
Improved production of 76Br, 77Br and 80mBr via CoSe cyclotron 
targets and vertical dry distillation

Paul A Ellison1,*, Aeli P Olson1, Todd E Barnhart1, Sabrina LV Hoffman1, Sean W Reilly2, 
Mehran Makvandi2, Jennifer L Bartels3, Dhanabalan Murali1, Onofre T DeJesus1, Suzanne 
E Lapi3, Bryan Bednarz1,4, Robert J Nickles1, Robert H Mach2, Jonathan W Engle1,5

1Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 
Madison, WI, USA

2Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of 
Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA

3Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA

4Department of Engineering Physics, University of Wisconsin School of Medicine and Public 
Health, Madison, WI, USA

5Department of Radiology, University of Wisconsin School of Medicine and Public Health, 
Madison, WI, USA

Abstract

Introduction: The radioisotopes of bromine are uniquely suitable radiolabels for small molecule 

theranostic radiopharmaceuticals but are of limited availability due to production challenges. 

Significantly improved methods were developed for the production and radiochemical isolation of 

clinical quality 76Br, 77Br, and 80mBr. The radiochemical quality of the radiobromine produced 

using these methods was tested through the synthesis of a novel 77Br-labeled inhibitor of poly 

(ADP-ribose) polymerase-1 (PARP-1), a DNA damage response protein.

Methods: 76Br, 77Br, and 80mBr were produced in high radionuclidic purity via the proton 

irradiation of novel isotopically-enriched Co76Se, Co77Se, and Co80Se intermetallic targets, 

respectively. Radiobromine was isolated through thermal chromatographic distillation in a vertical 

furnace assembly. The 77Br-labeled PARP inhibitor was synthesized via copper-mediated aryl 

boronic ester radiobromination.

Results: Cyclotron production yields were 103 ± 10 MBq∙μA−1∙h−1 for 76Br, 88 ± 10 

MBq∙μA−1∙h−1 for 80mBr at 16 MeV and 17 ± 1 MBq∙μA−1∙h−1 for 77Br at 13 MeV. Radiobromide 

isolation yields were 76 ± 11% in a small volume of aqueous solution. The synthesized 77Br-

labeled PARP-1 inhibitor had a measured apparent molar activity up to 700 GBq/μmol at end of 

synthesis.
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Conclusions: A novel selenium alloy target enabled clinical-scale production of 76Br, 77Br, 

and 80mBr with high apparent molar activities, which was used to for the production of a new 
77Br-labeled inhibitor of PARP-1.

Advances in Knowledge: New methods for the cyclotron production and isolation of 

radiobromine improved the production capacity of 77Br by a factor of three and 76Br by a factor of 

six compared with previous methods.

Implications for Patient Care: Preclinical translational research of 77Br-based Auger electron 

radiotherapeutics, such as those targeting PARP-1, will require the production of GBq-scale 77Br, 

which necessitates next-generation, high-yielding, isotopically-enriched cyclotron targets, such as 

the novel intermetallic Co77Se.
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INTRODUCTION

The radioisotopes of bromine with medical relevance include the diagnostic positron-

emitter 76Br (t1/2 = 16.2 h) and therapeutic Auger-emitters 77Br (t1/2 = 57.0 h) and 
80mBr (t1/2 = 4.42 h). Radiobromine is organochemically versatile, participating in 

labeling reactions including oxidative electrophilic radiobrominations using alkyl tin 

precursors [1] and nucleophilic aromatic radiobrominations using diaryliodonium salt [2] 

and aryl boron [3] precursors. Many radiobrominated compounds have been investigated, 

including thymidine analogues bromodeoxyuridine ([77Br]BrUdR) [4] and fluoro-bromo- 

arabanofurosyl-uracil ([76Br]FBAU) [5], steroid receptor ligand methoxybromoestradiol 

([77Br]MBE) [6], peptides [7] and proteins [8]. Additionally, radiobromine has an advantage 

over the radioisotopes of iodine in that the C–Br bond is more stable than C–I bond 

resulting in less dehalogenation of radiolabeled compounds in vivo. Rather than accumulate 

in the thyroid like iodide, radiobromide ions liberated due to in vivo dehalogenation remain 

distributed primarily in the blood pool, with an excretion rate of ~10 days in humans [9], 

resulting in a more diffuse dosimetric burden. These properties make bromine radioisotopes 

uniquely suited for incorporation into small molecule theranostic agents.

