zhang et al., 2011). In that study, a single CSD was 
associated with neural activation patterns similar to those observed in 
dural nociceptors, including immediate and delayed activation. Melo- 
Carrillo and colleagues (Melo-Carrillo et al., 2017a) further demon
strated that CSD leads to sensitization of central trigeminal nociceptive 
neurons. However, this effect was limited to high-threshold dorsal horn 
neurons, which do not respond to innocuous mechanical stimulation of 
the skin at baseline (Melo-Carrillo et al., 2017a). That study also found 
that systemic administration of an anti-calcitonin gene-related peptide 
(CGRP) antibody, used in migraine prophylaxis, inhibited the develop
ment of both the activation and sensitization of high threshold trigem
inal neurons following CSD, further substantiating the link between 
CSD, meningeal nociception, and migraine headache. 

CSD, meningeal nociception, and migraine-like pain behaviors 

A long-standing problem with the notion that CSD drives meningeal 
nociception has been the conflicting preclinical evidence that CSD leads 
to pain behaviors (Bogdanov et al., 2013; Filiz et al., 2019; Fioravanti 
et al., 2011; Harriott et al., 2021; Houben et al., 2017; Karatas et al., 
2013). One critical confounder in many of these studies was using 
hyperosmolar KCl as the local triggering stimulus (Bogdanov et al., 
2013; Filiz et al., 2019; Fioravanti et al., 2011; Karatas et al., 2013). 
Furthermore, prolonged exposure to KCl gives rise to multiple CSD 
events, which may not be clinically relevant to migraine. While KCl- 
evoked CSD has been shown to produce mechanical allodynia, a com
mon sensory finding in migraine, the induction of CSD using a pinprick 
stimulation failed to do so (Fioravanti et al., 2011), arguing against the 
ability of a single CSD to evoke sufficient meningeal nociception that 
drives migraine pain. A recent study by Harriott et al. (2021) overcame 
these limitations by eliciting CSD non-invasively using a transcranial 
optogenetic approach in a mouse model. In that study, a single CSD 
produced in one side of the cortex produced bilateral cephalic allodynia. 
While ipsilateral head pain is mainly observed in migraine attacks with 
aura, allodynia can initially develop ipsilateral to the side of head pain 
and later spreads to the contralateral side (Burstein et al., 2000). 
Optogenetic induction of a single CSD, however, failed to produce a 
grimacing behavior indicative of pain, contrary to what has been 
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observed in response to multiple CSD events produced by repeated KCl 
stimulation (Karatas et al., 2013). Finally, while a single CSD event 
induced using the optogenetic approach failed to elicit an anxiety 
behavior, multiple CSD events triggered optogenetically or using a KCl 
stimulus (Bogdanov et al., 2013) produced it. Our finding that repeated 
CSD events give rise to similar patterns of dural nociceptor activation as 
observed after a single event (Zhao and Levy, 2015) suggests that the 
exaggerated behavioral response following multiple CSD may occur 

independently of the meningeal nociceptive effect of CSD, potentially by 
affecting cortical and subcortical circuits. 

Is there a role for meningeal neurogenic inflammation in 
mediating meningeal nociception following CSD? 

CSD is associated with the parenchymal release of numerous mole
cules with nociceptive properties, including adenosine triphosphate 

