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Abstract

Purpose: Our study used transcriptomic and metabolomic strategies to determine the molecular 

profiles of HGSOC patient samples derived from primary tumor and ascites cells. These data 

identified clinically relevant heterogeneity among and within patients and highlighted global and 

patient-specific cellular responses to neoadjuvant chemotherapy (NACT).

Experimental Design: Tissue from 61 treatment-naïve patients with HGSOC were collected. In 

addition, 11 benign, 32 ascites, and 18 post-NACT samples (matched to the individual patient’s 

pre-NACT sample) were collected. RNA sequencing (RNA-seq) was performed on all samples 

collected. Two-dimensional spatial proteomic data was collected for two pairs of pre- and 

post-NACT. Untargeted metabolomics data using GCxGC-MS was generated for 30 treatment-

naive tissues. Consensus clustering, analysis of differential expression, pathway enrichment, and 

survival analyses were performed.

Results: Treatment-naïve HGSOC tissues had distinct transcriptomic and metabolomic profiles. 

The mesenchymal subtype harbored a metabolomic profile distinct from the other subtypes. 

Compared with primary tumor tissue, ascites showed significant changes in immune response and 

signaling pathways. NACT caused significant alterations in gene expression and WNT activity, 

and this corresponded to altered immune response. Overall, WNT signaling levels were inversely 
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correlated with immune cell infiltration in HGSOC tissues and WNT signaling post-NACT was 

inversely correlated with progression-free survival.

Conclusions: Our study concluded that HGSOC is a heterogenous disease at baseline and 

growing molecular differences can be observed between primary tumor and ascites cells or within 

tumors in response to treatment. Our data reveal potential exploratory biomarkers relevant for 

treatment selection and predicting patient outcomes that warrant further research.

Introduction

High-grade serous ovarian cancer (HGSOC) remains the deadliest gynecologic malignancy 

with an estimated 21,410 new diagnoses and 13,770 deaths expected in the United States in 

2021 (1). Over 80% of patients with HGSOC exhibit response to chemotherapy; however, 

the majority will develop disease recurrence with inadequate therapeutic response (2). 

Platinum-resistant (PR) patients have a median survival of 9 to 12 months compared with 

sensitive counterparts at 24 months (3). Identifying mechanisms that drive PR can translate 

into therapeutic interventions that would improve patient outcomes.

Currently, there is a significant effort to implement personalized medicine approaches to 

improve patient outcomes. These approaches include utilization of genomic technologies 

to characterize gene expression, gene mutations, copy-number changes, and epigenetic 

reprogramming. RNA sequencing (RNA-seq) is a key genomic technology used to 

understand molecular pathogenesis in OC (4). RNA-seq of large HGSOC cohorts led to 

the identification of transcriptomic signatures that correlate with molecular phenotypes and 

clinical outcomes. The four initial OC transcriptional subtypes identified were differentiated, 

immunoreactive, mesenchymal, and proliferative (5, 6), followed by a fifth subtype, 

antimesenchymal (7).

In addition, transcriptional signatures derived from RNA-seq data are being developed in 

an effort to categorize patients into effective therapies. These signatures assess levels of 

signaling for WNT (8), mTOR (9), and TGFβ (10) as well as immune cell infiltration (11). 

The tumor inflammation signature (TIS), also computed from RNA-seq data, quantifies 

immune activity in the tumor and is correlated with response to immune checkpoint 

blockade (ICB) therapy and patient survival (12). The link between immune cell infiltration 

and treatment response is well established and has led to other work linking WNT signaling 

to the exclusion of effector T immune cells from the tumor (13–15). While RNA-seq gene 

signatures have been widely studied in HGSOC, metabolic reprogramming has not been 

well characterized. Metabolic programming is a hallmark of cancer (16, 17) and contributes 

to chemoresistance, metastatic potential, and immunosuppression (18–20).

In the current study, we describe the heterogeneity found in chemo-naïve HGSOC tissues 

and how to leverage genomic data in a clinical setting. Importantly, we explore possibility 

that markers of treatment response might be found in ascites cells and post-treatment tissues, 

with a particular interest in factors contributing to immune response. Our data show the 

potential for genomic and metabolomic analyses to identify key signatures of primary tumor 

and ascites cells, and how treatment response can identify potential therapeutic targets in 

patients with HGSOC.

Arend et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2022 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and Methods

Sample specimen collection and processing

Under IRB approval between July 2009 and September 2017, tissues from 61 consented 

individuals with HGSOC were collected in accordance with recognized ethical guidelines: 

61 chemo-naïve tissues at the time of either PDS or diagnostic laparoscopy; 32 ascites 

collected at PDS, diagnostic laparoscopy, or therapeutic paracentesis pre-NACT; 18 matched 

sets of individual patients’ pre- and post-NACT tissues (post-NACT tissue collected at the 

time of IDS); and 11 benign adnexal masses. All tissue samples tissues were flash frozen 

or deposited into RNA later (Sigma #R0901) at the time of resection and stored at −80°C 

until the time of RNA extraction. Cells from ascites fluid were isolated by centrifugation as 

previously described (21).

