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Abstract

We take steps towards causally interpretable meta-analysis by describing methods for transporting 

causal inferences from a collection of randomized trials to a new target population, one-trial-at-a-

time and pooling all trials. We discuss identifiability conditions for average treatment effects in 

the target population and provide identification results. We show that assuming inferences are 

transportable from all trials in the collection to the same target population has implications for 

the law underlying the observed data. We propose average treatment effect estimators that rely 

on different working models and provide code for their implementation in statistical software. We 

discuss how to use the data to examine whether transported inferences are homogeneous across 

the collection of trials, sketch approaches for sensitivity analysis to violations of the identifiability 

conditions, and describe extensions to address non-adherence in the trials. Last, we illustrate the 

proposed methods using data from the HALT-C multi-center trial.
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Introduction

For many causal questions, we have effect estimates from several randomized trials 

that recruit individuals from different underlying populations, typically by convenience 

sampling. We would then like to synthesize the trial evidence and transport inferences to 

some target population that is chosen on substantive grounds [1].

Studies that synthesize findings across multiple trials are known as “meta-analyses” [2]. 

Most meta-analyses combine the trial-specific effect estimates to obtain a pooled effect 

estimate using either random effects models or common effect models (often referred to as 

“fixed effect” models) [3–5]. A commonly overlooked problem, however, is that standard 

meta-analyses may produce results that do not have a clear causal interpretation when each 

trial includes individuals from a different population and the treatment effect varies across 

those populations.

As an example, consider the effect of angiotensin-converting enzyme (ACE) inhibitors, 

compared with other anti-hypertensive agents, in individuals with nondiabetic chronic 

kidney disease [6–8]. A meta-analysis of 11 trials found that ACE inhibitors improved 

renal function and reduced progression to end-stage renal disease; the benefits of ACE 

inhibitors were substantially greater among individuals with high urine protein excretion 

than those with lower excretion [8, 9]. Across all trials, only 6% of participants were African 

American and in only 34% of participants the cause of kidney disease was hypertensive 

nephrosclerosis. Now suppose that we are interested in the effect of ACE inhibitors in a 

target population of non-diabetic African American adults with chronic kidney disease [10, 

11]. In African Americans, chronic kidney disease is most often due to hypertension; and 

proteinuria is more common compared with whites [12, 13]. In addition, blood pressure 

in hypertensive African Americans is generally considered to respond better to calcium 

channel blocker or diuretic monotherapy, rather than ACE inhibitor treatment [14]. Given 

these differences and the under-representation of African Americans in the trials (in fact, 

7 of the 11 trials did not enroll any African Americans), the estimate from a conventional 

meta-analysis of the 11 trials would have limited relevance for the target population.

In fact, whenever treatment effects are heterogeneous over variables that vary in distribution 

across trials (as is the case in the ACE inhibitor example) standard meta-analyses of 

treatment effects from the trials do not produce estimates with a clear causal interpretation 

for any reasonable target population. The problem arises because meta-analyses combine 

trial-specific effect estimates using weights that reflect the precision of the estimates (and 

their variability, for random effects meta-analyses) rather than their relevance to the target 

population [15]. In fact, most meta-analyses do not even specify their target population, 

regardless of whether the meta-analysis is based on summary statistics or on individual 

participant data from each trial. Similar concerns about conventional meta-analysis methods 

have been recently summarized, independently of our work, in [16].

In this paper, we take steps towards causally interpretable meta-analysis by proposing 

methods for extending inferences about average treatment effects from a collection of 

randomized trials to a target population, one-trial-at-a-time and pooling all trials. Our 
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approach requires individual participant data from the randomized trials together with 

baseline covariate data from a random sample from the target population. The latter allows 

us to account for differences in the distribution of effect modifiers between the trial-specific 

populations and the target population. Besides describing identification results, we show 

that assuming inferences are transportable from all trials in the collection to the same target 

population has implications for the law underlying the observed data. We propose average 

treatment effect estimators that rely on different working models and provide code for their 

implementation in statistical software. We discuss how to use the data to examine whether 

transported inferences are homogeneous across the collection of trials, sketch approaches 

for sensitivity analysis to violations of the identifiability conditions, and describe extensions 

to address non-adherence in the randomized trials. Last, we illustrate the proposed methods 

using data from the HALT-C multi-center trial.

