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Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed 
supplements improve growth performance and gut mucosal 
architecture with modulations on cecal microbiota in  
red-feathered native chickens

Tzu-Tai Lee1,2,a, Chung-Hsi Chou3,4,a, Chinling Wang5, Hsuan-Ying Lu3, and Wen-Yuan Yang3,*

Objective: The aim of study was to investigate the effects of in-feed supplementation of 
Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, 
gut integrity, and microbiota modulations in red-feathered native chickens (RFCs). 
Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary 
treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 
weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised 
in the original house with the partition for performance evaluations at the age of 9 and 11 
weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal 
architecture and 16S rRNA metagenomics. 
Results: Feeding BA and SC increased the body weight and body weight gain, significantly 
at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and 
Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation 
did not disturb the microbial community structure but promote the featured microbial shifts 
characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, 
and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_
gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways 
of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and 
aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p< 
0.05). 
Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, 
improved mucosal architectures in small intestines, and modulated the cecal microbiota 
and metabolic pathways in RFCs.

Keywords: Bacillus amyloliquefaciens; Growth Performance; Metagenomics; Microbiota 
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INTRODUCTION 

Native chickens dominate the meat-type chicken market in Taiwan and Asian countries 
based on the culture of consumption and demands for traditional tastes. A popular breed 
known as red-feathered native chicken (RFC) is adopted to increase the resistance of heat 
stress and the desirable efficiency on body weight gain (BWG) when compared to other 
native chickens [1]. However, the long raising period of 12 to 14 weeks lowers the com-
petitiveness in the market when compared to commercial broilers. Therefore, the industry 
seeks methodologies to improve the growth performance and feed efficiency of RFCs for 
competitive advantages in the market.
  The health status of the gut determined the feed intake and the efficient assimilation of 
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nutrients, thereafter, influencing the growth performance 
and poultry production. It is evident that the gut microbiota 
plays a crucial role in the maintenance of gut health, immune 
modulation, and disease development in chickens [2]. Based 
on the concerns about antimicrobial resistance, the use of 
antibiotic growth promoters (AGPs) for sustaining gut health 
in poultry has been prohibited, promoting the emerge of en-
teric diseases. Various alternatives to AGPs, such as direct-fed 
microbial (DFM), were studied and demonstrated to improve 
the overall gut health and growth performance in chickens 
[3,4].
  Due to the health-promoting benefits and the ability to 
survive in harsh environmental conditions, the use of Bacillus 
as an AGP alternative has grown in popularity in recent years. 
Several studies showed that Bacillus amyloliquefaciens (BA) 
enhanced the digestion and absorption efficiency in the gut 
through secreted extracellular enzymes, including α-amylases, 
cellulase, metalloproteases, and proteases to promote gut 
health and growth performance [3,5]. Furthermore, the use 
of BA showed some modulations on cecal microbiota [5,6] 
and partial alleviation effects on compromised growth per-
formance [7], indicating that the growth benefits may result 
from the interactions of gut microbiota in the host. None-
theless, different species or strains of BA have shown different 
results, leading to inconsistent results on broiler growth per-
formance [8,9].
  Saccharomyces cerevisiae (SC) is a type of yeast extensively 
used in diets to improve health and productivity for various 
animal species. It was documented to confer beneficial effects 
on metabolic processes of digestion and nutrient utilization, 
health status, and the meat quality in broilers [10]. Besides, 
SC that carries mannanoligosaccharide (MOS) in the cell wall 
as a natural prebiotic that promotes the growth of beneficial 
microflora and inhibits the multiplication of gut pathogens 
[11]. The MOS has been shown to enhance feed efficiency 
on growth performance in poultry, including body weight 
(BW), feed intake, and feed conversion rate (FCR) [12].
  Animal metabolism involves the interactions of different 
pathways that are modulated by the host’s gut microbiota [6]. 
They are regulated through microbial interactions and a range 
of metabolites produced by the microbial community mem-
bers or the transformations from host molecules or diets [13]. 
Although different gut segments contribute to designated 
functions in the host, the ceca harbor the most diverse mi-
crobial communities for energy harvest and nutrient digestion, 
affecting gut health and growth performance of chickens 
[2,14]. Small intestines and ceca play crucial roles in nutrient 
absorption and energy harvest. On the other side, different 
probiotic species or strains that act on distinct sites, provide 
various modes of action, or exert varying levels of protective 
efficiency can generate synergistic effects [15]. Therefore, the 
utilization of multi-species or multi-strains probiotics can be 

beneficial for field applications. The purpose of this study 
was to evaluate the effects of BA and SC on growth perfor-
mance, expecting to shorten the raising period in the field 
practice, and the correlation of the performance with the 
small intestinal improvement and cecal microbiota modula-
tion at the field level, elucidating the mechanisms of this 
mixture to manipulate the intestinal environment in RFCs. 

MATERIALS AND METHODS 

Animal care
The procedure and animals used in this experiment were 
approved by the Animal Care and Use Committee of National 
Chung Hsing University, Taiwan (IACUC No. 107-014).