Patient demographics and clinical data

Patient demographics and clinical data were obtained from chart review to include age, 

body mass index (BMI), race, tumor stage, overall and progression-free survival (OS and 

PFS, respectively), BRCA status, and response to platinum-based treatment. OS was defined 

as the amount of time from diagnosis to last follow-up for surviving patients or death for 

deceased patients. PFS was determined as the amount of time, in months, from the initiation 

of treatment to first recurrence. Platinum sensitivity was determined 6 months after the end 

of chemotherapy; PS patients did not have evidence of disease progression 6 or more months 

after treatment ended, whereas PR patients had disease progression within 6 months of the 

end of treatment.

RNA-seq

We used the Norgen Total RNA Isolation kit (Cat #17200) to isolate RNA. Tissue 

homogenates (FastPrep, lysing matrix D, MP Bio) were treated with Proteinase K before 

being applied to the column, and on-column DNAse treatment was done following the 

manufacturer’s instructions. Ascites samples were lysed in RLT before RNA Isolation 

without homogenization. Total RNA was eluted from the columns and quantified using 

the Qubit RNA BR Assay Kit and the Qubit 2.0 fluorometer (Invitrogen). The median RNA 

integrity Number (RIN) values were as follows: tissue samples = 8.35 (2.4–8.9) and ascites 

= 8.6 (6.1–9.8; Supplementary Table S1). All samples were included in the analysis of pre- 

and post-NACT, to maximize the number of matched pre- and posttreatment tissues.

Approximately 800 ng of total RNA was used as input to the NEBNext Ultra RNA Library 

Prep Kit for Illumina using the polyA selection method (E7530S and E7490S). Libraries 

were barcoded using NEBNext multiplex oligos for Illumina (E7335S). Five samples were 

pooled per lane on an Illumina HiSeq 2500 flow cell and sequenced an average of 29 M 

aligned reads per sample and an average quality score of 35 with 93% >Q30. Samples that 

failed sequencing, resulting in less than 1 M reads, were removed from analysis, yielding 

our final totals of 61 treatment-naïve samples, 18 platinum-treated tumor samples, 25 ascites 

samples, and 11 benign tissue samples. All 18 post-NACT and 24 of 25 ascites samples 

came from one of the patients for which we also collected treatment-naïve tissue and 
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RNA-seq data. Raw and processed data and full description of alignment tools are available 

using the GEO Accession GSE143897.

Consensus clustering for subtypes

To calculate consensus clusters using de novo analysis of our transcriptomic data, 

we identified the 1,500 most variable genes as those with the highest variance. 

ConsensusClusterPlus() was run with maxK = 10, clusterAlg = km, bootstraps = 1000, 

and distance = Euclidean (22). The most stable clusters were when k = 4 (Supplementary 

Table S1).

Transcriptional subtype assignment

Transcriptional subtypes were defined as described in Tothill and colleagues or Wang and 

colleagues (6, 7). We calculated a Z-score across samples for expression of the Tothill and 

Wang signature genes using the transformed data from varianceStabilizingTransformation(). 

Then a Pearson correlation was calculated between the subtypes defined by Tothill and 

Wang and the normalized expression vectors for signature genes in each sample. Each 

sample was assigned to the subtype for which the Pearson correlation with the defined 

subtype was highest. Any sample without a correlation exceeding 0.1 was not assigned a 

subtype (“NA”; Supplementary Table S1).

Differential expression analysis

Differentially expressed genes (DEG) were determined using DESeq2. For analyses that 

spanned more than one batch of sequencing, batch was used as a covariate in the design 

model (23). No other covariates (e.g., age or grade) were used in the models because all 

patients were grade 3–4 and age was not strongly associated with clinical traits. For analysis 

of pre- and post-NACT and tumor versus ascites samples, a paired analysis that accounts for 

individual variation was conducted (design ~Patient+Treatment or ~Patient+SampleType).

Metabolomic analysis

Metabolomic analysis was conducted as previously described (24, 25). For all HGSOC 

tissue samples for which sufficient tissue remained after transcriptomic analysis we 

extracted metabolites from 100 mg of tissue using 50% methanol. Extracts were derivatized 

by methoximation and trimethylsilylation and analyzed on a LECO Pegasus 4D system 

(GCxGC-TOFMS). ChromaTOF 4.51.6 software (Leco) was used for peak calling, 

deconvolution, and initial library spectra matching. R2DGC was used for peak alignment 

and metabolite identification (26). Assignments were confirmed manually. Statistical 

analysis including clustering and differential abundance analysis by ANOVA was done using 

Metaboanalyst 4.0 (27). Pathway visualization was done using Pathvisio and WikiPathways 

(28).

Pathway analysis

DESeq2 output contrasting sample type or pre- and post-NACT of all measured transcripts 

with a log2fold change and adjusted P value were used as input for the pathway analysis 

tool LRPath in RNAEnrich mode (29). The output yields enrichment for pathways based on 
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rank correlation and a direction of effect. We plotted the adjusted P values of the topmost 

enriched pathways. For pathway analysis of gene expression modules pre- and post-NACT, 

GOrilla was used (http://cbl-gorilla.cs.technion.ac.il).

