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Abstract

Objective: 4D-CBCT provides phase-resolved images valuable for radiomics analysis for 

outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak 

artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. 

Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT 

quality for radiomics analysis, which was not optimized for individual patients. In this study, 

a patient-specific model was developed to further improve the accuracy of 4D-CBCT based 

radiomics analysis for individual patients.

Approach: This patient-specific model was trained with intra-patient data. Specifically, patient 

planning 4D-CT was augmented through image translation, rotation, and deformation to generate 

305 CT volumes from 10 volumes to simulate possible patient positions during the onboard 

image acquisition. 72 projections were simulated from 4D-CT for each phase and were used 

to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was 

trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 

4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were 
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simulated from a separate set of 4D-CT scan images acquired from the same patient and were then 

enhanced by this patient-specific model. Radiomics features were then extracted from the testing 

4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific 

model was tested using 4 lung-SBRT patients’ data and compared with the performance of the 

group-based model. The impact of model dimensionality, region of interest (ROI) selection, and 

loss function on the model accuracy was also investigated.

Main results: Compared with a group-based model, the patient-specific training model further 

improved the accuracy of radiomic features, especially for features with large errors in the group-

based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces 

the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 

91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. 

In addition, the patient-specific models with different dimensionality (2D vs. 3D) or loss functions 

(L1 vs. L1+VGG+GAN) achieved comparable results for improving the radiomics accuracy. 

Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the 

ROI L1 loss alone as the loss function.

Significance: This study demonstrated that the patient-specific model is more effective than the 

group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which 

could potentially improve the precision for outcome prediction in radiotherapy.
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1. Introduction

Radiomic features extracted from CT and CBCT images have potentials for outcome 

predictions, such as locoregional recurrence, distant metastasis, and overall survival 

(Ganeshan et al., 2012) (Huynh et al., 2016). However, the image quality of CBCT and 

CT images varies due to dose, noise level, resolution, scatter, and patient motion, which 

can impact the robustness and reproducibility of radiomic features. Thus, researchers 

have developed models to improve the CT image quality, which could further improve 

the robustness and reproducibility of radiomic features extracted from these images. For 

example, a super-resolution model (Park et al., 2019) has been developed to enhance CT 

images by changing the slice thickness. A generative adversarial network (GAN) (Li et al., 
2021) has been implemented to normalize CT images of different acquisition parameters, 

such as different reconstruction kernels. However, similar studies all focused on improving 

CT image quality. Enhancing CBCT image quality for radiomics analysis is lacking, even 

though CBCT images provide valuable daily information during the treatment courses. In 

radiation therapy, CBCT images are scanned before each treatment for positioning guidance. 

Thus, these daily images could be important for treatment assessment, response prediction, 

or adaptive planning. When imaging treatment sites that are affected by respiratory motions, 

such as lung tumors, traditional 3D-CBCT only provides an average image of different 

respiratory phases, which causes motion blurriness and artifacts to the tumor significantly 

impacting the accuracy of radiomic features. To resolve this issue, phase-resolved 4D-CBCT 
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was developed to capture the respiratory motion of the patient with much-reduced motion 

artifacts. Even though 4D-CBCT images have fewer motion artifacts, the number of 

projections for 4D-CBCT reconstruction are always under-sampled, due to the time and 

dose constraints in clinical applications. This under-sampling causes severe noise and streak 

artifacts leading to degraded image quality. Therefore, enhancing 4D-CBCT image quality is 

essential for improving radiomics feature accuracy, which could further benefit the outcome 

prediction using radiomics.

Several methods, including traditional models and deep learning models, have been 

developed to improve the image quality of 4D-CBCT images. For example, most of the early 

publications focused on traditional methods, such as motion compensation (Rit et al., 2009), 

prior knowledge-based estimation (Ren et al., 2014), and compressed sensing-based iterative 

reconstruction (Li et al., 2002). The motion compensation method combines different phases 

of 4D-CBCT into one phase by deformable registration. Although this method improves 

the image quality, it requires a large amount of time and could have residual motion 

blurring due to errors in the compensation. The prior knowledge-based estimation method 

is also time-consuming due to the 3D-2D deformable registration involved. Compressed 

sensing-based iterative reconstruction methods can often over smooth the 4D-CBCT images 

when removing the streak artifacts. Even though these methods reduced noise, the high-

frequency details can also be removed. In addition, iterative reconstruction also requires 

complicated processing steps and a substantial amount of time. In recent years, deep 

learning becomes a promising method for image enhancement due to its efficiency and high 

performance. For example, we developed a symmetric residual convolutional neural network 

(Jiang et al., 2019) to augment the image quality of 4D-CBCT. Results demonstrated its 

efficacy in substantially enhancing the image quality, achieving performance superior to the 

conventional methods. This deep learning model is also much faster than the conventional 

methods, taking only seconds to enhance the 4D-CBCT.

Although different methods were developed for 4D-CBCT enhancement, there has been a 

lack of studies to investigate the impact of 4D-CBCT image quality on radiomics feature 

analysis. To our knowledge, our recent publication is the first study to investigate the 

impact of 4D-CBCT image quality on radiomics feature accuracy and the efficacy of image 

enhancement to improve the accuracy (Zhang et al., 2021). Results showed that 4D-CBCT 

image quality can significantly affect the accuracy of derived radiomics features and the 

deep learning model was able to improve the accuracy of radiomics analysis by enhancing 

the 4D-CBCT images. One limitation of this previous study was that the deep learning 

model was trained by a group of different patients’ data, which may not be optimal when 

being applied to individual patients due to the interpatient variations. For example, body 

size, tumor, breathing and anatomical structures vary across different patients, leading 

to variations in the artifacts. Group-based models cannot correct the artifacts caused by 

patient-specific changes, which can impair the accuracy of radiomic features derived. 