Experimental design and diets
A total of 18,000 one-day-old male and female RFCs from 
commercial hatcheries were randomly and evenly assigned 
into two groups: experimental and control groups and placed 
in two separate houses with nets to avoid contact with wild 
birds. Afterward, fifty RFCs in each group were randomly 
selected and raised in the original house with the partition. 
Since RFCs were native chicken with a raising period of 12 
to 14 weeks, the comparisons of performance were conducted 
at the time near marketing, setting to the age of 9 and 11 weeks. 
The end of the experiment was set to the time that RFCs 
reached the average BW of 2.4 kg required for marketing. 
All RFCs were raised in floor pens with wood shavings as 
litter and vaccinated against Infectious bronchitis, Newcastle 
disease, Chicken pox, Infectious bursal disease, Infectious 
coryza, and Infectious laryngotracheitis. The RFCs within 
the control group were fed a formulated corn-soybean-based 
(control) diet with no addiction, whereas the same control 
diets supplementing with the mixture of 0.05% BA and 0.05% 
SC were applied in the experimental group. The water and 
feed were provided ad libitum throughout the entire experi-
ment. From week 1 to 3, weeks 3 to 6, weeks 7 to the end of 
the experiment, RFCs received the starter diets, grower diets, 
and finisher diets, respectively. Ingredients and nutrient levels 
of the control diet are described in Table 1. 

Strains and feed preparation
The BA Y2 and SC C1 strains were selected and applied as 
feed additives. They were kindly provided by Prof. Tzu-Tai 
Lee at National Chung Hsing University, isolated from feeds 
and wine grains, respectively. The BA Y2 and SC C1 were 
reactivated on lysogeny broth (LB) agar and yeast-mald (YM) 
agar at 37°C for 48 hours, respectively. Single colonies of BA 
Y2 and SC C1 were collected and inoculated into 10 mL LB 
and 10 mL YM and then incubated at 37°C for 24 hours. The 
cultured broth of BA Y2 or SC C1 was added into 90 mL LB 
or YM fresh broth for another cultivation of 24 hours at 37°C. 
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Afterward, large-scaling culture through liquid fermentation 
was performed by the company at 37°C with 160 rpm for 24 
hours. Powders of BA Y2 and SC C1 strains with a concen-
tration of 109 colony-forming unit (CFU)/g were obtained 
after freeze-drying. The BA Y2 and SC C1 were then mixed 
with a ratio of 1:1. The 0.5 kg of BA power with a concentra-
tion of 109 CFU/g was mixed with 0.5 kg of SC powder with 
a concentration of 109 CFU/g. One kilogram of the mixture 
was added into one ton of the control diet to form the ex-
perimental diet with 0.05% BA (5×106 CFU/kg feed) and 
0.05% SC (5×106 CFU/kg feed).

Evaluation of growth performance and intestinal villi 
morphology
The parameters of BW and BWG were applied to evaluate 
the growth performance by supplementation of BA and SC. 
The villus height, crypt depth villus, and villus height/crypt 
depth ratio (V/C ratio) in small intestines were measured to 
assess intestinal health for nutrient absorption. An increment 
of the V/C ratio was considered as an improvement of nutri-

ent absorption. The BW and BWG were calculated from 50 
RFCs within the partition per group at the times of 9 and 11 
weeks, respectively. The FCR was calculated from the total 
amount of feed consumption by the total weight gain from 
all RFCs in each group. For histological evaluation of mor-
phology in small intestines, six RFCs per group were randomly 
selected from non-partitioned RFCs in the house and eutha-
nized at the age of 9 and 11 weeks. Jejunal and ileal segments 
were removed from the midway between the entry of the 
bile ducts and Meckel’s diverticulum and 10 cm proximal to 
the ileocecal junction. Jejunal and ileal segments with a length 
of approximately 2 to 3 cm were collected into 10% sodium 
phosphate-buffered formalin. The samples were cross-sec-
tioned at 4 mm intervals and processed to paraffin-embedded 
blocks. The segments were cut at 4 to 5 μm and stained with 
hematoxylin and eosin for histological examinations. The 
measurements of villus height were conducted under the 
optical microscope. The length of the villus from the tip to 
the villus-crypt junction was recorded using Motic Image 
Plus 2.0 software (Microscope World, Carlsbad, CA, USA). 

Table 1. Ingredients and composition of the control diets

Items Starter diet (1 to 21 days) Grower diet (22 to 42 days) Finisher diet (43 to 77 days)

Ingredients (g/kg) -------------------------------------------------------------------------g/kg------------------------------------------------------------------------------
Corn, yellow  555 586 601
Soybean meal  295 260 230
Full fat soybean meal 50 75 100
Fish meal (CP-65%) 50 25 12.5
Soybean oil 18 21 24
Monocalcium phosphate 13 14 14
Calcium carbonate 11.5 11 10.5
DL-methionine 2 1.6 1.5
NaCl 2.5 3 3.5
Choline-Cl 1 1 1
Vitamin premix1) 1 1 1
Mineral premix2) 1 1 1
Total 1,000 1,000 1,000