Calculation of pathway activity and immune cell infiltration

We used gene sets (metagenes) with known function or cell-type specificity as a proxy for 

pathway activity or cell type abundance. The gene sets were derived from the literature 

(9, 11, 30–32). For each set of genes, we determined the median variance stabilized gene 

expression value (using the variance stabilized transformation function in DESeq2). The 

Tumor Inflammation Signature (TIS) was calculated based on a weighted average of the 

normalized expression of TIS genes using weights identified by Ayers and colleagues, but 

CCL5 was not included as the transcript is not included in the gene models for hg19 (12). 

Additional estimates of immune cell subtypes were generated using Cibersort (33).

NanoString GeoMx digital spatial profile analysis

Unstained slides from formalin-fixed paraffin-embedded (FFPE) blocks from 2 patients 

(included in RNA-seq analysis), pre- and post-NACT, were sent for NanoString (https://

www.nanostring.com) GeoMx Digital Spacial Profiling (DSP) Analysis using the Human 

Immuno-Oncology Protein Panel. This panel allows for multi-plex, high-throughput spatial 

profiling to quantify and spatially map 70 proteins in both tumor and immune cells 

simultaneously. DSP provides quantitative protein data from 6 regions of interest (ROI) 

on each slide. Each region is further divided into tumor (PanCK+CD45−) and immune 

(PanCK−CD45+) areas resulting in 6 tumor and 6 immune areas with 70 protein readouts per 

area, termed tumor segmentation.

Survival analysis

Kaplan–Meier Plotter was used to generate KM curves. We compared outcomes for the 

top and bottom tertile of expression in patients with stages III or IV HGSOC only (n = 

1,023 for OS and n = 1,001 for PFS). We selected “Jet set” probes, as recommended. The 

probe ID for each gene is noted in the plots. Sources for the database include GEO, EGA, 

and TCGA (Gene Expression Omnibus, European Genome-phenome Archive, The Cancer 

Genome Atlas). Website: https://kmplot.com/analysis/.

Statistical analysis

R version 4.0.0 was used for all other statistical analysis unless described otherwise 

above. The following general packages were used: gplots, limma, dplyr, and ggplot2. 

ComplexHeatmap package with Spearman as the distance metric was used for heatmaps. 

Survplot and survminer were used to generate KM curves and calculate Cox proportional 

hazard ratios (https://github.com/kassambara/survminer). For matched tissues (tumor pre- 

and post-NACT tissues), we calculated a normalized log2fold change and calculated hazard 

ratios associated with those changes using the coxph() function.
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Data availability

The data that support the findings of this study are available from the corresponding author, 

RCA, upon reasonable request.

Results

HGSOC tissues harbor transcriptional and metabolic heterogeneity

To determine the transcriptional differences in tumor and benign tissue, we performed 

RNA-seq on 61 chemo-naïve II–IV HGSOC tissues and 11 benign tissues; a summary 

of patient demographics and clinical characteristics are shown in Table 1. We identified 

10,817 DEGs between the tumor and benign tissues (FDR < 0.01; Supplementary Fig. S1A). 

Pathway analysis of the DEGs revealed enrichment for genes involved in cell cycle and 

cell division (Supplementary Fig. S1B). Next, we performed consensus clustering on the 

61 HGSOC tissues using the top 1,500 most variable genes to compare gene expression 

patterns across the tumor tissues, identifying four reproducible clusters (Supplementary 

Fig. S2). When comparing each cluster’s gene expression profile to previously defined 

transcriptional subtypes (6, 7), we determined that our de novo–defined clusters could be 

mapped to previously defined subtypes (Fig. 1A). Consensus clusters 1 and 2 associated 

with mesenchymal (M) and immunoreactive (I) subtypes; cluster 3 with immunoreactive 

(I) subtype; and cluster 4 with proliferative subtype (Fig. 1A). While not statistically 

significant, proliferative (P) and differentiated (D) subtypes had improved OS compared 

with the other subtypes (Fig. 1B; Supplementary Fig. S3) with consensus cluster 1 having 

the worst OS (Fig. 1C). These results are consistent with previously published data 

confirming HGSOC patients with mesenchymal or immunoreactive tumor profiles have 

worse survival outcomes compared with proliferative tumors.

Next, we used untargeted metabolomics to measure 130 metabolites from 30 of the 61 

chemo-naïve HGSOC tissues for which sufficient tissue was available. Because of the 

limited sample number, we did not use de novo clustering in this analysis. Instead, 

we identified altered metabolite levels associated with subtypes assigned based on 

transcriptomics (Fig. 1D). We observed that metabolite profiles from samples assigned 

to mesenchymal (M) subtype stood out as being like one another but different from 

other tissues we profiled. An integration of gene expression and metabolite differences 

in mesenchymal (M) subtype showed significant metabolic changes related to energy 

metabolism (Fig. 1E). Glucose, pyruvate, asparagine, and glutamine were among the 

metabolites significantly increased (P < 0.05) in mesenchymal (M) compared with other 

transcriptional subtypes (Fig. 1E). Of the genes involved in synthesis or processing of 

glucose or glutamine metabolites, we identified PDK4 and GLS that were upregulated in 

mesenchymal subtype and whose increased expression corresponded to worse PFS among 

patients in an independent, publicly available dataset (Fig. 1F and G; P < 0.05 and P < 0.001, 

respectively). We explored what signaling pathways could be behind the altered metabolic 

phenotype in this subtype and found a subset of genes regulated by mTOR and PPARG 

whose expression were elevated.
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Identification of treatment-relevant genomic features in HGSOC tumors

To identify treatment-relevant genomic features in our 61 chemo-naïve HGSOC patients, 

we used previously defined gene sets (metagenes) to estimate activity of key pathways with 

known therapeutic targets in HGSOC (Fig. 2A; refs. 34–36). Increased MAPK signaling 

(green ) and markers of high rate of proliferation (blue ) were the most common features 

followed by mTOR signaling (red ) and immune infiltration (yellow ; Fig. 2A). The 

mTOR and MAPK signaling pathways are common targets in cancer therapeutics, but have 

not been approved for primary OC. Furthermore, HGSOC is characterized by chromosomal 

instability caused by homologous recombination repair pathway deficiency (HRd; ref. 37). 