Fig. 1. Cortical to meninges signaling and CSD-evoked meningeal nociception. CSD is associated with cortical and meningeal events that lead to the release 
of several mediators (orange boxes); these events and related mediators may (black circles) or may not (blue circles) drive meningeal nociception. (1) Cortical 
neuronal activation leads to pannexin-1 channel opening and caspase-1 activation, followed by parenchymal HMGB1 and IL-1β release. Cortical neuronal activation 
also leads to the release of ATP, K+, H+, and glutamate (2) Neuron-to-astrocyte signaling leading to NF-kB activation and COX-2 and iNOS upregulation with 
prostaglandins and NO release. (3) Astrocyte calcium wave and release of prostanoids (4) drive cortical vasoconstriction and reduction in tissue oxygen tension. (5) 
Activation of glia limitans with the release of pronociceptive mediators into the subarachnoid space that leads to (6) activation of subdural meningeal immune cells 
and (7) Leptomeningeal afferent nerve endings. (8) Antidromic axon reflex leads to the release of sensory neuropeptides from collateral dural nerve endings, which 
directly or indirectly produces (9) dural vasodilation and increased capillary permeability. (10) Nociceptor-evoked activation of dural immune cells, leading to the 
production of inflammatory mediators and reciprocal activation and sensitization of dural nociceptors. (11) Delayed clearance of parenchymal inflammatory me
diators into the CSF-filled subarachnoid space due to closure of perivascular space and reduced glymphatic flow. (12) Delayed activation of dural nociceptors with 
nerve endings near the dural sinuses by CSF mediators that egress from arachnoid granulations before entering dural lymphatic vessels. Abbreviations: ATP, 
adenosine triphosphate; AG, arachnoid granulations; CCL2, C–C motif chemokine ligand 2; CGRP, calcitonin gene-related peptide; COX-2, cyclooxygenase-2; CSD, 
cortical spreading depression; CSF, cerebrospinal fluid; DC, dendritic cell; HMGB1, high mobility group box protein 1; IL-1β, interleukin 1 beta; iNOS, inducible nitric 
oxide synthase; ISF, interstitial fluid; LV, lymphatic vessel; MC, mast cell; NF-kB, nuclear factor kappa B; NO, nitric oxide; PACAP, pituitary adenylate cyclase- 
activating polypeptide; Panx1, pannexin-1; PGs, prostaglandins; SP, substance P; TG, trigeminal ganglion; V1, ophthalmic nerve; V2, maxillary nerve; V3, 
mandibular nerve. 
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(ATP) (Schock et al., 2007), glutamate (Zhou et al., 2013), potassium 
ions (K+) (Enger et al., 2015), and protons (Csiba et al., 1985). A key 
migraine theory (Bolay et al., 2002; Karatas et al., 2013) proposes that 
these mediators diffuse outward towards the leptomeninges overlaying 
the affected cortical region, resulting in the activation of nociceptive 
afferent nerve endings localized to leptomeninges (Fontaine et al., 2018; 
Fricke et al., 1997). This leads to an axon reflex and antidromic release 
of proinflammatory neuropeptides (e.g., CGRP, substance P) from 
collateral dural nerve endings and the subsequent development of 
neurogenic inflammation, including dural vasodilation and increased 
vascular permeability (Fig. 1). Subsequently, this sterile inflammatory 
response promotes the release of additional nociceptive molecules that 
cause the prolonged wave of dural nociceptor excitation and sensitiza
tion. Supporting this theory is the anatomical finding of trigeminal 
sensory neurons with branching axons that innervate the dural and 
leptomeningeal vascular structures (i.e., axonal projections to the mid
dle meningeal artery and the middle cerebral artery) (O’Connor and van 
der Kooy, 1986). These axonal branching points were suggested to occur 
at a proximal site just after leaving the trigeminal cell body giving rise to 
different innervation routes (Fig. 1). However, this pattern of primary 
afferent branching contrasts with the distal branching at the tissue level 
that is thought to mediate neurogenic inflammation in neighboring, 
unstimulated cutaneous tissue (Chiu et al., 2012). At present, very little 
is known about the response properties of leptomeningeal afferents, so it 
is unclear whether they can respond to the cortical mediators released 
during the CSD and drive dural neurogenic inflammation. The findings 
that treatment with triptans and CGRP receptor antagonists, which abort 
migraine headaches, can inhibit meningeal neurogenic inflammation 
provide further support for the neurogenic inflammatory theory of 
migraine. However, these anti-migraine agents can abort migraine pain 
through different mechanisms, for example, by acting at the trigeminal 
dorsal horn levels to disrupt the communication between central ter
minals of dural nociceptors and the trigeminal second-order dorsal horn 
neurons (Levy et al., 2004; Storer et al., 2004). 