Calculated nutrient value
ME (kcal/kg) 3,025 3,075 3,125
Crude protein (%) 22 20 19
Calcium (%) 1 0.9 0.85
Total phosphorus (%) 0.64 0.6 0.56
Available phosphorus (%) 0.5 0.45 0.2
Lysine (%) 1.29 1.13 1.04
Methionine (%) 0.6 0.51 0.48
Methionine+Cystein (%) 0.95 0.85 0.8
Threonine (%) 0.86 0.78 0.73
Cl (%) 0.21 0.23 0.25
Na (%) 0.17 0.17 0.17
K (%) 0.89 0.85 0.83

ME, metabolizable energy.
1) Supplied per kg of diet: Vit A 15,000 IU; Vit. D3 3,000 IU; Vit. E 30 mg; Vit. K3 4 mg; riboflavin 8 mg; pyridoxine 5 mg; Vit. B12 25 μg; Ca-pantothenate 19 mg; 
niacin 50 mg; folic acid 1.5 mg; biotin 60 μg.
2) Supplied per kg of diet: Co(CoCO3) 0.255 mg; Cu(CuSO4∙5H2O) 10.8 mg; Fe(FeSO4∙H2O) 90 mg; Zn(ZnO) 68.4 mg; Mn(MnSO4∙H2O) 90 mg; Se (Na2SeO3) 
0.18 mg.
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The depth of the invagination between adjacent villi was de-
termined as crypt depth. Twenty well-oriented and intact crypt-
villus units from an intestinal cross-section of one chicken 
were selected. The average values of villus heights and crypt 
depths were calculated for the V/C ratio.

16S rRNA pyrosequencing
Six RFCs per group were randomly selected and euthanized 
from non-partitioned RFCs in the house by CO2 at the age 
of 4, 7, 9, and 11 weeks, respectively, to collect cecal contents 
through manual extrusion for 16S rRNA metagenomics 
analysis. The cecal contents from the control group were 
designated as W4.CC, W7.CC, W9.CC, and W11.CC based 
on the age of collections. The W4.PC, W7.PC, W9.PC, and 
W11.PC represented cecal contents from the experimental 
group collected at the age of 4, 7, 9, and 11 weeks. Cecal 
contents were placed in dry ice immediately when they 
were collected from chickens. Total genomic DNA was iso-
lated from 150 mg of cecal contents using a Quick-DNA 
Fecal/Soil Microbe Miniprep Kit (Zymo Research, Irvine, 
CA, USA) following the manufacturer’s instructions. The 
sequencing of 16S rRNA was performed using HiSeq 2500 
platform (Illumina, San Diego, CA, USA). The variable 
V3-V4 region of the 16S rRNA gene was PCR-amplified in 
a 25 Μl reaction mixture containing 12.5 μL 2X KAPA HiFi 
HotStart ReadyMix (Roche, Pleasanton, CA, USA), 0.75 μL 
of each 10 μm Illumina primer (forward primer-5’CCTA 
CGGGNGGCWGCAG 3’ and reverse primer-5’ GACTA 
CHVGGGTATCTAATCC 3’) with standard adapter se-
quences, and 1 μL of DNA template. The polymerase chain 
reaction (PCR) conditions were as follows: initial denatur-
ation at 95°C for 3 minutes, 25 cycles of 95°C for 30 seconds, 
55°C for 30 seconds, and 72°C for 30 seconds, and then final 
extension at 72°C for 5 minutes. After the clean-up of the 
amplicons, the index PCR was conducted by using a Nextera 
XT Index Kit (Illumina, San Diego, CA, USA) to attach a 
unique 8-bp barcode sequence to the adapters. The PCR 
products were purified and measured for the size and con-
centration by a Qsep100TM capillary electrophoresis system 
(BiOptic Inc., New Taipei City, Taiwan) and a Qubit 4.0 
Fluorometer with Qubit dsDNA HS Assay Kit (Fisher Sci-
entific, Waltham, MA, USA). The libraries were normalized, 
pooled to one tube with a final concentration of 10 pM, and 
sequenced on a MiSeq System using Illumina MiSeq Re-
agent Kit v3 (2×300 bp paired-end run).

Data processing and statistical analysis
Paired-end sequences were merged through fast length ad-
justment of short reads (FLASH) v1.2.11 to obtain raw tags. 
Raw tags were de-multiplexed and filtered by Quantitative 
Insights into Microbial Ecology (Qiime) software v1.9.1 with 
the default quality criteria and a threshold Phred quality score 