The presence of HRd in HGSOC is a biomarker of poly (ADP-ribose) polymerase inhibitor 

(PARPi) sensitivity (37). PARPi’s are used to treat recurrent/chemoresistant OC patients 

with tumor gene signatures related to “BRCAness” or BRCA+ because they effectively 

kill these tumor cells regardless of the underlying mechanism of HRd (38). A small 

percentage (13%) of patients (including 3 that were known to have BRCA mutations) 

had transcriptional signatures associated with “BRCAness” (pink ) suggesting response to 

PARPi (Fig. 2A).

In our patient cohort, 14 patients did not have a gene signature associated with response to 

an existing therapy. We compared gene expression from these 14 patients to the rest of the 

cohort and identified DEGs, and among them, ADH1B had a significant increase (P < 0.001) 

in expression in these 14 patients. Elevated ADH1B expression corresponded to decreased 

OC patient PFS (Fig. 2B). More globally, we used pathway analysis to characterize the set 

of genes differentially expressed in this group of patients and found enrichment for pathways 

involved in immune response and activation (Fig. 2C). Six of the patients were assigned 

the immunological transcriptional subtype. They had intermediate levels of T-cell infiltration 

and did not meet the cut-off we used but have similar, albeit somewhat lower signatures, of 

immune cell infiltration. These patients may benefit from a treatment that would enhance the 

immune response.

Research has highlighted multiple signaling pathways, including MAPK and mTOR, that 

contribute to immune responses in TME (39, 40), and we have observed an increase in T-cell 

infiltration and antitumor responses in OC treated with WNT pathway inhibitors (13, 14, 

41). We estimated the activity of these three pathways using the expression of published 

target genes to determine whether they correlated with levels of T-cell infiltration in our 61 

chemo-naïve tumor tissues. No significant correlation was observed between the MAPK (P 
= 0.19) or mTOR (P = 0.50) signaling activity and T-cell infiltration (Fig. 2D). However, 

activity of the WNT pathway was inversely correlated (P < 0.001) with T-cell infiltration 

in the tumors (Fig. 2D). Next, we tested the WNT pathway’s effects on infiltration of other 

immune cell subsets using expression of cell-type specific genes from the bulk RNA-seq 

data (11, 33). We determined that WNT signaling is inversely correlated with infiltration of 

cytotoxic cells (P < 0.001), natural killer (NK) cells (P < 0.001), and M1 macrophages (P < 

0.05; Fig. 2E).
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Prognostic markers derived from ascites cells include WNT signaling and immune 
response genes

Advanced-stage HGSOC can have an accumulation of ascites fluid in the peritoneal cavity 

(Fig. 3A). Furthermore, tumor-derived cells present in ascites are thought to be stem-like, 

thus contributing to therapeutic resistance (42). In our analyses, we collected matched 

patient primary tumor tissue with ascites fluid (n = 32). We determined the transcriptional 

subtype of each ascites sample and compared it with the subtype of the individual patient’s 

matched primary tumor tissue. Only 37% (n = 12) of patients had matched ascites 

and primary tumor with the same transcriptional subtype (Fig. 3B). The most common 

transcriptional subtype found in ascites was mesenchymal (M; 25%; Fig. 3B). This result is 

in concordance with previous studies showing that ascites fluid contains a subset of resistant, 

more mesenchymal-like cells (43). Given the lack of consistency between transcriptional 

subtypes within a patient, we sought to understand whether there were common profiles/

pathways that might target both primary tumor and ascites cells. We generated RNA-seq 

data from ascites cells and compared it to RNA-seq data from matched chemo-naïve primary 

tumor tissues and found 10,596 genes that were significantly different (P < 0.05; Fig. 3C). 

Many of these differences can be accounted for by differences in the cellular composition of 

the primary tumor compared with the ascites, along with ascites composition of tumor cells 

and erythrocytes, leukocytes, fibroblasts, and other nontumor cells. DEGs overexpressed in 

ascites showed enrichment in pathways involved in translation (GO: 0006412; P < 10−50), 

energy metabolism (GO:0046034, P < 10−41), and immune response (GO: 0002220; P < 

10−14) compared with primary tumor tissue. In addition, we found that high WNT signaling 

scores derived from ascites cell expression inversely correlated with patient PFS (P < 0.05; 

Fig. 3D), and this was linked with low tumor-infiltrating lymphocyte (TIL) scores impairing 

PFS (Fig. 3E) in these patients. We and others have shown that elevated WNT signaling can 

suppress effector T-cell function (13–15), and these data suggest that WNT signaling could 

be a therapeutic target in both ascites and primary tumor to enhance effector T-cell function.