Small biomedical cyclotrons produce the medical radioisotopes of bromine via the 
77Se(p,n)77Br, 76Se(p,n)76Br, and 80Se(p,n)80mBr nuclear reactions. However, selenium’s 

low electrical and thermal conductivity, boiling point, and high vapor pressure significantly 

limit its tolerance to irradiation, even with modest proton intensities. The cyclotron 

irradiation of binary intermetallic compounds of transition metals and selenium was 

pioneered in Groningen [10] using Cu2Se. The use of Cu2Se was later adapted for 

use with isotopically enriched Cu2
76Se [11,12] and Cu2

77Se [12] for the production of 

radionuclidically pure 76Br and 77Br, respectively. More recently, investigations of the 

intermetallic compounds NiSe [13,14] and ZnSe [15] are reported, but only with selenium 

of natural isotopic composition. Despite this progress, 76Br production capacity remains 

limited to ~2 GBq and 77Br to ~0.7 GBq per three hour irradiation, dramatically less 
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than the amounts needed for clinical studies. This low 76,77Br yield is primarily due to 

the thermal limitations of the selenium target resulting in a maximum proton irradiation 

intensity of 15 – 20 μA [11,12], a fraction of modern medical cyclotrons’ >100 μA 

capabilities. Cu2Se and NiSe cyclotron targets are also problematic because of co-production 

of large quantities of gamma-emitting 63Zn (t1/2 = 38.1 m) and 60Cu (t1/2 = 23.7 m), 

respectively. The proton activation of naturally monoisotopic cobalt is dosimetrically 

advantageous, producing small amounts of low radiation dose-emitting 59Ni (t1/2 = 76,000 

y) and 58gCo (t1/2 = 70.9 d). This work aims to mitigate the thermal and dosimetric 

limitations of radiobromine production targets through the use of a previously unexplored 

intermetallic, cobalt selenide (CoSe).

Selenium intermetallics release radiobromine when heated, enabling radiobromine recovery 

via thermal chromatographic distillation and avoiding time consuming target dissolution 

and recycling of costly enriched materials. So-called “dry distillation” isolates 124I [16,17] 

and 211At [18–21] from tellurium and bismuth targets, respectively, with horizontal 

distillation assemblies that cool slowly after distillation. A compact, easily-assembled 

vertical distillation assembly that cools rapidly, such as that used for isolating 94mTc [22], is 

reported here for the isolation of 77/76/80mBr.

Radiolabeled inhibitors of the DNA damage response protein, poly ADP ribose polymerase 

1 (PARP-1) have been evaluated for non-invasive quantification of PARP-1 expression for 

patient stratification and treatment response monitoring of PARP inhibitor chemotherapy 

[23,24]. Additionally, the pharmacological mechanism of action brings PARP inhibitors in 

close proximity to cancer cell DNA [25], enabling targeted Auger-electron radiotherapy. 

Recent radiochemistry reports of 77Br-labeled PARP inhibitors [2,3] demonstrate the field 

is moving in this direction. The radiochemical quality of the radiobromine produced in this 

work was evaluated by copper-mediated aryl boronic ester bromination, synthesizing a novel 
77Br-labeled derivative of the PARP-1 inhibitor, rucaparib.

MATERIALS AND METHODS

Materials

Cobalt powder (Alfa Aesar, 1.6 μm, 99.8%), natural enrichment selenium powder (Acros 

Organics, 200 mesh, 99.5%), and >99.6% isotopically enriched 76Se, 77Se, and 80Se 

powders (Isoflex USA) of isotopic abundance summarized in Table S1 were used 

for the synthesis of intermetallic CoSe. 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)-8,9-dihydro-2,7,9a-triazabenzo[cd]azulen-6(7H)-one (pre-KX1-Bpin) and 1-(4-

iodophenyl)-8,9-dihydro-2,7,9a-triazabenzo[cd]azulen-6(7H)-one (KX-1) were synthesized 

as previously described [26]. Copper catalyst (tetrakis(pyridine)copper (II) triflate; 

Cu(py)4(OTf)2) and ligand (3,4,7,8-tetramethyl-1,10-phenanthroline; Lig) were obtained 

from Sigma Aldrich. Sep-Pak QMA Plus Light (Waters, QMA light) cartridges were 

prepared with 10 mL of 1 M KHCO3 or 0.5 M Na2SO4 and 10 mL water, and Sep-Pak 

C18 Plus light (Waters, C18 light) cartridges were prepared with 5 mL ethanol and 10 mL 

water prior to use. All other chemicals were purchased from Sigma Aldrich and used as 

received.
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Production of CoSe cyclotron targets

Cobalt selenide was formed from equal parts elemental cobalt and selenium by heating to 

1200 °C in an evacuated quartz ampule. CoSe cyclotron targets were formed by hot pressing 

CoSe at ~1100 °C into a pocketed (⌀ = 9.5 mm, 1 mm deep) niobium disc (⌀ = 19 mm, 

2 mm thick) using the vertical furnace assembly shown in Figure 1. Detailed descriptions 

of these metallurgical processes are given in the supplementary material. A prepared CoSe 

cyclotron target was analyzed by X-ray diffraction using a Bruker D8 Discovery X-ray 

Diffractometer with a Cu Kα X-ray source (1.54 Å, 2 mm cone diameter) and a Vantec-500 

detector at 0.6 sample rotations per minute.