Potentially building a patient-specific model based on an individual patient’s data can 

address the limitation of the group-based model. Our recent study demonstrated the great 

potential of building a patient-specific deep learning model to enhance the quality of digital 

tomosynthesis images (Jiang et al., 2021). Thus, in this study, we aim to develop a patient-

specific deep learning model based on the augmented intra-patient data to further improve 
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the image quality of 4D-CBCT to enhance the accuracy of radiomic features extracted from 

the images.

The developed patient-specific model was trained by augmented patient-specific data. The 

4D-CT images were augmented from 10 phase images to 305 image volumes of each patient 

by translation, rotation, and deformation. 4D-CBCT images were simulated from 4D-CT 

images based on simulated projections and FDK reconstruction (Feldkamp et al., 1984). 

The patient-specific model was trained to match 4D-CBCT images to 4D-CT images using 

this intra-patient data. Once trained, the model can be used to enhance the images for the 

specific patient. Then, radiomic features were extracted from original 4D-CBCT images and 

enhanced 4D-CBCT images. Features extracted from 4D-CT images served as the ground 

truth to evaluate the accuracy of radiomics features extracted from 4D-CBCT. Different 

model architectures, ROI selections, and loss functions were explored in the patient-specific 

model, and their performance was also compared to the group-based model we developed in 

the previous paper.

2. Materials and methods

2.1 Overall Workflow

Figure 1 presents the overall workflow of the study, which contains four steps in total. 

Unlike the traditional model trained by a group of different patients, the patient-specific 

model used a single patient for training. However, this might cause overfitting due to a 

lack of data. Thus, The first step is to augment patient data to mimic all possible positions 

and respiratory conditions of the patient during CT image acquisition. In traditional data 

augmentation, researchers only shift and rotate the original image, however, our method not 

only utilizes translation and rotation but also augments the CT images by body deformation. 

The second step is to simulate the under-sampled 4D-CBCT images from augmented 4D-CT 

images using DRRs and FDK (Feldkamp et al., 1984) reconstruction. The third step is to 

train the patient-specific model, which is modified from the pix2pix model (Isola et al., 

2017). In this step, simulated 4D-CBCT images are used as the input of the pix2pix model, 

and the corresponding augmented 4D-CT images are used as the ground truth to train the 

model. The fourth step is to test the model performance. 4D-CBCT images acquired from 

the same patient but on a different day are used as the input, and the model outputs enhanced 

4D-CBCT. The accuracy of the radiomic features of the 4D-CBCT before and after the 

enhancement is calculated and compared to evaluate the efficacy of the patient-specific 

model.

2.2 Patient-specific data augmentation

In this patient-specific model training process, CT images from the same patient served as 

the ground truth. However, overfitting would occur if models were only trained based on one 

set of 4D-CT images, and the model would not be robust if the model were tested on another 

4D-CT acquired at different time. This is because of the position variation and breathing 

change during day-to-day acquisition. In the following, we used three data augmentation 

methods to avoid overfitting.
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For image translation, we shifted the original CT image between ±6.0 mm for left-right 

and anterior-posterior directions, and ±4.0 mm for superior-inferior directions. For image 

rotation, images were rotated between ±3.0° along the superior-inferior axis (Jiang et al., 
2020). These parameters were chosen to mimic clinical situations. In total, 125 patient 

volumes were simulated based on the translation and rotation. To simulate deformations due 

to breathing, we implemented a method (Jiang et al., 2020) based on principle components 

of Deformation Vector fields (DVFs). The principal component analysis (PCA) method was 

used to estimate the first three principal motion components, which could be enough to 

capture at least 90% of motion variance due to patient breathing. Different weightings were 

used for the components to generate 180 volumes in this deformation step and 305 images 

were simulated in total from 10 images based on three augmentation techniques.

2.3 4D-CBCT simulation

From the previous step, 305 CT volumes were obtained for each training model. These 

4D-CT volumes were served as the ground truth for 4D-CBCT simulation. 4D-CBCT 

images with 72 half-fan projections per volume were simulated. 72 projections were chosen 

empirically since the generated image quality is close to the real 4D-CBCT in the clinic. 

The angles of these half-fan projections were evenly distributed across 360° and each of 

the projections was obtained based on the ray-tracing algorithm from CT images. The 

projections were reconstructed based on our in-house Matlab FDK reconstruction software 

and there are also few published papers based on the software (Chen et al., 2018) (Chen et 
al., 2019) (Jiang et al., 2021). Based on the Varian onboard imaging geometry, the projection 

size was set to 512×384 and the resolution is 0.0776cm × 0.0776cm. The source-to-isocenter 

distance is 100 cm, and the source-to-detector distance is 150 cm. The detector with a 16cm 

offset was used for half-fan projection acquisition. 4D-CBCT images were simulated with 

the above parameters and the size for each volume is 512×512×96.

2.4 Pix2pix Deep learning network

Pix2pix (Isola et al., 2017) model is a generative adversarial network developed to 

perform image-to-image translation. Fig. 2 shows the architecture of the model. Similar 

to other generative adversarial networks, the pix2pix model consists of a generator and 

a discriminator. The generator generates 4D-CT-like images with 4D-CBCT as the input. 