Despite being considered a mechanism of meningeal nociception and 
migraine pain, there is very little evidence that neurogenic inflammation 
can drive nociception in other tissues (Reeh et al., 1986). We recently 
addressed the possibility that CSD-evoked meningeal nociception in
volves an axon reflex. In that study, we have shown that a brief stimu
lation of dural nociceptors with KCl gives rise to a CGRP-dependent 
prolonged activation of the same afferents (Zhao and Levy, 2018a). 
However, this response was not accompanied by mechanical sensitiza
tion, suggesting that the development of neurogenic inflammation 
following CSD, if it occurs, may not drive the entire repertoire of the 
meningeal nociceptor responses. Peripheral CGRP release is a key 
mediator of meningeal neurogenic inflammation, but whether its local 
action is sufficient to generate meningeal nociception, including in 
response to CSD, is controversial. We have shown in male rats that dural 
application of CGRP, which drives potent dural vasodilatation, is not 
sufficient to activate or sensitize dural nociceptors (Levy et al., 2005). 
We also found that blockade of meningeal CGRP receptors using olce
gepant (BIBN4096) does not inhibit the CSD-evoked prolonged activa
tion and mechano-sensitization of meningeal dural nociceptors in male 
rats (Zhao and Levy, 2018a). However, a recent behavioral study in rats 
and mice has shown that local CGRP action can exert a meningeal 
nociceptive response but only in females (Avona et al., 2019). Whether 
CGRP is released in the meninges following CSD and drives dural 
neurogenic vasodilation also remains questionable (Piper et al., 1993; 
Ebersberger et al., 2001; Schain et al., 2019). The finding that peripheral 
sequestering of CGRP with a monoclonal antibody can reduce the pro
pensity of A-delta dural nociceptors (but not C-nociceptors) to become 
activated following CSD (Melo-Carrillo et al., 2017b) raises the possi
bility that basal CGRP level somehow modulates the responsiveness of 
this dural afferent subpopulation to CSD. Recent work demonstrated 
CGRP-receptor expression by several meningeal immune cells, including 
macrophages, dendritic cells, mast cells, B cells, and T cells (Van Hove 

et al., 2019), suggesting that meningeal CGRP elaboration following 
CSD, if it occurs, may somehow contribute to meningeal nociception by 
modulating immune cell function, rather than via its vascular action 
(Fig. 1). Whether CGRP produces a proinflammatory immune response, 
nonetheless, is context-dependent. For example, CGRP release following 
nociceptors stimulation promotes the recruitment and activation of 
dendritic cells and T cells and the production of proinflammatory cy
tokines in cutaneous inflammation (Cohen et al., 2019). On the other 
hand, nociceptors’ release of CGRP suppresses the recruitment of neu
trophils and T cells and the related production of proinflammatory cy
tokines during host immune response (Baral et al., 2018; Chiu et al., 
2013; Pinho-Ribeiro et al., 2018). 

Could other mediators released from peripheral terminals of acti
vated dural nociceptors drive neurogenic inflammation and potentially 
dural nociception following CSD? Release of substance P from dural 
nociceptors and activation of its canonical receptor neurokinin-1 (NK-1) 
have been shown to drive the CSD-evoked dural vasodilation and plasma 
protein extravasation (Bolay et al., 2002). However, there is little sup
port for NK-1 related signaling in migraine pain (Diener, 2003; Goldstein 
et al., 1997), questioning the role of substance P-induced meningeal 
neurogenic inflammation as a mechanism underlying migraine pain. 
Substance P, however, can promote inflammation and nociceptive re
sponses independent of the NK-1 receptor via the activation of Mas- 
related G protein-coupled receptors expressed on mast cells (Green 
et al., 2019) and the nociceptors themselves (Azimi et al., 2017; Azimi 
et al., 2016). Activity-dependent release of mediators from non
peptidergic dural nociceptors may also play a role. Of potential interest 
is high mobility group box protein 1 (HMGB1), which can be released 
from activated nociceptive afferents and promote inflammation (Yang 
et al., 2021). Activation of nonpeptidergic nociceptors and the subse
quent release of glutamate from their peripheral nerve ending, however, 
could also interfere with neurogenic inflammation by suppressing the 
activation of mast cells (Zhang et al., 2021). 

Cortical vascular and metabolic changes may not drive 
meningeal nociception in the wake of CSD 