Chemotherapy alters transcriptional profiles and immune responses in HGSOC

Most patients diagnosed with HGSOC are treated with a platinum-based chemotherapy 

either in the adjuvant (ACT) or neoadjuvant (NACT) setting. With the transcriptional 

heterogeneity observed across chemo-naïve HGSOC tissues and ascites, we next wanted 

to characterize molecular responses to chemotherapy. The objective of this analysis was 

to determine whether pretreatment heterogeneity or the change in expression following 

treatment could be relevant for predicting treatment response or survival outcomes. We 

generated RNA-seq data from pre- and matched post-NACT tissue from 18 patients (Fig. 

4A). Only 39% (n = 7) of patients maintained their transcriptional subtype in response to 

NACT (Fig. 4B). There was no clear prediction of whether a patient would be PS or PR 

based on transcriptional subtypes pre- or post-NACT.

A paired analysis of pre- and post-NACT samples revealed 496 DEGs (FDR < 0.05; Fig. 

4C). Among these DEGs, ARX/FLJ13058, ATP6V0D2, RERGL, and PLD5 were among 

the top increased in response to NACT, and their elevated expression corresponded to 

unfavorable prognoses for OC patients (Supplementary Fig. S4). We assessed whether 

changes in individual gene expression in response to NACT were linked to patient survival 
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outcomes (OS and PFS). Increased expression of VAMP3 and decreased expression of 

MTHFD1L are significantly associated with improved OS (P = 0.0033 and P = 0.016, 

respectively; Supplementary Fig. S5A). In addition, increased expression of SMIM13 and 

decreased expression of NEK11 were associated with improved PFS (P = 0.0022 and P = 

0.00036, respectively; Supplementary Fig. S5B). These results highlight several potential 

therapeutic targets that could be considered in the development of new strategies to improve 

OC patient survival, highlighting an immediate action that could be taken during a patient’s 

treatment to aid in clinical management.

Given the previously described link between WNT signaling and immune response in 

primary tumor tissue and ascites, we expected to observe an association with patient 

outcomes. We found that patients with HGSOC with high WNT activity pre-NACT were 

more likely to develop PR compared with patients with low WNT activity associated 

with PS (Fig. 4D). In addition, patients with high WNT activity post-NACT tumors had 

significantly worse (P < 0.05) PFS survival compared with patients with low WNT activity 

(7.22m–17.83m, respectively; Fig. 4E). Pathway analysis showed that pathways involved 

in immune response (GO:0006955, P < 10−30) and regulation of immune system process 

(GO:0002682; P < 10−30) were enriched post-NACT (Fig. 4F). Immune cell types were 

estimated from bulk RNA-seq data as described previously (11), and we found that only 

the M0 (inactive) macrophage population increased in abundance in response to NACT 

(Fig. 4G). From a list of over 300 known cytokines we found that IL31 and IFNA7 are 

most correlated with M0 abundance in our cohort (R = 0.67 and 0.65, Pearson). The 

signals driving the increased M0 abundance could be important for understanding a positive 

immune response to treatment.

We selected two patients with matched pre- and post-NACT tissue for proteomic analysis; 

1 patient was PS (Sample ID #36) and 1 patient was PR (Sample ID #22; Fig. 4B). Using 

the NanoString GeoMx Digital Spatial Profiler (DSP) Analysis platform, we quantified 

abundance and spatial orientation of >70 cancer-relevant proteins (Supplementary Fig. S6A). 

This analysis allowed for tumor segmentation of multiple ROIs on each patient tissue that 

were separated into tumor and immune cells using PanCK and CD45 markers, respectively 

(Supplementary Fig. S6B and S6C).

The proteomic analysis revealed an increase in immune exhaustion markers in response to 

NACT in our PR patient that was not observed in PS patient (Fig. 5). Of note, this patient 

had high WNT signaling at baseline (pre-NACT; Fig. 5A). When analyzing immune proteins 

of interest, we found this patient had a significant increase in indoleamine-pyrrole 2,3-

dioxygenase 1 (IDO1) and T-cell immunoglobulin and mucin domain-containing protein 3 

(Tim-3) in response to NACT (Fig. 5A). Furthermore, this patient had a significant increase 

in general Mϕ (CD68) and T-cell (CD3) markers in response to NACT (Fig. 5A). NACT 

increased beta-2-microglobulin (B2M/β−2-m), stimulator of interferon genes (STING), 

and B-cell lymphoma-2 (Bcl-2) in this patient (Fig. 5A). These results complement the 

change in transcriptional subtype seen in this patient in response to NACT (proliferative 

to immunoreactive, respectively; Fig. 4B). Our transcriptomic analysis largely agreed with 

the proteomic data. Of the 16 differentially expressed proteins in this patient, 100% of 

transcripts were changed in the same direction.
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The PS patient had and an immune landscape characterized by proliferation, memory T 

cell, myeloid activation, and B-cell markers (Fig. 5B). This patient also had significantly 

higher nuclear protein 67 (Ki67) and memory T-cell marker (CD45RO) in immune-positive 

cells at baseline in addition to low WNT signaling (Fig. 5B). In addition, this patient 

had a significant increase in tumor suppressor (p53) and proapoptotic marker (BIM) 

on tumor-positive cells in response to NACT (Fig. 5B). These results complement the 

change in transcriptional subtype seen in this patient in response to NACT (proliferative to 

mesenchymal, respectively; Fig. 4B). Altogether, these results point toward a relationship 

between WNT signaling, macrophages, immune evasion, and PR.