The discriminator evaluates the reality and accuracy of the generated images by comparing 

them with real 4D-CT images. For the generator, we implemented a Resnet model (He 

et al., 2016) with 9 residual blocks. Each of the residual blocks contains a convolution 

layer, a normalization layer, and a ReLU activation layer. The discriminator contains a 

convolution layer, a leakyReLU layer, and 4 discriminator layers. Each of the discriminator 

layers is composed of a convolution layer, a normalization layer, and a leakyReLU activation 

layer. At the end, the discriminator uses a final convolution layer to output a one-channel 

prediction map. In this study, all of the layers for 3D models were updated to 3-dimension 

layers so that the input and output of the model can be 3-dimensional, which also matches 

the dimension of CT and CBCT volumes. Loss functions are also modified and detailed 

information is discussed below in section 2.5. During the training process, the total epoch of 

each model is 100 epochs with batch size=1. The learning rate and the momentum term of 

Adam optimizer are empirically set to 0.0002 and 0.5.
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2.5 Experiment design

2.5.1 Dataset—The training and testing dataset of the patient-specific study was 

obtained from the Cancer Imaging Archive (TCIA). The reference group-based training 

dataset was obtained from the public SPARE challenge data. To make a fair comparison 

between the group-based and patient-specific models, we trained two models with the same 

deep learning architecture and parameters. For patient-specific training, the first 4D-CT 

underwent data augmentation and was used to train the patient-specific model. The second 

4D-CT acquired on a different day was used to simulate 4D-CBCT to test the model. 

Radiomics features extracted from the second 4D-CT were used as the ground truth to 

evaluate the accuracy of radiomics features in the original and enhanced 4D-CBCT. Thus, 

patient data with multiple 4D-CT image sets for each patient are needed. In this study, we 

trained and tested the patient-specific models for four patients with different locations and 

sizes of tumor. Information of the patient tumor sizes and locations are listed in Table 1 

and also shown in Figure 3. The reason for choosing these four patients is to investigate the 

impact of tumor locations and sizes on image enhancement and radiomics analysis. As listed 

in the table, patients 1 and 2 have similar tumor sizes, but different tumor locations. Patients 

3 and 4 have similar tumor locations in the body, but different tumor sizes.

For each patient, the first 4D-CT underwent data augmentation as explained in 2.2. 

4D-CBCT simulated from the augmented 4D-CT was used as the model input to train 

the model to enhance 4D-CBCT to match with the ground truth 4D-CT images. Then 

the model was tested using 4D-CBCT simulated from the second 4D-CT of the patient. 

Both 4D-CT and 4D-CBCT images were preprocessed to 256×256×96 dimension and 

1.5mm×1.5mm×3mm voxel size to save the memory of GPU during training. During 

training, the input 256×256×N was selected from 256×256×96 slices based on the size 

and location of the tumor. Due to the FDK reconstruction algorithm, the gray-level intensity 

of 4D-CBCT images is intrinsically different from that of 4D-CT images. The original 

gray-level distribution of 4D-CBCT is around [−50,150], which is very different from the 

HU value of 4D-CT images. Thus, images of 4D-CBCT were then scaled to [−1000, 1000] 

to better match the intensity of original 4D-CT images and then served as the input of the 

patient-specific model.

2.5.2 Radiomic feature extraction—There are four steps (Gillies et al., 2016) needed 

to extract radiomic features from images. The first step is image acquisition. As discussed 

in the previous section, the dataset of ground truth 4D-CT was acquired from the public 

dataset, TCIA. The original 4D-CBCT was acquired by projection simulation from 4D-CT 

images and enhanced 4D-CBCT was generated by the patient-specific model. Next, the 

tumor volume was contoured by experienced clinicians on each phase. The third step is 

preprocessing. In this step, we resampled all tumors to 1.5mm×1.5mm×3mm voxel size and 

normalized this region of interest with z-normalization. This normalization is performed by 

centering the image at the mean and divided by the standard deviation. Next, the pixels in 

the tumor were grouped into different bin numbers based on the tumor size. For patient 1 

and 2, 32 bins were used to segment the tumor pixel values. For patient 3 and 4, 96 and 

128 bins were used respectively due to the larger tumor sizes. Last, radiomics extraction was 

performed by pyradiomics software (Van Griethuysen et al., 2017).
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In total, 946 features were extracted using pyradiomics. The features include 18 first-order 

features, 68 texture features, 172 LoG features, and 688 wavelet features. First-order 

features include statistic features such as median, mean, maximum, energy. Texture features 

include 22 gray-level co-occurrence matrix (GLCM) features, 16 gray-level run-length 

matrix (GLRLM) features, 16 gray-level size-zone matrix (GLSZM) features and 14 gray-

level dependence matrix (GLDM) features. The above first 86 features were defined as 

low-level features in this study. LoG features were the first order and texture features 

extracted after performing Laplacian of Gaussian filtering to the original image. 3mm 

and 5mm sigma values were chosen empirically. 688 wavelet features were obtained after 

performing wavelet band-pass filtering to the original images in eight different octants. The 

LoG features and wavelet features were defined as high-level features in this study. The 

shape features in this study were excluded since the same tumor contour was used for all CT 

and CBCT images of the same patient.

2.5.3 Radiomic features selection—Currently, researchers developed different 

models for outcome prediction based on radiomic features, such as the Lasso classification 

model (Zhu et al., 2018), random forest (Jia et al., 2019), or clustering (Parmar et al., 2015). 

However, it is impossible for the models to use all of the 946 features for prediction due 

to time and complexity limitations. In addition, these features might have randomness and 

redundancy, which could adversely impact the results of the outcome prediction model. 