Migraine with aura is associated with cortical hemodynamic 
changes, including a sustained reduction in cortical blood flow 
contemporaneous with the headache phase (Hadjikhani et al., 2001; 
Lauritzen and Olesen, 1984; Olesen et al., 1981). In rodent models, CSD 
also leads to prolonged cortical hypoperfusion that can last up to 2 h 
(Ayata and Lauritzen, 2015). Studies in rodents also demonstrated 
transient cortical hypoxia followed by a prolonged and milder reduction 
in cortical tissue partial pressure of oxygen (tpO2), and hemoglobin 
desaturation, concomitant with the cortical hypoperfusion phase (Chang 
et al., 2010; Piilgaard and Lauritzen, 2009; Takano et al., 2007). The 
mechanisms responsible for these metabolic responses are likely 
numerous, although the release of cyclooxygenase (COX)-derived vas
oconstricting prostanoids and other eicosanoid metabolites of arach
idonic acid plays a key role (Fordsmann et al., 2013; Gariepy et al., 
2017; Shibata et al., 1992). Reduced blood flow and tissue oxygenation 
can trigger a migraine attack in susceptible individuals (Appenzeller, 
1994; Arngrim et al., 2016; Broessner et al., 2016; Frank et al., 2020; 
Schoonman et al., 2006). These findings, together with the notion that 
reduced blood flow and tissue oxygenation lead to the sensitization of 
nociceptors in other tissues (Hillery et al., 2011; MacIver and Tanelian, 
1992; Mense and Stahnke, 1983), raises the possibility that the mech
anisms responsible for driving dural nociceptors in the wake of CSD 
involve similar vascular and metabolic changes. We recently investi
gated this notion by recording the activity of dural nociceptors along 
with changes in cortical blood flow and tissue oxygenation following 
CSD (Zhao and Levy, 2018b). We have shown that cortical hypo
perfusion and decreased oxygen availability coincide with the emer
gence of the prolonged activation and sensitization of dural nociceptors. 
However, while the COX-inhibitor naproxen ameliorated these CSD- 
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evoked metabolic changes, it did not affect the activation of the dural 
nociceptors. Thus, there is likely a dissociation between these CSD- 
related cortical metabolic perturbations, or downstream processes, 
and the mechanism responsible for driving activity in dural nociceptors. 
It further questions the contribution of locally released prostanoids and 
related inflammatory responses in mediating the CSD-evoked prolonged 
activation of dural nociceptors. The findings that COX inhibition at
tenuates the CSD-evoked dural vasodilation and activation of pial and 
dural macrophages (Schain et al., 2020) additionally question the link 
between the vascular components of neurogenic inflammation, activa
tion of meningeal immune cells, and dural nociceptor activation in the 
wake of CSD. That naproxen blocks the activation of dural nociceptors 
following meningeal stimulation with a mixture of mediators found in 
inflammatory exudates (i.e., inflammatory soup) (Levy et al., 2008) 
points to the possibility that CSD drives activity in dural nociceptors via 
a different inflammatory mechanism. 

While COX-derived prostanoids may not promote the CSD-evoked 
prolonged activation of dural nociceptors, we recently demonstrated 
COX involvement in mediating their mechanical sensitization (Zhao and 
Levy, 2018b). The mechanism by which COX-derived mediators pro
mote the sensitization of dural nociceptors following CSD remains un
clear. It is, however, unlikely to involve cortical hypoperfusion and 
decreased oxygen availability, given that amelioration of these meta
bolic responses via the opening of cortical ATP-sensitive potassium 
(KATP) channels does not inhibit the nociceptor sensitization response 
(Zhao and Levy, 2018b). Whether COX-derived mediators released in 
the wake of CSD act directly on dural nociceptors to promote their 
mechanical sensitization or mediate this nociceptive effect by modu
lating meningeal immune cells remains to be examined. We also 
observed that local opening of K(ATP) channels ameliorates the pro
longed activation, but not sensitization of dural nociceptors following 
CSD (Zhao and Levy, 2018b), further suggesting that the CSD-evoked 
activation and sensitization of dural nociceptors involve distinct mech
anisms. The exact mechanism by which cortical K(ATP) channels affect 
the responses of dural nociceptors in the context of CSD remains to be 
elucidated. 

Cortical neurons, neuroinflammation, and meningeal 
nociception 

Abnormal activation of cortical neurons and the subsequent devel
opment of parenchymal neuroinflammation were also proposed to drive 
meningeal nociception following CSD. Using a mouse model of CSD, 
Karatas et al. (Karatas et al., 2013) described a cascade of cortical events 
(Fig. 1) involving the opening of neuronal pannexin-1 channels, down
stream caspase-1 activation, and HMGB1 release from the same neurons 
followed by nuclear factor-kB activation and increased parenchymal 
interleukin 1 beta (IL-1β) expression. This inflammatory cascade was 
further linked to the upregulation of COX-2 and inducible nitric oxide 
synthase in cortical astrocytes and the development of dural vasodila
tation, suggesting a link between this cortical neuroinflammation and 
the activation of dural nociceptors. Other studies, however, failed to 
detect an acute release of HMGB1 (Takizawa et al., 2016) or upregula
tion of inducible nitric oxide synthase (Jander et al., 2001) following 
CSD, questioning the involvement of these inflammatory processes in 
mediating the meningeal vascular responses observed during the first 
hour after CSD. Takizawa et al. (2020) recently explored the develop
ment of cortical neuroinflammation in an optogenetic CSD model in 
mice, confirming upregulation of IL-1β at the level of their mRNA and 
also showing increases in interleukin 6 (IL-6) and C–C motif chemokine 
ligand 2 (CCL2) expression within the first-hour post CSD. The upre
gulation of IL-1β is of particular interest to the meningeal pronociceptive 
effect of CSD given its rapid increase as early as 10 min after CSD and its 
ability to promote both activation and mechanical sensitization of dural 
nociceptors (Zhang et al., 2012). 