of Q≥20 to have clean tags. Effective tags were obtained by 
filtering out and checking chimeric sequences through the 
UCHIME algorithm and Gold database. The operational 
taxonomic units (OTUs) were classified from effective tags by 
the 97% similarity of sequences using the UPARSE algorithm 
in USEARCH. The taxonomy-based analysis was conducted 
by RDP Classifier v2.11 with a cut-off of 80%, determining 
the matched taxon in the Silva v132 database. The diversities 
and statistical analyses for taxonomic profile differences were 
performed by Qiime v1.9.1, R v.3.3.1 (http://www.R-project.
org/) with metagenomeSeq package, and Statistical Analysis 
Metagenomic Profiles (STAMP) software v2.1.3 with Welch’s 
t-test. The p-value was set to 0.05 for statistical significance. 
An algorithm for high-dimensional class comparisons be-
tween biological conditions, linear discriminant analysis effect 
size (LEfSe; http://huttenhower.sph.harvard.edu/lefse/), was 
conducted to determine the significant feature taxa between 
groups with linear discriminant analysis (LDA) scores of 3.5. 
Tax4Fun package in R v.3.3.1 was performed to blast the 
unigenes against the Kyoto encyclopedia of genes and ge-
nomes (KEGG) database for the prediction of functional 
pathways. The annotation information of KEGG Orthology 
(KO) from the KEGG database was acquired based on the 
relative abundance profile. The differential function pathway 
between BA+SC and the control group was determined at 
level 3.
  Significant differences in BW, BWG, villus height, crypt 
depth, and V/C ratio between the control and experimental 
groups were determined by using SAS software version 9.4 
(SAS Institute, Inc., Cary, NC, USA). Data of 16S rRNA meta
genomics was subjected to R for analysis. Statements of 
statistical significance were based on the level of p<0.05.

RESULTS 

Beneficial effects of BA and SC on growth performance
The effects of supplementing BA Y2 and SC C1 strains in 
feed on growth performance are shown in Table 2. The BW 
and BWG were significantly increased (p<0.05) in RFCs fed 
with BA and SC at the age of 11 weeks, facilitating these 
chickens to reach the BW required for marketing (2.4 kg). 
The lower value of overall FCR in the experimental group 
when compared to the control group was noted at the age of 
9 and 11 weeks. 

Feeding BA and SC improved mucosal architectures in 
small intestines
Histological examinations of jejunal and ileal mucosa dem-
onstrated that chickens fed with BA Y2 and SC C1 at the age 
of 9 weeks and 11 weeks had longer villi than those observed 
in the control group (Figure 1). The numerical assessments 
of villus height, crypt depth, and V/C ratio are summarized 

http://huttenhower.sph.harvard.edu/lefse/
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in Table 3. The supplementation of BA Y2 and SC C1 in-
creased villus heights, shortened crypt depths, or increased 
V/C ratio in the jejunum and/or ileum at the age of 9 and 11 
weeks. In the jejunum, the V/C ratio was significantly in-
creased at the age of 11 weeks (p<0.05) and the villus heights 
were significantly increased at the age of 9 weeks (p<0.05). 
For the ileum, the supplementation significantly increased 
villus heights (p<0.05) and V/C ratio (p<0.01) at the age of 
11 weeks and decreased crypt depths at the age of 11 weeks 
(p<0.05). The mucosal architectures in the jejunum and ile-
um were significantly improved after the supplementation, 

particularly at the age of 11 weeks, showing the beneficial ef-
fects on nutrient absorption.

Modulation effects on cecal microbiota by BA and SC 
supplements 
The analysis of alpha-diversity by Shannon, Simpson, abun-
dance-based coverage estimator (ACE), and Chao1 indices 
(Figure 2) showed that the species richness and diversity in 
the cecum increased with age in chickens fed with the con-
trol diets. The supplementation of BA and SC exerted varying 
effects on alpha-diversity in the cecum but promoted more 
species richness and diversity at the age of 11 weeks. However, 
no significant difference was observed between the control 
and experimental groups at the age of 4, 7, 9, and 11 weeks. 
The results of beta diversity demonstrated that the principal 
components, PC1 and PC2, of the experimental group at the 
age of 7 weeks was distinctly separated with 23.94% and 11.29% 
variation, representing a significant difference in cecal com-
munity profiles between the control and experimental groups 
(Figure 3). No separation was noted between groups at the 
age of 4 and 9 weeks.
  The microbial composition in the cecum of RFCs raised 
in the control group showed that Firmicutes was the most 
dominant phylum, followed by Bacteroidetes, Proteobacteria, 
Epsilonbacteraeota, and Actinobacteria at the age of 4 weeks. 
The abundance of Firmicutes decreased with age following 
the increment of Bacteroidetes (Figure 4A). At the genus level, 
Faecalibacterium were predominant at the age of 4 weeks, 
followed by Alistipes, other unclassified genera, Ruminococcus, 
and Helicobacter in RFCs. The microbial composition changed 

Table 2. The effects of dietary supplementations on growth perfor-
mance of red-feathered native chickens (RFCs) at the age of 9 and 
11 weeks 

Parameters 
Group

p-value
Control Experimental

9 weeks
BW (kg/bird) 1.82 ± 0.13 1.87 ± 0.17 0.084
BWG (kg/bird) 1.77 ± 0.13 1.82 ± 0.17 0.085
FCR 2.32 2.25

11 weeks
BW (kg/bird) 2.35 ± 0.14 2.46 ± 0.19* 0.002
BWG (kg/bird) 2.30 ± 0.14 2.41 ± 0.19* 0.002
FCR 2.45 2.34

BW, body weight; BWG, body weight gain; FCR, feed conversion rate. 
BW and BWG values were reported as mean ± standard deviation, n =  50 
per group. 
FCR was measured by total amount of feed consumption by the total 
weight gain from all RFCs in the group.
* Means are significantly different when compared to the control (p<0.05).