Thus, valuable features need to be selected for efficient and effective outcome prediction. In 

this study, we focused on evaluating the impact of image quality on radiomics features that 

were selected by a highly cited publication (Huynh et al., 2016) about using CT radiomics 

for lung cancer outcome prediction. Huynh et al developed a two-step method (Huynh et al., 
2016) for feature selection. The first step is to compare the intra-class correlation coefficient 

and select features with a value greater than 0.8. Then, PCA is applied to further reduce 

the dimension and get the most valuable features that could describe the characteristics of 

the tumor. The study selected 10 features based on the concordance index, which indicates 

the proportionality of each feature to the outcome prediction (Huynh et al., 2016). These 

features are median, GLCM cluster shade, LLH range, LHL total energy, HLL skewness, 

LLL max, LoG 3mm skewness, LoG 5mm skewness, LoG 3mm GLCM inverse difference, 

LoG 5mm GLRLM short-run emphasis. In our study, we utilized these validated features to 

further investigate the impact of image quality on the feature accuracy and the efficacy of 

using a patient-specific model to enhance the accuracy.

2.5.4 Evaluation—To evaluate the performance of patient-specific models, we compared 

the radiomic features of the original 4D-CBCT, patient-specific enhanced 4D-CBCT with 

the ground truth 4D-CT. The patient-specific models were also compared with group-based 

models (Zhang et al., 2021), which were trained by using ten different patients’ data from 

the public SPARE dataset (Shieh et al., 2019). The radiomic features error was evaluated by 

the following equation:

ⅇrr = 4D CBCT feature − 4D CT feature
4D CT feature (1)
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The equation calculates the difference of values between the 4D-CBCT feature and the 4D-

CT feature and normalizes by the 4D-CT feature. In equation 1, the 4D-CT feature serves 

as the ground truth. The 4D-CBCT feature is compared with the ground truth 4D-CT. The 

feature errors were calculated for both the original 4D-CBCT and the 4D-CBCT enhanced 

by different models.

2.5.5 Impact of patient-specific vs. group-based training—In the previous study, 

we investigated the group-based model for enhancing the 4D-CBCT radiomic feature 

accuracy. In this study, we developed a patient-specific model to further optimize the model 

performance for individual patients. To evaluate the improvements in radiomics accuracy 

and robustness, we trained the same model with the group-based data and patient-specific 

data respectively, and compared the results of radiomic features.

2.5.6 Impact of model dimensionality—One aspect to investigate is the impact 

of model dimensionality on radiomics. In radiomic analysis, the radiomic features were 

calculated for the 3D volume of the tumor. Thus, it will be valuable to investigate whether 

the 3D deep learning model has an advantage over the 2D model in enhancing the accuracy 

of radiomics features. In this study, we modified the original 2D pix2pix to 3D pix2pix 

and compared both models to investigate if the dimensionality of the model could have an 

impact on the radiomic features.

2.5.7 Impact of the region of interest selection—To investigate the impact of the 

region of interest (ROI) selection in the model training, we compared the models trained 

with whole image L1 loss, ROI L1 loss with the ROI centered on the tumor region, and a 

weighted sum of whole image and ROI losses. The whole image L1 loss is the conventional 

L1 loss and it uses the whole-body difference as the loss function. However, radiomics 

features are only extracted from the tumor region. Thus, enhancing the ROI around the 

tumor is more crucial than enhancing other areas of the body for radiomics analysis. The 

ROI-based loss was calculated only using the difference inside the tumor region.

2.5.8 Impact of loss functions on radiomics analysis—In this section, the impact 

of loss functions was investigated. We implemented two models with different loss functions 

and compared the results of the radiomics analysis. The first model uses the L1 loss, which 

computes the difference between the generated and ground truth images. For the second 

model, we used VGG (Johnson et al., 2016) loss and GAN loss in addition to the L1 loss 

functions. The VGG loss was utilized since it has been proved to improve the image texture 

and sharpness for style transfer and super-resolution (Wang et al., 2018). GAN loss was 

implemented to update the performance of the discriminator, which could further improve 

the high-frequency details of generated images. The weightings of each loss function were 

empirically optimized.

3. Results

3.1 Image enhancement for radiomics analysis

Figure 4 illustrates images of the simulated 4D-CBCT based on 72 half-fan cone-beam 

projections, enhanced 4D-CBCT from group-based model and patient-specific models, and 
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the ground truth CT. Within the patient-specific models, we further compared the results 

of the model with different dimensionality (2D vs. 3D), ROI selections, and the loss 

functions as described in 2.5. The group-based enhancement model serves as a baseline 

for comparison. These enhancement results proved that all of the deep learning models 

were able to enhance the original 4D-CBCT images by matching the intensities and 

contrast to those of 4D-CT images. Besides, the streaks and artifacts were removed after 

image enhancement. The group-based enhancement results contained more artifacts than 

the patient-specific enhancement results. For example, the soft tissue and muscles at the 

bottom were not restored accurately, as illustrated in the red arrows of Figure 4C. The 2D 

patient-specific model achieves better results compared to the group-based model, since 

the model corrected all bones, tissues, and tumors accurately. However, the image is more 

blurred and lacks high-frequency details, as indicated in the red arrow in Figure 4D. Both the 

patient-specific 3D whole-body model with and without ROI loss function achieve similar 

results in reducing the streaks and artifacts of the original 4D-CBCT. The patient-specific 

model with GAN and VGG loss functions performed better since it contains more details, 

and the sharpness of anatomical structures was enhanced, as illustrated in Figure 4G. From 

the PSNR evaluation, the original CBCT, Figure 4B, has a PSNR value of 24.94 dB. The 

group-based Figure 4D and the patient-specific Figure 4G have PSNR 29.45 dB and 31.52 

dB respectively.