Discussion

The treatment of OC will continue to increase its reliance on genomic profiles and 

transcriptomic patterns (44). Current genomic data reported in large, validated datasets, 

such as TCGA, utilize treatment-naïve HGSOC tissues with limited data available from 

post-treatment matched tissues or matched ascites. The objectives of this study were to (i) 

determine how transcriptomic profiles in the tumor vary across the same tissue type, (ii) 

compare metabolic profiles of chemo-naïve tissues, (iii) compare ascites and primary tumor 

tissue from the same patient, and (iv) characterize individual response to NACT with the 

long-term goals of improving our ability to choose a treatment and measure its effectiveness.

When we assigned previously characterized transcriptional subtypes: anti-mesenchymal, 

mesenchymal, differentiated, immunoreactive, and proliferative subtypes to our cohort of 61 

chemo-naïve tissues we did not observe a strong statistical difference in survival outcomes. 

The relatively small size of our cohort likely contributed to discrepancy in the correlation 

between molecular subtypes and survival outcomes compared to previously published data. 

Other groups have reported inconsistencies in the assignment of transcriptional subtypes in 

part due to heterogeneity within a tumor, including a report that a single tumor may harbor 

cells of multiple different subtypes (45). For example, de novo cluster 1 associated with 

the mesenchymal and immunoreactive transcriptional subtypes, and had worse prognoses 

compared to other groups. Throughout this manuscript, the trend behind mesenchymal and 

immunoreactive genotypes and phenotypes having worse survival outcomes in HGSOC 

could be interlinked by a particular signaling pathway.

A novel aspect of our study was the integration of metabolomic and transcriptomic data 

which showed the mesenchymal subtype had notable differences in metabolite expression 

compared to other subtypes. Analysis of large cohorts like TCGA have shown that 

mesenchymal subtypes of a variety of cancers have signatures of altered metabolism. Of 

the genes we identified enriched in mesenchymal transcriptional subtype included PDK4 

and GLS, PDK4 was found to promote alternatively activated macrophage (M2 macrophage) 

polarization (46) and GLS was found to activate M2 macrophages (47). Macrophages can 

be polarized into an M1- (antitumor) or M2-like (protumor) state, and a high M2:M1 

ratio is associated with shorter OC patient survival (48). These data suggest that tumors 

characterized as mesenchymal could be sensitive to therapies targeting M2 macrophages. 

Given these results, further investigation of metabolic changes in ascites and/or post-NACT 

tissues could be revealing in the future.
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In OC, there are limited, predictive biomarkers used to determine therapeutic response, one 

being HRd. HRd is best measured using germline DNA sequencing for known HRd genes 

(e.g., BRCA1 and BRCA2) or somatic tumor profiling that measures telomeric imbalance, 

loss of heterozygosity, and large-scale copy-number changes (37). These features are more 

difficult to detect using RNA-seq data, although transcriptional signatures associated with 

BRCA gene activity have been described (38). With the goal of identifying additional 

patients that could benefit from targeted therapies, we determined that many patients in our 

cohort had tumor gene expression profiles associated with targetable pathways, including, 

MAPK, mTOR, and WNT. While these pathways have therapies that target their signaling 

components, there are no FDA-approved therapies that target these pathways in OC. Patients 

who did not have tumor gene expression profiles associated with an existing therapy had 

elevated ADH1B, and studies have shown that ADH1B enhances OC infiltration and 

metastasis, and is a marker of residual disease (49). In addition, we found that these 

patients had elevated pathways in immune response and activation. Additional investigation 

is warranted to more thoroughly characterize the immune profiles of these patients to 

determine if an immune-modulating or other targeted therapy would be clinically beneficial. 

Consistent with previously published data from our group, WNT signaling was negatively 

associated with T-cell infiltration and signatures of cytotoxic T cells, NK cells, and M1 

macrophages. These data support the idea that inhibition of WNT signaling might be a 

viable option to target in primary tumor to decrease chemotherapy-induced immune cell 

evasion and/or increase sensitivity to immune checkpoint blockade (ICB) therapy.

Ascites fluid is known to contribute to patient mortality by facilitating metastasis and 

contributing to therapeutic resistance. Our analysis comparing chemo-naïve tumor tissue 

and ascites cells from the same patient showed significant differences in transcriptional 

profiles including changes in transcriptional subtypes. We found that the most common 

transcriptional subtype in the ascites was the mesenchymal subtype. Studies have shown 

that cancer stem cells (CSC) have an EMT-like phenotype (50), which can secrete cytokines 

including IL6, IL8, and IL1β (51) that significantly contribute to an immunosuppressive 

TME (52–55). In our analysis, we found that ascites with high WNT signaling activity 

and low TIL infiltration had worse PFS. WNT signaling has been implicated in CSC 

behavior, immune evasion, and chemoresistance. Furthermore, WNT signaling can also 

promote macrophage polarization towards an M2-like state (56), and these macrophages can 

support immune evasion through IDO that is associated with poor prognosis in OC (57). 