Figure 1. Effects of BA and SC on intestinal villi morphology. Six red-feathered native chickens (RFCs) per group were randomly selected and eu-
thanized. Villus heights and crypt depths in the jejunum (A, B, E, F) and ileum (C, D, G, H) between the control and experimental groups were evalu-
ated by hematoxylin and eosin (H&E) staining at the age of 9 weeks (A, B, C, D) and 11 weeks (E, F, G, H). Jejunal and ileal mucosa from chickens 
fed with BA and SC at the age of 9 weeks and 11 weeks both had longer villi than those observed in the control group. BA, Bacillus amyloliquefa-
ciens; SC, Saccharomyces cerevisiae.
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with age and Bacteroides converted into the dominant genus 
from the age of 9 to 11 weeks. The supplementation of BA 
and SC did not alter microbial community structure with 

significance but increased the relative abundance of Bernesiella, 
Lactobacillus, and Olsenella when compared to RFCs fed with 
control diets (Figure 4B). Additionally, the supplementation 

Table 3. Differences in jejunal and ileal villus heights, crypt depths, and V/C ratios of RFCs between control and experimental (BA+SC) groups at 
different ages

Parameters
Jejunum

p-value
Ileum

p-valueControl 
(Mean±SD)

Experimental 
(Mean±SD)

Control 
(Mean±SD)

Experimental 
(Mean±SD)

9 weeks
Villus height (μm) 1,082.5 ± 69.07 1,287.49 ± 160.32* 0.017 953.3 ± 211.6 1,126.7 ± 190.53 0.167
Crypt depth (μm) 285.38 ± 86.05 265.06 ± 24.35 0.590 280.74 ± 84.94 234.65 ± 26.59 0.233
Villus height/crypt depth 4.26 ± 1.15 5.11 ± 0.89 0.183 3.91 ± 1.41 5.05 ± 1.22 0.164

11 weeks
Villus height (μm) 1,194.63 ± 136.26 1,256.56 ± 127.55 0.435 831.24 ± 94.49 971.47 ± 76.86* 0.018
Crypt depth (μm) 263.46 ± 15.87 228.91 ± 21.46* 0.010 204.65 ± 26.40 161.83 ± 22.7* 0.013
Villus height/crypt depth 4.77 ± 0.57 5.74 ± 0.8* 0.035 4.39 ± 0.69 6.39 ± 0.62* 0.0004

All values were reported as mean ± standard deviation (SD), n =  6 per group.
* Means are significantly different when compared to the control (p < 0.05).

Figure 2. Analysis of alpha diversity in cecal microbiota. (A) Shannon index, (B) Simpson index, (C) abundance-based coverage estimator (ACE) 
index, and (D) Chao1 index. Results were shown as boxplots (n = 6 per group). Each box represents the interquartile range (IQR) between the first 
(25th percentiles) and third quartiles (75th percentiles) with the horizontal line that indicated the median. Species richness and diversity in the 
cecum increased with age in chickens fed with the control diets. The supplementation of BA and SC exerted varying effects on alpha-diversity in 
the cecum and promoted more species richness and diversity at the age of 11 weeks without a statistical significance. BA, Bacillus amyloliquefa-
ciens; SC, Saccharomyces cerevisiae.
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significantly increased the cecal Firmicutes/Bacteroidetes (F/B) 
ratio at the age of 9 and 11 weeks (p<0.05; Figure 4C). Re-
sults of metagenomeSeq and STAMP analyses (Shown in 
Figure 5) on RFCs with growth benefits (at the age of 11 
weeks) revealed the significantly increased abundance of 
Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas 
(p<0.05) with remarkably decreased abundance of Bacteroides, 
Rikenellaceae_RC9_gut_group, and Succinatimonas (p<0.05). 
Among those genera, Prevotellaceae_NK3B31_group, Rikenel-
laceae_RC9_gut_group, and Succinatimonas were identified 
as differentially significant and biological feature taxa be-
tween groups by LEfSe with an LDA score of 3.5.

Functional pathways promoted by feeding BA and SC
In accordance with the growth benefits observed at the age 
of 11 weeks, functional predictions of KEGG pathways by 
Tax4Fun at the third level were conducted (Figure 6). The 
results demonstrated that the supplementation of BA and 
SC in feed significantly promoted the pathways of peptido-
glycan biosynthesis, nucleotide excision repair, glycolysis/
gluconeogenesis, and aminoacyl transfer ribonucleic acid 
(tRNA) biosynthesis (p<0.05).