3.2 Comparison of patient-specific and group-based training

In the previous study, we proved that the group-based model, which was trained by multiple 

patients, had the potential to improve the radiomics accuracy. To compare the group-based 

model and patient-specific model, we trained these two types of models with the same 

loss functions and architectures. Table 2 and Figure 5 show the comparison of radiomic 

feature errors in the original CBCT and enhanced CBCT by the group-based and patient-

specific models. The 10 clinically relevant features used for analysis were selected based 

on a previous study (Huynh et al., 2016), as explained in section 2.5.3. From Table 2, 

it is clear to state that both models could improve the radiomics accuracy in the original 

4D-CBCT. The patient-specific model further improved the accuracy of radiomic features 

that had large errors in the 4D-CBCT enhanced by the group-based model. In Figure 5, the 

patient-specific model had consistently low errors across features, and features with large 

errors in the group-based model, such as feature 6, LLL max, were further improved by the 

patient-specific model. Take patient 1 as an example, the error of feature 6 was reduced from 

4.29 in the original 4D-CBCT to 2.67 by the group-based model, and it was further reduced 

to 0.50 by the patient-specific model, indicating an 88.3% reduction of the error.

Figure 6 presents results of all low-level features of patient 3 as an example and other 

patients have similar results. In the plot, all 86 low-level features were extracted from 

one phase of the original 4D-CBCT, the enhanced 4D-CBCT by the group-based and the 

patient-specific models. The first 18 features are all first-order features, while features 19 to 

86 are texture features. Figure 6 shows that the patient-specific model could further reduce 

the radiomics errors in the 4D-CBCT enhanced by the group-based model. For example, 

feature 53, 76, 81 have larger errors after group-based enhancement, but the patient-specific 

model has relatively smaller errors.
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3.3 Impact of model dimensionality

Table 3 shows the radiomic features errors in the original CBCT and enhanced CBCT by 

the 2D and 3D deep learning models. The purpose of this section is to further investigate if 

a 3-dimension convolution layer could further improve the radiomic feature accuracy. Thus, 

the 2D model uses the original 2D pix2pix model architecture with the whole-body image 

difference as the loss function, and the 3D model uses a 3D convolution layer instead of 

with the whole-body image difference calculated from 3D volumes. From the results, both 

models reduced errors of most of the features and the results are comparable. Figure 7 also 

shows that the two enhancement models have similar results across all features.

3.4 Impact of the region of interest selection

Since the radiomics analysis calculates features only in the 3D ROI volume around the 

tumor, we designed an ROI-based loss, which only computes the pixel value difference 

inside ROI to train the model to enhance the ROI region specifically. Fig. 8 shows the 

impact of ROI loss functions for reducing radiomic feature errors in different patients. Table 

4 presents radiomics results of original CBCT, enhanced CBCT using the whole-body loss 

function, the ROI loss function, and combined whole-body and ROI loss function. From 

the results, the model with only the ROI loss function could not enhance the image well. 

However, the results improved significantly if we combined the whole-body loss and ROI 

loss with different weightings. For example, patient 1 feature 6 is improved by the ROI 

enhancement model from the original 4D-CBCT value from 4.29 to 2.13, and the model 

with combined loss function further reduced the error to 0.18.

3.5 Impact of loss functions

Fig. 9 shows impact of loss functions for reducing radiomic feature errors. Table 5 compared 

radiomics errors of selected features extracted from original 4D-CBCT images and different 

enhanced 4D-CBCT images. In the table, the two models were trained by different loss 

functions. The first model was trained by the whole image L1 loss and ROI L1 loss, and 

the second model was trained by adding two additional loss functions, VGG loss, and 

GAN adversarial loss. From the table, both models reduced the radiomic feature errors for 

different features and the degree of improvement is feature dependent. In general, the two 

models achieved comparable performance.

4. Discussion

Radiomic features have been widely used for patient diagnosis and outcome prediction since 

they are able to reveal characteristics of the tumor that are hard to be discovered by human 

eyes. However, there are increasing concerns about the robustness and reproducibility of 

radiomic features considering the variations in the qualities of images used to extract 

radiomic features. For example, the same patient with different reconstruction kernels, 

acquisition parameters, or image thickness could cause large variations of features (Park et 
al., 2019) (Fave et al., 2015). In this study, we have shown that the 4D-CBCT images after 

enhancement had better image quality with the noise and artifacts reduced. Consequently, 

the 4D-CBCT radiomics accuracy was improved, which can potentially improve the 

outcome prediction based on radiomic features.
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In our previous work, we developed the group-based 4D-CBCT enhancement model (Zhang 

et al., 2021), which was trained by 4D-CT and 4D-CBCT images from ten different patients. 

The study demonstrated the efficacy of using deep learning to enhance 4D-CBCT images 

to improve the accuracy and robustness of radiomic features. Due to the different patient 

sizes, artifacts, breathing patterns and anatomy structures across patients, the model trained 

by a group of patients could only reduce artifacts and noise that are in common among 

these patients and cannot address the artifacts specific to individual patients. Therefore, the 

enhancement by the group-based model may not be optimal for the individual patient due to 

inter-patient variations. From the results of this study, the patient-specific model optimized 

for individual patients outperformed the group-based model, especially for the radiomic 

features that had large errors in the group-based model, and in general for all the low-level 

features.

Another aim of this study is to investigate the impact of the model architecture on the 

performance of the deep learning model for 4D-CBCT enhancement for radiomic analysis. 