Cyclotron production of radiobromine

CoSe with natSe, 80Se, 76Se, or 77Se constituents on niobium backings was irradiated 

with 5 – 40 μA of 11 – 16 MeV protons on the University of Wisconsin GE PETtrace 

cyclotron. A water jet cooled the back of the niobium disc using an ARTMS QIS solid 

target system (Vancouver, Canada). Radiobromine production yields and radionuclidic 

purities were measured at four proton energies by employing a water-cooled degrader 

foil positioned 3.6 cm away from the face of the CoSe target. Molybdenum and tungsten 

foils (Alfa Aesar) degraded the 16 MeV primary beam to 13, 12, or 11 MeV proton 

energy with a 0.10 mm W foil, a 0.20 mm Mo foil, or a 0.25 mm Mo foil, respectively, 

based on calculations performed with SRIM-2013.00 [27]. High purity germanium (HPGe) 

spectrometry quantified radioactivity in mixed radionuclide sources and dose calibrator 

measurements (Capintec CRC 15R, setting #690÷2 for 76Br, #121 for 77Br, and #170 for 
80mBr) quantified activity in fractions following radiochemical separation.

Radiochemical isolation of radiobromine

Radiobromine thermal chromatographic distillation from irradiated CoSe targets occurred in 

the same furnace assembly shown in Figure 1, as detailed in the supplementary material. 

Briefly, the irradiated CoSe was sealed in the assembly and lowered into a tube furnace 

preheated to 1050 °C. Multiple collimated radiation detectors monitored the progress of the 

distillation. Following 5 – 15 minutes of heating, the tube was removed from the furnace 

and quenched in water. After cooling and venting, warm water rinsed the outlet gas flow 

path into the H2O trap. The water was passed through a prepared QMA light cartridge, 

trapping the radiobromide, followed by its elution with 700 μL of 20 mM K2SO4 or 0.1 M 

NH4OH in 1:1::MeCN:H2O. HPGe spectrometry and dose calibrator measurements assessed 

the radiochemical yield of the distillation process.

Radiosynthesis of 77Br-labeled PARP inhibitor

The copper-mediated aryl boronic ester bromination reaction shown in Figure 2 evaluated 

the radiochemical quality of the [77Br]bromide by using 1 μmol pre-KX1-Bpin with varying 

solvent volume and composition, K2SO4 concentration, and temperature. Reactions were 

purified by diluting in 15 mL water, loading on a prepared C18 light cartridge, rinsing with 

10 mL water, and eluting crude product in 700 μL ethanol. Following a 1:1 dilution with 

water, preparative HPLC purified the product (Kinetix XB-C18, 5 μm, 100 Å, 10×250 mm, 

4 mL/min 40:60 ∷ MeCN:0.1 M ammonium formate, pH 4.5). A final C18 light cartridge 
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purification formulated the product in a small volume ethanol solution. Dose calibrator 

measurements of purified fractions determined the radiochemical conversion. Preparative 

HPLC injections of 100 – 500 pmol of stable, iodinated KX1 estimated the 77Br-labeled 

PARP inhibitor (77Br-PARPi) mass versus 254 nm absorbance calibration curve.

RESULTS

Production of CoSe cyclotron targets

Elemental cobalt and selenium powder readily fused into solid pieces (270 ± 20 mg) in 1 

hour at 1200 °C inside a vacuum ampule. Typical mass losses to the ampule walls were 6 ± 

4% (n=10). CoSe cyclotron targets contained 180 – 220 mg of CoSe in a 9.5 mm diameter 

pocket and exhibit the X-ray diffraction pattern shown in Figure S2.