DISCUSSION 

Several studies demonstrated that unitary addition of BA or 
SC in feed might increase BW, average daily gain, or average 
daily feed intake but compromise the FCR in broilers [16,17]. 
In the present study, the combination of BA Y2 and SC C1 
improved BW and BWG of RFCs at the age of 9 and 11 weeks 
without compromise of FCR. The growth benefits were sig-
nificant at the age of 11 weeks, indicating that this combination 
exerted synergistic effects that contributed to the observations 
[18]. Most studies have demonstrated that the mixed probiotics, 
such as Lactobacillus or Bacillus with SC, improved growth 
performance in broilers [19]. However, the growth benefits 
were not profound until the age of 11 weeks, disclosing that 
the combination of BA Y2 and SC C1 required long-term 
use to exhibit the significant growth benefits, especially for 
the breed with lengthy raising period, such as native chickens. 
  The measurements of intestinal villus heights, crypt depths, 
and V/C ratio at the level of small intestines are regularly ap-
plied for investigating the gut health and effects of various 
diet regimens in chickens [20]. Dietary feeding of probiotics 
has been demonstrated to improve the jejunal morphology 
in broilers [21]. The supplementation of BA Y2 and SC C1 

Figure 3. Beta-diversity of cecal microbiota between groups. Bray-Curtis principal coordinate analysis (PCoA) was conducted for evaluating the 
compositions and similarities of cecal microbiota of red-feathered native chickens (RFCs) between the control (CC) and experimental (PC) groups 
at the age of 4, 7, 9, and 11 weeks (n = 6 per group). A significant difference in cecal community profiles between the control and experimental 
groups was noted at the age of 7 weeks.
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in this study demonstrated the significant differences in the 
mucosal architecture, including increased villus heights, 
shortened crypt depths, and/or elevated V/C ratio in the je-
junum and ileum. Notably, the significant effects were more 
comprehensive in small intestines at the age of 11 weeks, con-
sistent with the observations in growth performance. Since 

the digestion and absorption of nutrients are dominated by 
the mucosa in the small intestines, the increments of villus 
heights provide a extended surface area capable of greater 
absorption. A higher V/C ratio represents a greater capacity 
of nutrient digestibility and absorption in chickens [22]. 
Furthermore, the lower V/C ratio is related to a low number 

Figure 4. Analysis of microbial composition in cecal microbiota between groups (n = 6 per group). The average relative abundance of the bacteri-
al taxon was presented as the bar within a group. The top 10 abundant taxa are shown at the level of phylum (A) and genus (B), respectively. The 
composition changed with age and Bacteroides converted into the dominant genus at the age of 9 weeks. The supplementation of BA and SC did 
not significantly alter microbial community structure at different ages of time (Figure 4B). However, the treatment significantly increased the cecal 
F/B ratio at the age of 9 and 11 weeks (4C). BA, Bacillus amyloliquefaciens; SC, Saccharomyces cerevisiae. Significance was detected by Kruskal-Wal-
lis test: * p<0.05 and ** p<0.01.
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of absorptive cells with a high number of secretory cells, 
leading to increased mucin production, compromised absorp-
tion of nutrients, and higher energy demands for maintaining 

intestinal function [23,24]. Although a significant difference 
in villus height was observed in the jejunum at the age of 9 
weeks, the change did not impact growth performance. 

Figure 5. Identifications of the differential abundance of genera in cecal microbiota (n = 6 per group). (A) Analysis by metagenomeSeq: the differ-
ential abundance of microbes in the cecum between groups was analyzed at the age of 4, 7, 9, and 11 weeks: * p<0.05 and ** p<0.01. (B) STAMP 
analysis at same different ages of time. The bar plot demonstrated the differential abundance of genera between the control and experimental 
groups at the age of 11 weeks. Only significant features with p<0.05 (Welch’s t-test) were shown. Significant increments of Bernesiella, Prevotel-
laceae_NK3B31_group, and Butyrucimonas (p<0.05) were noted with remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_group, and 
Succinatimonas (p<0.05) (C) linear discriminant analysis effect size (LEfSe) analysis with linear discriminant analysis (LDA) score >3.5 at the age 
of 11 weeks. Prevotellaceae_NK3B31_group, Rikenellaceae_RC9_gut_group, and Succinatimonas were identified as differentially significant and bi-
ological feature taxa between groups (p<0.05).

30 
 

(A) 



878  www.animbiosci.org

Lee et al (2022) Anim Biosci 35:869-883

Figure 5. Continued Identifications of the differential abundance of genera in cecal microbiota (n = 6 per group). (A) Analysis by metagenomeSeq: 
the differential abundance of microbes in the cecum between groups was analyzed at the age of 4, 7, 9, and 11 weeks: * p<0.05 and ** p<0.01. (B) 
STAMP analysis at same different ages of time. The bar plot demonstrated the differential abundance of genera between the control and experi-
mental groups at the age of 11 weeks. Only significant features with p<0.05 (Welch’s t-test) were shown. Significant increments of Bernesiella, 
Prevotellaceae_NK3B31_group, and Butyrucimonas (p<0.05) were noted with remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_
group, and Succinatimonas (p<0.05) (C) linear discriminant analysis effect size (LEfSe) analysis with linear discriminant analysis (LDA) score >3.5 
at the age of 11 weeks. Prevotellaceae_NK3B31_group, Rikenellaceae_RC9_gut_group, and Succinatimonas were identified as differentially signifi-
cant and biological feature taxa between groups (p<0.05).
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Improved mucosal architectures in both jejunum and ileum 
seemed essential to contribute to the significant growth 
benefits observed at the age of 11 weeks.
  Several studies have shown that the number of microbial 
species in cecal microbiota increased with age in broiler and 
layer chickens. Firmicutes and Bacteroidetes dominated the 
bacterial phyla in the cecum and the abundance of Firmicutes 
decreased with age following the converse increment of Bac-
teroidetes [25,26]. Our observations in RFCs were consistent 
with those studies. Nevertheless, the long-term supplemen-
tation of BA and SC reversed the trend, significantly increasing 
the F/B ratio at the age of 9 and 11 weeks. A higher F/B ratio 