Many real-world applications of deep learning models require 2D images as input and 

output for classification, detection, or super-resolution. However, CT images are 3D volumes 

that contain inter-slice information of the body. Thus, we implemented both a 2D pix2pix 

model and a 3D pix2pix model with the same loss function for comparison. For the 2D 

model, we preprocessed the CT and CBCT volumes into slices and used each slice for input 

and output. For the 3D model, the entire volume containing the tumor is used for the 3D 

pix2pix model and the convolution layers are updated to 3D. Even though Results obtained 

from the 2D and 3D models are comparable, utilizing the 3D model for enhancement is 

more consistent with the radiomics extraction process, because the radiomic features were 

defined and extracted from the 3D tumor volume instead of 2D slices.

We also investigated the impact of ROI selection for reducing the 4D-CBCT radiomics 

errors. Three different models with a loss function in different regions are tested: L1 loss 

of the ROI, L1 loss of the whole image, and a combination of the two. The results show 

that the model with the combined loss function achieves better results. This is likely because 

the artifacts inside the tumor are also related to the anatomical structures outside the tumor, 

such as streak artifacts that originated from high contrast structures close to the tumor. Thus, 

incorporating the whole body in the loss function can help correct the artifacts outside the 

ROI, which can, in turn, benefit the artifact correction in the ROI.

In addition, we implemented two models with different loss functions. One model uses the 

L1 loss function while the other model uses the L1, VGG, and GAN loss functions. Though 

the VGG and GAN loss could further enhance the high-frequency details of these images, 

the overall effect on radiomics analysis is not significant and the enhancement results are 

comparable. It might be due to the extra noise introduced by the VGG and GAN loss.

Furthermore, two different radiomic feature extraction software were compared in this 

study: pyradiomics and Matlab radiomics (Vallières et al., 2015). We extracted the 

radiomic features from the same patient by these two different types of software and 

compared the equations used for the computation. The results show that the feature 

values have discrepancies for different software. These could be caused by the different 
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feature definition and calculation steps of the two software. Thus, it is very important 

for researchers to use the same radiomics software from start to end and use the same 

parameters such as voxel size, bin number, and normalization method to keep results 

consistent through the analysis process.

Moreover, we think training the model for each patient is still feasible in practice for the 

following reasons. The whole training process can be automated to minimize any human 

intervention needed to maintain the smoothness of the workflow. The data augmentation and 

model training time is typically around 30 hours. Since there is usually one week between 

the CT scan and the patient treatment with CBCT scan, there is sufficient time to train the 

model to get it ready for CBCT enhancement. The testing time for each specific patient is 

less than 1 second per slice. Training a deep learning model does require a high-performance 

GPU card, which should be affordable in most clinics due to its modest cost (~5k). Overall, 

we think there is no major hurdle preventing the implementation of patient-specific models.

The current work serves as a pilot study to demonstrate the efficacy of developing a patient-

specific deep learning model to enhance CBCT image quality for radiomics analysis. We 

used CBCT simulated from CT to evaluate the model because in this way the CT images can 

serve as the ground truth to evaluate the accuracy of radiomic features in CBCT. We agree 

that further studies are warranted to investigate the efficacy of the model to improve real 

CBCT images. However, a major challenge for testing on real CBCT is the lack of ground 

truth images. Patient prior CT images acquired for treatment planning will have geometric 

mismatches from CBCT due to deformation and breathing changes. Even if deformable 

registration is used to correct this, there will always be residual mismatches causing the 

discrepancy between radiomic features in CT and CBCT. Besides, since the CT and CBCT 

are acquired on different days, there can be changes of radiomic feature values from CT to 

CBCT simply due to tumor progression or regression over the time period. Therefore, the 

difference between CT and real CBCT radiomic features can be caused by the geometric 

mismatch or the tumor change instead of image quality difference, and thus CT cannot be 

reliably used as the ground truth to evaluate the accuracy of radiomic features in real CBCT. 

One limitation of the current work is that it solely focuses on developing a patient-specific 

model to address the under-sampling artifacts in 4D-CBCT to minimize its impact on 

radiomic features. Other artifacts caused by noise or scattering were not investigated in 

this study. Future studies are warranted to further expand its application to address the 

scatter artifacts and noise in CBCT. One potential option to tackle this challenge is to use 

Monte Carlo to simulate more realistic CBCT from CT accounting for scatter, noise, beam 

hardening, detector response, etc. In this way, the CT can be used as the ground truth to 

evaluate CBCT. Given the significant developments needed to build and validate the Monte 

Carlo model, we would have to report this evaluation in future studies.

The patient-specific model can be slightly worse than the group-based model for some 

cases when the group-based model already reduced the radiomic feature error to very small, 

e.g. <0.5. We think this slight degradation of feature accuracy could be caused by the 

discrepancy between the L1 loss function used in the Pix2Pix deep model training and the 

specific radiomic feature metrics used to evaluate the image in model testing. In other words, 

the model was trained to enhance the images to improve their accuracy defined by the L1 
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loss from the ground truth, while the model was tested to enhance the images to improve 

their accuracy defined by the various radiomic features. So there is a discrepancy between 

the evaluation metrics used for model training and testing. This discrepancy can lead to 

uncertainties in the model performance. For features with small errors in the group-based 

model, there is little room for the patient-specific model to improve, and the uncertainties 

in the model performance can become dominant, leading to slightly larger error in some 

features for the patient-specific model. It’s unclear if such slight degradation of features with 

small errors is clinically significant. In the future, we will investigate different loss functions 

in the model training that are consistent with different radiomic features. A feature-specific 

deep learning model can be trained using a loss function closely correlated to a specific 

feature to enhance the images to achieve the best accuracy for the feature.