Lastly, M2 macrophage-derived WNT ligand enriches aldehyde dehydrogenase (ALDH) 

activity within stem-like cell niches (e.g., ascites), and in turn, these cells secrete more WNT 

ligand to enhance M2 macrophage activity (58).

Studies have shown that platinum-based chemotherapy enriches CSCs in OC (59), and 

induces local immune activation, which can increase immunogenicity of immune-excluded 

“cold” OC tumors (60). In HGSOC, enhanced TILs and T-cell activation post-NACT 

increases platinum-free interval (PFI) >6 months and therapeutic responses to NACT, 

respectively (61, 62). In our analysis comparing matched, pre- to post-NACT tumor tissues 

from patients with HGSOC, we found that NACT caused transcriptional subtype switching 

in over 61% (n = 11) of patients. Although this suggests the transcriptional subtypes may 

fluctuate, the post-NACT samples are taken shortly after a strong treatment regime is 
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completed, so it is possible that the steady state profiles would be different. MTHFD1L 
and NEK11 expression were increased in response to NACT. MTHFD1L is a known 

promoter of tumor progression, associated with poor survival (63), and NEK11 leads to drug 

resistance in OC (64). Pathways involved in immune response and activation were enriched 

post-NACT, suggesting that immune-modulating agents could also be useful in this setting. 

HGSOC patients with high WNT activity post-NACT had worse PFS suggesting WNT 

signaling inhibition could be beneficial in combination with NACT, or in the post-NACT 

setting. We noted that infiltration of several immune cell types was negatively correlated 

with WNT signaling activity, suggesting that inhibition of WNT signaling might improve 

immune cell response and perhaps recognition of tumor cells during NACT. When we 

compared immune function in response to NACT between a PR versus PS patient, we found 

that the PR patient had increased immune exhaustion in response to NACT whereas a PS 

patient did not. Of note, the PR patient had high WNT signaling pre-NACT, whereas our 

PS patient had low WNT signaling. Furthermore, the PR patient had increased IDO1 and 

Tim-3 expression in response to NACT, and IDO1 is commonly found on M2 macrophages 

and Tim-3 is expressed on Tregs; both contribute to immune evasion. Altogether our data 

show that HGSOC is a heterogenous disease with WNT signaling a major suppressor of M1 

macrophage infiltration into the TME, leading to an M2 macrophage-mediated pro-immune 

landscape corresponding to platinum resistance and impaired patient survival.

Conclusion

Our transcriptomic and metabolomic analyses provide novel perspectives into characteristics 

of HGSOC baseline heterogeneity, markers of patient prognosis from primary tumor and 

ascites, and responses to chemotherapy that could aid in identification of patients with 

improved outcomes. While prognostic value has been observed in subtyping of treatment-

naïve tissue, analysis of ascites samples likely provides additional, independent information. 

We showed here that WNT signaling, and immune cell infiltration can be markers of 

prognosis in both tissue sources. Our work highlights some of the challenges in identifying 

precision medicine approaches for HGSOC patients but it also provides hope in the form 

of novel therapeutic targets and new avenues to explore to achieve improved outcomes for 

patients with HGSOC.
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Translational Relevance

Due to the heterogenous nature of ovarian cancer, only homologous recombination status 

is routinely used to predict clinical outcome and guide treatment. We profiled high-grade 

serous ovarian cancer (HGSOC) patient tissues using transcriptomic and metabolomic 

analyses that revealed significant molecular heterogeneity among tumor and ascites 

derived cells. Our analysis revealed the importance for immune response and WNT 

signaling in predicting clinical outcomes. These effects could be observed in primary 

tumor tissue and ascites, although the precise markers were different depending on 

the tissue source. Altered metabolic profiles were linked to the mesenchymal subtype, 

which is associated with poor outcomes. We observed strong transcriptional response to 

treatment with neoadjuvant chemotherapy (NACT) as well as spatial proteomic data that 

highlighted drug-mediated impacts on both tumors and immune cells. Our work provides 

a comprehensive view of the dynamic nature of HGSOC, highlighting both candidate 

biomarkers for predicting patient outcome and potential therapeutic targets.
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Figure 1. 
HGSOC tissues vary from benign and harbor transcriptional and metabolic heterogeneity. 

Full RNA-seq and pathway analysis was performed on 61 stage IIIC/IV HGSOC patients 

and 11 benign tissues. A, Consensus clustering using the top 1,500 DEGs in HGSOC 

treatment-naïve tumor tissue defined 4 clusters (DeNovo 1–4), and we compared each 

cluster’s gene expression profile with previously defined transcriptional subtypes (Tothill et 

al. 2008; Wang et al. 2017). Kaplan–Meier (KM) curves for overall survival (OS) based 

on Wang-defined (B) and DeNovo-defined subtypes (C) show no statistical difference in 
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OS among the subtype groups. Metabolomics data generated by GCxGC-MS is displayed 

for 30 treatment-naïve HGSOC tissues. D, Hierarchical clustering of the top 25 metabolites 

most different among the five transcriptional subtypes is shown. E, An analysis of gene 

expression and metabolite differences associated with the mesenchymal subtype show 

significant metabolic changes related to energy metabolism. Glucose, pyruvate, asparagine, 

and glutaminase (GLS) were among those significantly increased (P < 0.05) in the 

mesenchymal compared with the other subtypes (red). Kaplan–Meier (KM) curves for 

patient survival based on gene expression of PDK4 (F; HR = 1.27, P = 0.022) and GLS (G; 