Cyclotron production of radiobromine

Water-cooled CoSe cyclotron targets withstood proton irradiation at all investigated proton 

energies (11 – 16 MeV) and intensities (5 – 40 μA). The radiobromine production rate 

was consistent between 10 and 40 μA (Figure S3), indicating that CoSe targets retain 

radiobromine up to at least 640 W of power deposition (at 40 μA). Radiobromine yields 

[28] from CoSe targets are shown in Table 1 and Figure 3 with end of bombardment (EoB) 

radionuclidic purities in Table 2. 58gCo was co-produced at 140 ± 50 kBq∙μA−1∙h−1 at 16 

MeV (n=4) and 20 ± 10 kBq∙μA−1∙h−1 at 13 MeV (n=3).

Radiochemical isolation of radiobromine

Thermochromatographic distillation of radiobromine readily occurred within 5 – 10 minutes 

in a 1050 °C furnace. Typical traces from detectors collimated on the CoSe (Fig. 1, 

left) and H2O trap (Fig. 1, right) are shown in Figure 4 with detailed explanation in the 

supplementary material. 96 ± 4% (n=8) of the QMA-loaded 76/77/80mBr was recovered in the 

K2SO4/NH4OH eluant. Optimized yields of the combined dry distillation and radiobromide 

recovery process were 76 ± 11% (n=6). The CoSe cyclotron targets lost 0.9 ± 0.5% (n = 20) 

of their mass with each irradiation/distillation cycle.

Radiosynthesis of 77Br-PARPi

The [77Br]bromide QMA eluant was either used directly for radiolabeling or after drying 

under argon flow at 120 °C. Radiochemical conversions from 4.7 – 95% were observed for 

the reaction conditions, as summarized in Table S3, with conditions of reactions {1–4,6–12} 

adapted from Reilly et al. [26] and reaction {5} from Zhou et al. [3]. A single radiolabeled 

peak was eluted from preparative HPLC (see Figure S4), confirmed to be the desired 
77Br-PARPi through co-injection with stable iodinated analogue compound (KX1). Based 

on HPLC absorbance measurements of KX1, the synthesized 77Br-PARPi had an estimated 

molar activity of up to 700 GBq/μmol (19 Ci/μmol) at the time of analysis.

DISCUSSION

The Co-Se binary phase diagram shows that there exists an intermetallic species with 

stoichiometric flexibility near Co0.88Se with a melting point of 1078 °C [30]. Described 
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high temperature CoSe preparation methods successfully form this compound (Figure S2) 

[31] and are significantly faster than multi-step, low temperature (125 – 530 °C) Cu2Se 

sintering methods [11]. Final CoSe cyclotron targets were energetically “thick” to effectively 

maximize the production yield of (p,n) nuclear reactions from 13, 12, and 11 MeV protons, 

but “thin” to 16 MeV protons.

The CoSe targets tolerated higher cyclotron beam intensity (≥40 μA) than Cu2Se targets 

(15 – 20 μA) [11,12]. Hot pressing wets the niobium backing with the molten CoSe 

intermetallic, establishing excellent thermal contact with the water-cooled backing allowing 

for effective removal of the deposited proton beam power. Radiobromine from CoSe is 

radionuclidically pure (see Table 2) and yields are 1.3 – 2 times greater than those from 

other selenium alloys [12,13] (see Table 1 and Figure 3). The 77Se(p,2n)76Br threshold 

limits the radionuclidic purity of 77Br above 13.3 MeV. Measured 77Br yields from Co77Se 

targets were compared with theoretical yields calculated from measured cross sections [32] 

and found to be 38% of theoretical at 12 MeV, 43% of theoretical at 13 MeV and 70% of 

theoretical at 16 MeV. This disagreement was shown (see supplementary material, table S2) 

to result from a mismatch in proton beam spot and target diameters [33]. The degrader foil 

increases beam spread and therefore lowers radiobromine yield.

The optimized dry distillation process yielded ~75% recovery of cyclotron produced 

radiobromine and CoSe targets were exceptionally reusable, with ~1% of CoSe mass 

lost with each production. This is likely due to the metallurgical properties of the CoSe 

intermetallic, the short time the targets are heated during distillation, and the rapid 

quenching that prevents hot CoSe from partitioning into less resilient cobalt- and selenium-

containing species during cooling.

Large reaction volume and water content negatively affected radiochemical reactivity the 

copper-mediated aryl boronic ester bromination. Utilization of hot (80°C) dimethylsulfoxide 

(DMSO) as reaction solvent in {5} improved radiochemical conversion compared with 

the similar conditions of {2}. The presence of the K2SO4 impeded the reaction, likely 

by coordinating and deactivating the tetrakis(pyridine)copper (II) triflate catalyst. Copper 

sulfate is a poor catalyst in copper-mediated [18F]fluorination of boronic acids [34]. 