5. Conclusion

In this study, we investigated the feasibility of using patient-specific deep learning models 

to further enhance the accuracy of 4D-CBCT images for radiomic analysis. Our results 

showed that the patient-specific model outperformed the previous group-based model in 

improving the accuracy of radiomic features derived from 4D-CBCT, especially for the 

low order features. This pilot study demonstrated the potential benefit of optimizing the 

deep learning model for individual patients for radiomics studies for the first time. In the 

future, feature correlated loss functions can be explored to train the deep learning model to 

achieve feature-specific enhancement for individual patients to further enhance the precision 

of radiomics analysis, which can lead to more accurate treatment assessment or outcome 

prediction for radiation therapy patients.
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Figure 1. 
Workflow of the entire study
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Figure 2. 
Architecture of the pix2pix model. The yellow block represents the generator and it utilizes 

the architecture of Resnet 9 blocks. The large blue block represents the architecture of the 

discriminator.

Zhang et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Tumor locations of each patient shown by MITK software (Goch et al., 2017)
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Figure 4. 
4D-CBCT images before and after enhancement with W/L = 2200/100. Red arrows show 

the same locations of different images, which could help detail comparisons across different 

images. The red circles highlight the region of interest. The difference between ground 

truth CT and each image is also plotted. (A) The ground truth 4D-CT images. (B) The 

original under-sampled 4D-CBCT before enhancement. (C) The enhanced 4D-CBCT by 

the group-based model. D-G are results from patient-specific models: (D) The enhanced 

4D-CBCT image using 2D pix2pix model with only whole image L1 loss. (E) The enhanced 

4D-CBCT image using 3D pix2pix model with only whole image L1 loss. (F) The enhanced 

4D-CBCT image using 3D pix2pix model with both whole image L1 and ROI L1 loss 

functions. (G) The enhanced 4D-CBCT image using 3D pix2pix model with whole image 

L1, ROI L1, VGG, and GAN loss functions. (H-M) are the corresponding difference images 
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between ground truth CT and (B-G). The color bar on the right shows the difference of each 

pixel value between the enhancement results and ground truth CT.
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Figure 5. 
Comparison of feature errors in original and enhanced CBCTs. Feature 1–10 are: 1. median, 

2. GLCM cluster shade, 3. LLH range, 4. LHL total energy, 5. HLL skewness, 6. LLL max, 

7. LoG 3mm skewness, 8. LoG 5mm skewness, 9. LoG 3mm GLCM inverse difference, and 

10. LoG 5mm GLRLM short-run emphasis.
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Figure 6. 
Comparison of errors of low-level features in the original CBCT and CBCT enhanced by 

group-based and patient-specific models in patient 3.
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Figure 7. 
Comparison of 2D and 3D models for reducing the radiomic feature errors.
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Figure 8. 
Comparison of the impact of ROI loss functions for reducing the radiomic feature errors.
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Figure 9. 
Comparison of L1, VGG, and GAN loss functions for reducing the radiomic feature errors.

Zhang et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 25

Table 1

Patient tumor size information

Patient # Tumor volume Tumor location

1 6.96cc Center of LLung

2 6.52cc Center of RLung

3 33.6cc RLung and close to mediastinum

4 201cc Rlung and close to mediastinum
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Table 2

Comparison between the patient-specific model and the group-based model. Green columns highlight features 

from the patient-specific model that have improvements over group-based model.

ID Model 1. 
Median

2. Glcm 
clustershade

3. 
LLH 
range

4. LHL 
totalenergy

5. HLL 
skewness

6. 
LLL 
max

7. LoG 
3mm 

skewness

8. LoG 
5mm 

skewness

9. LoG 
3mm 
glcm 

inverse 
difference

10. LoG 
5mm rlgl 

short 
run 

emphasis

1

Original 
CBCT 8.51 0.35 0.19 0.01 0.68 4.29 0.37 0.50 0.14 0.03

Group-
based 2.32 0.37 0.38 0.01 0.07 2.67 0.14 0.76 0.10 0.01

Patient-
specific 1.30 0.38 0.03 0.01 0.35 0.50 0.10 0.86 0.03 0.01

2

Original 
CBCT 0.85 0.75 0.16 0.01 0.43 13.61 4.29 17.29 0.02 0.02

Group-
based 0.28 0.10 0.24 0.01 0.51 6.46 0.41 11.29 0.02 0.01

Patient-
specific 0.32 0.52 0.23 0.01 0.70 1.14 2.42 10.99 0.03 0.01

3

Original 
CBCT 8.49 0.20 0.60 0.00 0.78 1.91 0.58 0.52 0.39 0.04

Group-
based 0.46 0.20 0.10 0.00 0.07 0.14 0.25 0.31 0.06 0.01

Patient-
specific 0.85 0.16 0.11 0.00 0.07 0.16 0.33 0.45 0.06 0.01

4

Original 
CBCT 4.68 0.59 0.68 0.00 0.86 1.25 0.66 0.44 0.43 0.18

Group-
based 1.05 0.67 0.05 0.00 0.10 2.71 0.05 0.22 0.04 0.08

Patient-
specific 0.35 0.05 0.05 0.00 0.67 0.75 0.07 0.07 0.00 0.01
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Table 3

Comparison between 2D and 3D patient-specific models. Green columns highlight features extracted from the 

3D model that have improvements over the 2D model.