has been demonstrated to have a greater fermentation capacity 
of volatile fatty acids and more fat deposition, linking with 
the increased amount of energy and elevated BW in humans 
[27]. A higher F/B ratio represented improved energy uptake 
and growth promotion. The increase of the F/B ratio was as-
sociated with the desirable growth performance [26,28]. The 
significant increments of F/B ratio noted at the age of 9 weeks 
did not link with a significant performance improvement, 
indicating that the interactions of Firmicutes and Bacteroidetes 
are partially involved in the overall growth, or the index of 
F/B ratio was not a specific correlate with growth performance 
in RFCs. Further investigations of microbial species diversity 

Figure 6. Functional prediction of KEGG pathways after by Tax4Fun. The third level of KEGG pathways was predicted between the control and ex-
perimental (BA+SC) groups at the age of 11 weeks (n = 6 per group). Pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycoly-
sis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted. (t-test; p<0.05). KEGG, Kyoto ency-
clopedia of genes and genomes; BA, Bacillus amyloliquefaciens; SC, Saccharomyces cerevisiae. 
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and microbial shifts in gut microbiota at the detailed taxo-
nomic level are necessary. 
  Animals with impaired gut health are characterized by 
the loss of species richness, and/or diversity and evenness in 
gut microbiota [29]. Up to date, the relationship between 
desirable growth performances, microbial species diversity, 
and microbial shifts in gut microbiota is not clear. Alpha di-
versity summarized the structure of the microbial community 
in the gut by species richness (the number of species present), 
species evenness (the number of individuals per species), or 
both. It is the first approach to evaluate differences between 
microbial environments. The supplementation of BA and SC 
in this study increased microbial diversity at the age of 9 and 
11 weeks, particularly for species abundance at the age of 11 
weeks. However, the differences were not significant between 
the control and experimental groups. The result indicated 
that the supplementation affected the abundance of taxa but 
did not alter the major community structure in the cecum. 
Beta diversity is a measure of similarity or dissimilarity be-
tween two microbial communities. Bray-Curtis dissimilarity 
was used to measure the shape (abundance of each taxon) 
and size (overall abundance per sample) of the communities. 
The supplementation of BA and SC in feed for 7 weeks pro-
moted the differential separation of microbial composition 
structure from the un-supplemented. Afterward, the micro-
bial communities between the two groups shared some degree 
of similarity. These analytic results of alpha and beta diversity 
demonstrated that the growth benefits promoted by supple-
menting BA and SC did not affect the majority of microbial 
community structure in the gut.
  Several studies have been shown that the growth benefits 
of feeding DFM in broilers were correlated with the interaction 
with gut microbiota and the host. It was through modulating 
the composition of the intestinal microflora by the overgrowth 
of beneficial microbes and/or the decreasing population of 
pathogenic bacteria [8,30]. In the present study, the relative 
abundance of Bernesiella, Lactobacillus, and Olsenella in the 
group fed with BA and SC were found to be increased when 
the microbial composition targeting the top ten abundant 
taxa in the cecum was analyzed. Nevertheless, the increments 
were not significant. Therefore, several bioinformatics tools 
were applied to determine the statistical significance with 
biological consistency and effect relevance. The results of 
metagenomeSeq and STAMP showed that genera of Berne-
siella, Prevotellaceae_NK3B31_group, and Butyrucimonas 
were significantly increased following remarkable decre-
ments of Bacteroides, Rikenellaceae_RC9_gut_group, and 
Succinatimonas in RFCs with growth benefits. Among those 
genera, the increment of Prevotellaceae_NK3B31_group 
and decrements of Rikenellaceae_RC9_gut_group and Suc-
cinatimonas were determined as the significant biological 
feature by LEfSe. Barnesiellais is known as a member of the 