Causal quantities of interest

Suppose we have individual-level data from participants in a collection of randomized trials 

S = 1, …, m . For simplicity, we assume that all trials estimate the effect of assignment 

to treatment Z that takes values in the finite set Z on an outcome Y measured at some 

fixed follow-up time (we do not consider failure-time outcomes). If some treatments of 

interest are only assessed in a subset of the available trials, we can introduce treatment 

pair-specific subsets of the collection S z, z′ ⊆ S that consist of those trials in S that 

compared treatments z and z′. With this change, our results can be extended to so-called 

“network meta-analyses” [17], in which not all treatments are assessed in all trials.

For each participant in each of the trials in the collection S, we have information on the trial 

S in which they participated, treatment assignment Z, baseline covariates X, and outcome Y. 

Therefore, for each trial s ∈ S, the data consist of realizations of independent random tuples 

(Xi, Si = s, Zi, Yi), i = 1, …, ns, where ns denotes the total number of randomized individuals 

in trial s.

We also obtain a simple random sample from the target population of interest. The 

individuals in this sample are not participating in any of the trials (either because they 

were not invited or were invited but declined to participate). We collect baseline covariate 

data from them, but need not collect treatment or outcome data; we discuss the relationship 

between the covariate distribution in the target population and the collection of trials in the 

Identification section. We use the convention that S = 0 for the target population so the data 

from the sample of the target population consist of realizations of random tuples (Xi, Si = 

0), i = 1, …, n0, where n0 is the total number of sampled individuals. Throughout, we use 

I(·) to denote the indicator function; for example, I(S ∈ S) is a random variable that denotes 

participation in any of the trials in the collection S, such that I(S ∈ S) = 1 when S ∈ S; and 

0, otherwise.

We form a composite dataset by appending the data from all the trials and the sample 

from the target population. The dataset consists of independent realizations of the random 

tuple Xi, Si, I Si ∈ S × Zi, I Si ∈ S × Y i , i = 1, …, n, where n is the total number 
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of observations in the trials and the sample from the target population, n = ∑s = 0
m ns. 

Throughout, we use italicized capital letters to denote random variables and lower case 

letters to denote the corresponding realizations. We generically use the notation f(·) to 

denote densities.

We discuss details of the underlying sampling model in eAppendix A. Briefly, we assume 

that the observed data are obtained by random sampling from an infinite superpopulation 

of individuals that is stratified by S, with sampling fractions that are unknown and possibly 

unequal constants for each stratum with S = s, for s ∈ {0, 1, …, m}. We refer to our model 

as a biased sampling model [18] because the proportion of individuals in the data with S 
= s, for s ∈ {0, 1, …, m}, does not in general reflect the population probability of S = s, 

but is instead shaped by the complex process that drives the design and conduct of actual 

randomized trials (see references [19–21] for additional details in the single trial case).

Let Yz denote the potential (counterfactual) outcome under treatment assignment z ∈ Z [22, 

23]. We are interested in estimating the average treatment effect of treatment assignment 

(i.e., the intention-to-treat effect) in the target population, E[Yz − Yz′|S = 0] for every pair of 

treatments z and z′ in Z.

Identification of average treatment effects in the target population using a 

single trial

We now consider transporting inferences from each trial to the target population. Derivations 

for all identification results reported in this section are provided in eAppendix B. The 

derivations are valid under the biased sampling model described in eAppendix A and thus 

the expectations and probabilities below can be taken over the data law of that model.

Identifiability conditions

The following are sufficient conditions for identifying the average treatment effect in the 

target population, E[Yz − Yz′|S = 0], using covariate, treatment, and outcome data from a 

single trial s* ∈ S and baseline covariate data from the sample of the target population.

A1. Consistency of potential outcomes: If Zi = z, then Y i
z = Y i, for every individual i 

in trial s* or the target population. Implicit in this notation is the absence of any 

effect of trial engagement on the outcome [24, 25] (e.g., no Hawthorne effects).

A2. Conditional exchangeability over treatment assignment Z in the trial: E[Yz|X = 

x, S = s*, Z = z] = E[Yz|X = x, S = s*] for each treatment z ∈ Z, and each x with 

f(x, S = s*) > 0. This condition is expected to hold because treatment assignment 

in each trial is randomized (possibly conditional on X).