ID patient 1. 
Median

2. Glcm 
clustershade

3. 
LLH 
range

4. LHL 
totalenergy

5. HLL 
skewness

6. 
LLL 
max

7. LoG 
3mm 

skewness

8. LoG 
5mm 

skewness

9. LoG 
3mm 
glcm 

inverse 
difference

10. LoG 
5mm rlgl 

short 
run 

emphasis

1

Original 
CBCT 8.51 0.35 0.19 0.01 0.68 4.29 0.37 0.50 0.14 0.03

2D 1.31 0.26 0.16 0.01 0.01 0.37 0.19 0.59 0.03 0.00

3D 0.52 0.23 0.16 0.01 0.23 0.56 0.38 0.06 0.10 0.01

2

Original 
CBCT 0.85 0.75 0.16 0.01 0.43 13.61 4.29 17.29 0.02 0.02

2D 0.09 0.26 0.05 0.01 0.22 1.09 2.22 5.00 0.11 0.01

3D 0.32 0.31 0.20 0.01 0.46 0.02 1.27 6.20 0.02 0.01

3

Original 
CBCT 8.49 0.20 0.60 0.00 0.78 1.91 0.58 0.52 0.39 0.04

2D 1.10 0.09 0.03 0.00 0.05 0.36 0.11 0.19 0.01 0.01

3D 0.11 0.01 0.18 0.00 0.02 0.50 0.33 0.37 0.03 0.01

4

Original 
CBCT 4.68 0.59 0.68 0.00 0.86 1.25 0.66 0.44 0.43 0.18

2D 0.05 0.42 0.08 0.00 1.14 0.68 0.19 0.09 0.02 0.02

3D 0.49 0.17 0.02 0.00 1.41 0.11 0.12 0.06 0.07 0.02
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Table 4

Comparison between patient-specific models to investigate the impact of ROI loss function. Green columns 

highlight features extracted from the WB+ROI model that have improvements over WB and ROI models.

ID Model 1. 
Median

2. Glcm 
clustershade

3. 
LLH 
range

4. LHL 
totalenergy

5. HLL 
skewness

6. 
LLL 
max

7. LoG 
3mm 

skewness

8. LoG 
5mm 

skewness

9. LoG 
3mm 
glcm 

inverse 
difference

10. LoG 
5mm rlgl 

short 
run 

emphasis

1

Original 
CBCT 8.51 0.35 0.19 0.01 0.68 4.29 0.37 0.50 0.14 0.03

ROI 0.58 0.34 0.15 0.01 0.02 2.13 0.25 0.63 0.07 0.01

WB 0.52 0.23 0.16 0.01 0.23 0.56 0.38 0.06 0.10 0.01

WB+ROI 0.71 0.73 0.08 0.01 0.26 0.18 0.29 0.73 0.04 0.01

2

Original 
CBCT 0.85 0.75 0.16 0.01 0.43 13.61 4.29 17.29 0.02 0.02

ROI 0.58 0.80 0.26 0.00 1.38 1.75 2.51 12.26 0.05 0.01

WB 0.32 0.31 0.20 0.01 0.46 0.02 1.27 6.20 0.02 0.01

WB+ROI 0.37 0.39 0.23 0.01 0.65 0.83 1.64 4.91 0.03 0.01

3

Original 
CBCT 8.49 0.20 0.60 0.00 0.78 1.91 0.58 0.52 0.39 0.04

ROI 1.99 1.71 0.55 0.00 0.06 0.20 0.75 0.71 0.30 0.03

WB 0.11 0.01 0.18 0.00 0.02 0.50 0.33 0.37 0.03 0.01

WB+ROI 0.13 0.61 0.17 0.00 0.10 0.28 0.30 0.27 0.05 0.01

4

Original 
CBCT 4.68 0.59 0.68 0.00 0.86 1.25 0.66 0.44 0.43 0.18

ROI 0.74 0.80 0.44 0.00 0.70 0.35 0.50 0.59 0.25 0.13

WB 0.49 0.17 0.02 0.00 1.41 0.11 0.12 0.06 0.07 0.02

WB+ROI 0.51 0.10 0.10 0.00 1.20 0.09 0.13 0.02 0.07 0.00
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Table 5

Comparison of patient-specific models with different loss functions. Green columns highlight features of the 

L1+VGG+GAN model that have improvements over the L1 model.

ID Model 1. 
Median

2. Glcm 
clustershade

3. 
LLH 
range

4. LHL 
totalenergy

5. HLL 
skewness

6. 
LLL 
max

7. LoG 
3mm 

skewness

8. LoG 
5mm 

skewness

9. LoG 
3mm 
glcm 

inverse 
difference

10. LoG 
5mm rlgl 

short 
run 

emphasis

1

Original CBCT 8.51 0.35 0.19 0.01 0.68 4.29 0.37 0.50 0.14 0.03

L1 0.71 0.73 0.08 0.01 0.26 0.18 0.29 0.73 0.04 0.01

L1+VGG+GAN 1.30 0.38 0.03 0.01 0.35 0.50 0.10 0.86 0.03 0.01

2

Original CBCT 0.85 0.75 0.16 0.01 0.43 13.61 4.29 17.29 0.02 0.02

L1 0.37 0.39 0.23 0.01 0.65 0.83 1.64 4.91 0.03 0.01

L1+VGG+GAN 0.32 0.52 0.23 0.01 0.70 1.14 2.42 10.99 0.03 0.01

3

Original CBCT 8.49 0.20 0.60 0.00 0.78 1.91 0.58 0.52 0.39 0.04

L1 0.13 0.61 0.17 0.00 0.10 0.28 0.30 0.27 0.05 0.01

L1+VGG+GAN 0.85 0.16 0.11 0.00 0.07 0.16 0.33 0.45 0.06 0.01

4

Original CBCT 4.68 0.59 0.68 0.00 0.86 1.25 0.66 0.44 0.43 0.18

L1 0.51 0.10 0.10 0.00 1.20 0.09 0.13 0.02 0.07 0.00

L1+VGG+GAN 0.35 0.05 0.05 0.00 0.67 0.75 0.07 0.07 0.00 0.01
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