HR = 1.36, P < 0.001) in ovarian cancer.
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Figure 2. 
Identification of genomic features relevant for treatment in tumors. A, Transcriptional 

signatures were used to identify tumor tissues with increased MAPK signaling, proliferation, 

mTOR signaling, immune infiltration, and BRCAness. Of 61 patients, 14 did not have a 

gene signature associated with a response to an existing therapy. Analysis of DEGs between 

these patients and the remaining members of the cohort found an upregulation of ADH1B 
gene (B) that corresponds to worse patient prognosis, and pathway analysis revealed that 

these patients had increased DEGs associated with immune response pathways (C). We 

calculated whether MAPK (P = 0.188), mTOR (P = 0.504), and/or WNT (P < 0.001) 

signaling were correlated to T-cell infiltration (D). E, A more detailed analysis of specific 
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immune cell types showed WNT signaling activity was inversely correlated with infiltration 

of cytotoxic cells (P < 0.01), NK cells (P < 0.001), and M1 macrophages (P < 0.05).
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Figure 3. 
Variation in gene expression between matched patient tumor and ascites. A, Diagram of 

ovarian cancer primary tumor and ascites cells. B, Table of individual patient’s primary 

tumor and ascites transcriptional subtype assignment (Wang et al. 2017). Only 38% (n = 12) 

of patients had the same transcriptional subtype assigned to their primary tumor tissue and 

ascites. C, RNA-seq was performed on 32 patient ascites samples and matched to the same 

patient’s primary untreated tumor tissue. Hierarchical clustering of primary tumor, benign 

tissue, and ascites cells based on the most variable genes separates benign tissue from tumor 

Arend et al. Page 22

Clin Cancer Res. Author manuscript; available in PMC 2022 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tissue types. Kaplan–Meier (KM) curves showing the effects of WNT pathway activity (D) 

and TIL levels in ascites on progression-free survival of patients with HGSOC (E).
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Figure 4. 
Transcriptomic analysis of tumors in response to NACT. A, We collected samples from 18 

patients with matching chemo-naïve tissue (pre-NACT) and tissue collected after 3 to 6 

cycles of NACT (post-NACT). B, Table of individual patient’s (Sample IDs in the first row) 

pre- and post-NACT tumor transcriptional subtype assignment (Wang et al. 2017). Only 

39% (n = 7) of patients maintained their transcriptional subtype in response to NACT. Out 

of the patients whose transcriptional subtype was unchanged 50% were platinum sensitive 

(PS = S) and 50% were platinum resistant (PR = R). Of the patients whose transcriptional 

subtype did change, 60% were PS and 40% were PR. C, Hierarchical clustering using 
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all genes with FDR < 0.05 separates pre- and post-NACT samples. D, Percentage (%) of 

patients with high versus low WNT signaling in platinum-resistant versus -sensitive patient 

groups. E, PFS is significantly better in patients whose WNT signaling activity is lower 

in post-NACT tissue. F, Pathway analysis of DEGs identified pathways enriched in post- 

versus pre-NACT tissues. G, Abundance of specific immune cell types compared in pre- and 

post-NACT tissues.

Arend et al. Page 25

Clin Cancer Res. Author manuscript; available in PMC 2022 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Proteomic analysis of tumors in response to NACT. Unstained slides from formalin-

fixed paraffin-embedded (FFPE) blocks from 2 patients, pre- and post-NACT, were sent 

for NanoString (https://www.nanostring.com) GeoMx DSP Analysis using the Human 

Immuno-Oncology Protein Panel. Each slide had 6 ROIs that were segmented into tumor 

(PanCK+CD45−) and immune (PanCK−CD45+) areas. A and B, Platinum resistant (A; PR – 

Sample ID #22 from B) and platinum sensitive (B; PS – Sample ID #36 from B) patient pre- 

and post-NACT tissue stain and volcano plots representing proteins that were significantly 

altered in immune and tumor cells specifically in response to NACT.
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Table 1.

HGSOC patient demographics.

Total patients n = 61

Age

 Mean (range) 65 (38–82) years

Body mass index (BMI)

 Mean (range) 28 (18–48)

Race

 White 87% (n = 53)

 African American 13% (n = 8)

Stage

 II 2% (n = 1)

 III 77% (n = 47)

 IV 21% (n = 13)

Overall survival (OS)

 Mean (range) 35 (0.2–72) months

Progression-free survival (PFS)

 Mean (range) 10 (0–32) months

Treatment strategy

 Primary debulking 70% (n = 43)

 Neoadjuvant chemotherapy (NACT) 30% (n = 18)

BRCA status

 Positive 6% (n = 1)

 Negative 50% (n = 9)

 Unknown 44% (n = 8)

Platinum sensitivity status

 Sensitive 50% (n = 9)

 Resistant 39% (n = 7)

 Unknown 11% (n = 2)

Note: Patient age, BMI, race, stage, OS, PFS, treatment strategy, BRCA, and platinum sensitivity status were recorded for each of the 61 patients in 
our analyses.
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