CSD, cortical astrocytes, and meningeal nociception 

CSD is associated with an acute activation of astrocyte signaling, 
including a robust wave of intracellular calcium (Ca2+) elevations 
(Chuquet et al., 2007; Enger et al., 2015; Peters et al., 2003; Zhao et al., 
2021), which has been linked to the acute pial vascular response 
(Chuquet et al., 2007). Upon their activation, astrocytes release 
numerous proinflammatory agents, such as ATP, prostanoids, and cy
tokines/chemokines (e.g., IL-1β, CCL2) (Verkhratsky and Nedergaard, 
2018) that could diffuse into the CSF-filled subarachnoid space, drive 
the pial vascular response and act upon leptomeningeal nociceptors 
(Fig. 1). The release of K+ from the glia limitans (Paulson and Newman, 
1987) could also account, at least in part, for the acute activation of 
leptomeningeal afferents. We recently investigated the relative contri
bution of cortical astrocytes to the CSD-evoked dural nociceptor re
sponses (Zhao et al., 2021). We found that inhibition of cortical 
astrocyte function, using two distinct pharmacological approaches, can 
suppress the CSD-evoked dural nociceptor sensitization but not the 
related activation of the nociceptors. Interestingly, we observed that the 
anti-nociceptive effect of the astrocyte inhibitors was not associated 
with inhibition of the CSD-related astrocyte Ca2+ wave, suggesting a 
mechanism involving Ca2+-independent astrocytic signaling. The notion 
that astrocytes can release arachidonic acid-derived prostanoids in a 
Ca2+-independent manner (Wang et al., 2020) and the finding that COX 
inhibition prevents the CSD-evoked sensitization of dural nociceptors 
points to a possible contribution of astrocyte-derived prostanoids as a 
critical underlying mechanism. Another astrocyte mediator that may 
contribute to the sensitization of dural nociceptors in the wake of CSD is 
ATP (Joseph et al., 2014). Astrocytes can release ATP through a Ca2+- 
independent process involving membrane pores, such as the P2X7 
purinergic channel, pannexin-1, and anion channels (Kovács et al., 
2018; Nikolic et al., 2020; Pan et al., 2015; Xiong et al., 2018). Extra
cellular ATP can augment ATP release from astrocytes via a mechanism 
involving connexin hemichannels (Davalos et al., 2005). ATP released 
by astrocytes may not directly act on dural nociceptors to promote their 
sensitization given that stimulation of meningeal purinergic receptors 
by exogenous ATP causes dural nociceptor activation (Zhao and Levy, 
2015), a CSD-evoked nociceptive response not blocked by astrocytes 
inhibitors. However, it is possible that astrocyte-related ATP signaling 
contributes to the delayed sensitization of dural nociceptors indirectly 
by activating non-neuronal purinergic receptors such as P2X7 on 
microglia and meningeal immune cells, such as subdural macrophages 
(Di Virgilio et al., 2017; Van Hove et al., 2019). 