family Porphyromonadaceae, order Bacteroidales. It has 
been demonstrated to utilize fucosyllactose as the energy 
source, correlate with the amount of several immunoregu-
latory cells, exert anti-inflammatory effects in mice with 
dextran sulfate sodium-induced colitis, and prevent the 
colonization of vancomycin-resistant Enterococcus in the 
intestines [31-33]. Prevotellaceae was shown to be associated 
with the production of short-chain fatty acids (SCFAs) for 
modulating gut physiology and metabolism [34,35]. The 
Prevotellaceae-NK3B31 group are involved in the carbohy-
drate, amino acid, nucleotide metabolic, and lipid pathways 
[36]. A higher proportion of Prevotellaceae_NK3B31_
group has been demonstrated to provide benefit to healthy 
pigs, alleviate diarrhea and promote growth performance 
in weaned piglets, and improve the average BW and intes-
tinal morphology in piglets treated by lysozyme [37,38]. 
For Butyricimonas, it produces butyrate to either enhance 
intestinal barrier function and mucosal immunity or serve 
as the major energy source for the differentiation of colo-
nocytes, thereby affecting the growth [39]. Increments in 
Butyricimonas abundance were shown to improve meta-
bolic parameters in mice treated with metformin [40]. These 
results indicated that these featured taxa and their abundance 
may contribute to the major effects on growth performance 
in RFCs.
  Bacteroides are considered to maintain a complex and 
beneficial relationship with the host. They ferment carbohy-
drates with other intestinal flora to produce a group of volatile 
fatty acids as an energy source for host utilization [41]. How-
ever, the amount of Bacteroides was negatively associated with 
abdominal fat and subcutaneous fat thickness in chickens 
[42]. The specific regulatory mechanism of Rikenellaceae_
RC9_gut_group in the gut is unclear. One study showed that 
it was negatively linked with glucose metabolism parameters. 
The decrement of Rikenellaceae_RC9_gut_group may up-
regulate the glucose metabolism, increasing the energy 
uptake by the host [43]. Succinimonas is recognized as a 
novel member of the family Succinivibrionaceae of the class 
Gammaproteobacteria [44]. It was isolated from human feces 
and shown to ferment carbohydrates to succinate and ace-
tate [45]. Nevertheless, few studies addressed the role of 
Succinimonas in growth performance. Based on evidence 
mentioned above, it is speculated that the increments of 
Bernesiella, Prevotellaceae_NK3B31_group, and Butyru-
cimonas might associate with more energy uptake in the 
host, modulations of gut physiology and metabolism, and 
enhancements of intestinal barrier function and mucosal 
immunity, consequently contributing to the growth bene-
fits in RFCs. Although some research highlighted the role 
of Bacteroides in growth promotion, the relationship was 
not established in this study. It indicated that the growth 
benefits from supplementing BA and SC were not through 
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the interactions with this genus of bacterium and RFCs. 
Human studies further demonstrated that the microbial 
shift from Bacteroides to Prevotellaceae_NK3B31_group in 
the colon revealed the metabolic changes of carbohydrate, 
amino acid, nucleotide, and lipid [36].
  The intestinal microbiota has been demonstrated to par-
ticipate in several metabolic pathways, including amino acid 
synthesis and lipid metabolism [46]. Predictions of functional 
pathways in the present study demonstrated significant pro-
motions of peptidoglycan biosynthesis, nucleotide excision 
repair, glycolysis/gluconeogenesis, and aminoacyl-tRNA 
biosynthesis by supplementing BA and SC. These results 
showed the participation of cecal featured taxa in metabolic 
functions. The peptidoglycan as a macromolecular component 
of the bacterial cell wall maintains the shape and integrity 
of the cell and forms a thick layer in the cell wall of lactic 
acid bacteria (LAB) [47]. LAB strains, Lactobacillus in par-
ticular, are commercially used as probiotics with health or 
growth-promoting properties [48]. Increased biosynthesis 
of peptidoglycan may enhance the abundance of LAB pop-
ulations in the gut, partially promoting the growth benefits. 
A recent study has shown the positive role of Prevotellace-
ae_NK3B31_group in amino acid, carbohydrate, lipid, and 
nucleotide metabolic pathways, influencing the concentra-
tion of acetic acid, propionic acid, and total SCFAs in the 
intestinal digesta [36]. The higher abundance of this genus 
may promote the higher predicted carbohydrate and nu-
cleotide metabolic pathways. Another study demonstrated 
a negative correlation between the abundance of Rikenellaceae_
RC9_gut_group and glucose metabolism [43], indicating 
that its decrement contributed to higher predicted glucose 
metabolic function. The aminoacyl tRNA is required for 
protein biosynthesis [49]. It was found to involve the pepti-
doglycan cross-linking pathway, antibiotic resistance, antibiotic 
synthesis, and membrane phospholipid modification path-
ways [50]. Nucleotide excision repair is the mechanism 
that protects cells against genomic damage and its disrup-
tion can result in tumorigenesis and accelerate aging [51]. 
Deficiencies in nucleotide excision repair were also associ-
ated with the inferior function of cellular metabolism [52]. 
Therefore, significant promotion on this pathway was ben-
eficial for the maintenance of mucosal architectures in the 
intestine. However, further studies are required to examine 
the speculation. According to these pieces of evidence, the 
microbial shifts in response to the supplementation of BA 
and SC may play the role in the metabolic and physiologi-
cal regulations, subsequently contributing to the growth 
benefits in RFCs.

CONCLUSION

The supplementation of BA Y2 and SC C1 in feed exerts 

beneficial effects on growth performance and gut mucosa 
improvement in RFCs. The supplementation did not disturb 
the major microbial community structure but promote the 
microbial shifts characterized by the increments of Bernesiella, 
Prevotellaceae_NK3B31_group, and Butyrucimonas, follow-
ing the decrements of Bacteroides, Rikenellaceae_RC9_gut_
group, and Succinatimonas. Evidence showed that these 
featured taxa and their abundance may contribute to bene-
fits on growth performance. Modulated cecal microbiota 
was demonstrated to play a role in chicken metabolic and 
physiological regulations through functional predictions.
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