Potassium sulfate was included in these reactions as it is an effective, non-basic QMA 

release agent for [77Br]bromide. Bromination reactions using [77Br]bromide released from 

QMA cartridges in 0.1 M NH4OH improved radiochemical conversion, as seen in reactions 

{6–12}. Optimal radiochemical labeling conditions resulted from reacting dried 77Br in 

0.1 M NH4OH eluant with 1 μmol pre-KX1-Bpin, 0.5 μmol Cu(py)4(OTf)2, and 0.5 μmol 

Lig in 70 μL MeOH at room temperature for 1 hour. The measured molar activity of 

the radiolabeled compound was exceptionally high, amounting to ~35% of the theoretical 

maximum 77Br molar activity of 2000 GBq/μmol (55 Ci/μmol).

CONCLUSION

This work presents new methods for cyclotron production and radiochemical isolation of 

theranostic radionuclides of bromine, including 77Br, 76Br, and 80mBr. Novel accelerator 

targets of the intermetallic compound CoSe tolerate higher intensity proton irradiations 
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and produce 77Br at three times the rate of previously reported methods. Radiobromine 

is isolated using a vertical dry distillation assembly that offers several key advantages 

over horizontal assemblies, including better hot cell compatibility, more rapid heating, 

and quench cooling of CoSe targets during fabrication and distillation. CoSe targets are 

resilient to the irradiation/distillation process and individual targets have been reused in 20+ 

radiobromine productions. Produced [77Br]bromide is radiochemically reactive and has been 

used to synthesize 76/77Br-based theranostic radiopharmaceuticals with high apparent molar 

activities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Radiobromine furnace assembly with CoSe heated inside quartz tube (left).
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Figure 2. 
Radiosynthesis of 77Br-labeled PARP-1 inhibitor.
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Figure 3. 
Production yield of 80mBr, 77Br, and 76Br from irradiation of Co80Se, Co77Se, and Co76Se, 

respectively. Error bars represent standard deviations of measurements from multiple 

irradiations (see Table 1 for details).
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Figure 4. 
Typical radioactivity profiles in kilocounts per second (kCPS) in the radiobromine 

distillation assembly. The detector collimated on CoSe (Fig. 1, left) is shown in solid black 

on the left axis while the detector collimated on the H2O trap (Fig. 1, right) is shown in 

dashed grey on right axis. Region (a) spans the duration of heating, region (b) spans the 

quench/cooling period, region (c) spans the H2O rinse of outlet quartz and PTFE lines, and 

region (d) spans the QMA cartridge loading.
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Table 1.

Production yield of 82Br, 80mBr, 76Br, and 77Br from various isotopic compositions of CoSe targets at four 

proton energies (Ep). Reported uncertainties represent standard deviations of multiple irradiations or are 

estimated when n=1. Limits of detection calculated from HPGe spectra [29] are reported. In some cases 

(denoted as n/a), HPGe measurements were too late to quantify short-lived 80mBr.

Ep (MeV) Target n
Physical yield (MBq·μA−1·h−1)

82Br 80mBr 76Br 77Br

16

ConatSe 4 2.0 ± 0.3 62 ± 7 9.9 ± 0.9 2.8 ± 0.4

Co80Se 12 0.0011 ± 0.0001 103 ± 10 0.0072 ± 0.0005 0.006 ± 0.005

Co77Se 1 <0.07 n/a 12 ± ~1 23 ± ~2

Co76Se 2 <0.06 n/a 88 ± 10 0.05 ± ~0.005

Co80Se 2 0.0015 ± 0.0002 77 ± 7 0.0040 ± 0.0005 <0.002

13 Co77Se 3 <0.02 <0.3 0.07 ± 0.01 17 ± 1

Co76Se 1 <0.004 n/a 50 ± ~5 0.1 ± ~0.01

12 Co77Se 2 <0.002 <0.5 0.048 ± 0.001 13.1 ± 0.5

11 Co80Se 8 0.0015 ± 0.0003 48 ± 3 0.0010 ± 0.0001 <0.002
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Table 2.

End of bombardment (EoB) radionuclidic purity of 80mBr, 77Br, and 76Br produced at various proton energies 

(Ep).

Ep (MeV) Target EoB radionuclidic purity

16

Co80Se 99.99% 80mBr

Co77Se 63% 77Br

Co76Se 99.9% 76Br

13

Co80Se 99.99% 80mBr

Co77Se 99.6% 77Br

Co76Se 99.8% 76Br

12 Co77Se 99.6% 77Br

11 Co80Se 99.99% 80mBr
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