Cortex to meninges routes underlying meningeal nociception 
following CSD 

The exact route mediators released in the cerebral cortex might take 
to reach the meninges following CSD remains unclear. Although the 
going theory is that cortical mediators released into the parenchymal 
interstitial space during the CSD phase transverse the pial layer via bulk 
diffusion and rapidly excite leptomeningeal nociceptors (Pietrobon and 
Moskowitz, 2013), such quick diffusion is limited by the glial limitans 
barrier that abuts the pial membrane. Under a steady-state condition, 
parenchymal interstitial fluid exits the brain via perivascular spaces; it 
enters the cerebrospinal fluid (CSF) that occupies the subarachnoid 
space utilizing the glymphatic transport mechanism (Hablitz and 
Nedergaard, 2021). This transport route could account for the activation 
of nerve endings localized near pial vessels and elsewhere within the 
subarachnoid space (Fricke et al., 1996; Liu-Chen et al., 1983; Mayberg 
et al., 1981; Uddman et al., 1981). However, the glymphatic transport 
route is unlikely to account for the acute activation of meningeal noci
ceptors because CSD is associated with an initial closure of perivascular 
spaces and reduced glymphatic flow (Schain et al., 2017). The gradual 
recovery of glymphatic flow during the 30 min post CSD, nonetheless, 
could explain a delayed activation of leptomeningeal afferents (Fig. 1). 
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Algesic factors transported into the subarachnoid space or released in 
that space by subdural immune cells, however, are unlikely to influence 
dural nociceptors directly, given the physical separation of these 
meningeal spaces the arachnoid barrier layer and dural border cells 
(Coles et al., 2017). Another possible transport route of molecules in the 
CSF-filled subarachnoid space into the dural compartment involves 
zones near dural lymphatic vessels in peri-sinus dural regions (Fig. 1). 
These zones, potentially a part of the arachnoid granulation anatomical 
structure (Yagmurlu et al., 2021), have been suggested to serve as 
drainage entry points for CSF in the subarachnoid space into the dural 
lymphatic system (Louveau et al., 2018). Importantly, these peri-sinus 
dural areas are located near a dense population of chemosensitive 
dural nociceptors (Strassman et al., 2004). The relative slow transport of 
solutes from the subarachnoid space into the lymphatic drainage system 
(Louveau et al., 2018) could further explain the delay in the responses of 
dural nociceptors following CSD. 

Concluding remarks 

The meningeal sensory system plays a key role in the genesis of the 
headache phase in migraine. Yet, the origin of its activation during a 
migraine attack is not well understood. In migraine with aura, the 
second-most common migraine subtype, the leading theory proposes 
that CSD is the pathophysiological event that underlies the aura phase 
and also leads to the activation of the meningeal sensory system. This 
theory is now strongly supported by preclinical studies of dural vascular 
changes as surrogate markers and direct electrophysiological recordings 
of dural nociceptors’ responses. 

Our current understanding of how CSD drives meningeal nociceptors 
remains incomplete, although recent data points to the roles of cortical 
neurons, astrocytes, and parenchymal neuroinflammation. However, 
there is very little support for the contribution of cortical vasodynamic 
and metabolic changes in driving meningeal nociception in the context 
of CSD. Preclinical data also suggest that the key components of 
neurogenic inflammation – vasodilatation and increased vascular 
permeability may not contribute to meningeal nociception following 
CSD. However, the recent finding of an inflammatory signal localized to 
the meninges overlying the occipital cortex in migraine patients expe
riencing visual aura and headache (Hadjikhani et al., 2020), and im
mune cell activation following CSD in mice (Schain et al., 2018) suggest 
an alternative meningeal inflammatory process in CSD-evoked migraine 
pain involving meningeal immunity. 

While the most common type of migraine aura is visual, somato
sensory auras are also reported (Viana et al., 2017), potentially resulting 
from CSD propagating into the somatosensory cortex (Bolay et al., 
2019). The possibility that CSD can also occur in areas other than the 
visual or somatosensory cortices and give rise to a silent aura (Pietrobon 
and Moskowitz, 2013), thus serving as a general mechanism in migraine, 
was also proposed (Ayata, 2010). It should be emphasized, nevertheless, 
that despite the availability of direct and indirect evidence supporting a 
role for CSD as a noxious event that drives meningeal nociception, the 
views of CSD occurrence in migraine and its relevance to the headache 
phase are not universally accepted (Bolay et al., 2019; Charles, 2010). 
This notion is based primarily on the findings that some people with 
migraine may experience aura but not a headache, and evidence of 
therapeutic interventions that abolish aura but not headache (Wolth
ausen et al., 2009). Whether migraine involves CSD or other cortical 
hyperexcitability events, a better understanding of cortex to meninges 
signaling that might drive meningeal nociception could provide clues to 
the origin of the headache in migraine with and without aura. Increasing 
knowledge about the way CSD and perhaps other cortical events affect 
the responses of leptomeningeal afferents could have significant impli
cations for the design of future pharmacological agents to treat migraine 
headache, in particular because their receptive fields in the subarach
noid space are not amenable to treatment with drugs that do not cross 
the blood-brain barrier, such as monoclonal antibodies. 
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