A3. Positivity of the treatment assignment probability in the trial: For each treatment 

z ∈ Z, Pr[Z = z|X = x, S = s*] > 0 for every x with f(x, S = s*) > 0. This 

condition is also expected to hold because of randomization.

A4. Conditional exchangeability in measure between the trial and the target 
population: For each pair of treatments z and z′ in Z, E[Yz − Yz′|X = 
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x, S = 0] = E[Yz − Yz′|X = x, S = s*] for every x with f(x, S = 0) 

> 0. This condition encodes an assumption of no residual effect measure 

modification by trial participation, conditional on the baseline covariates X. 

It is mathematically weaker than the identifiability conditions used in most 

previous work on transportability (e.g., [26]), but it is sufficient to transport 

inferences about the average treatment effects from trial s* to the target 

population [19]. Exchangeability in measure may be implied by distributional 

independence conditions, for example, Yz ⫫ I(S = s*)|X, I(S ∈ {0, s*}) = 1, but 

exchangeability in measure can hold even if such independence conditions do 

not. Thus, the condition cannot be verified solely using graphical methods such 

as d-separation-based criteria applied to single world intervention graphs [24] or 

selection diagrams [27].

A5. Positivity of the probability of participation in the trial: Pr[S = s*|X = x] > 

0 for every x with f(x, S = 0) > 0. Informally, this condition means that, 

for covariates needed to establish conditional exchangeability in measure, each 

covariate pattern in the target population should have positive probability of 

occurring in the trial s*.

In stating the identifiability conditions, we have used X generically to denote baseline 

covariates. It is possible however, that strict subsets of X are adequate to satisfy 

the exchangeability condition for trial s* and the target population, or conditional 

exchangeability in measure. For example, if trial s* is marginally randomized, the 

mean exchangeability over treatment assignment A among trial participants will hold 

unconditionally. Also, the identification results we obtain under these conditions apply 

beyond randomized trials, for example, to pooled analyses of observational studies 

comparing interventions [28], provided that conditions A2 and A3 can be assumed to 

hold. In this setting, condition A2 corresponds to the usual “no unmeasured confounding” 

assumption [29], applied to study s*.

To focus on issues related to selective trial participation, we assume complete adherence 

to the trial protocol and no loss-to-follow-up, so that the intention-to-treat effect (i.e., the 

average effect of treatment assignment) is equal to the per-protocol effect (i.e., the average 

effect of receiving treatment as indicated in the protocol). If adherence to the protocol is 

incomplete, the two effects are not equal. The methods we describe here can be extended 

to account for non-adherence to the trial protocol, but the extensions do not offer additional 

insights regarding transportability from a collection of trials to a target population. As an 

example, in eAppendix C, we demonstrate how the methods can be extended to address 

incomplete adherence in a two-period study. In the remainder of the main text, for brevity, 

we use the term “average treatment effect” to mean the intention-to-treat average effect in 

the target population (S = 0).

Identification

Under conditions A1 through A5, when transporting inferences comparing treatments z and 

z′ from a trial s* ∈ S to the target population, the average treatment effect E[Yz − Yz′|S = 0] 

equals the following functional of the observed data distribution:
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ψ z, z′, s* ≡ E E Y ∣ X, S = s*, Z = z − E Y ∣ X, S = s*, Z = z′ ∣ S = 0 . (1)

Under the positivity conditions, we can obtain an expression for ψ(z, z′, s*) that uses 

weighting,

ψ z, z′, s* = 1
Pr[S = 0]E I(Z = z)

Pr Z = z ∣ X, S = s* − I Z = z′
Pr Z = z′ ∣ X, S = s*

I S = s* Y Pr S = 0 ∣ X, I S ∈ 0, s* = 1
Pr S = s* ∣ X, I S ∈ 0, s* = 1 .

(2)

The identification results in this section only involve the target population S = 0 and the trial 

S = s*; thus, in addition to holding under the sampling model of eAppendix A they also hold 

under the sampling model described in reference [20].

Identification when pooling the trials

We now consider transporting inferences to the target population when using the data from 

all trials in the collection S. Derivations for all identification results reported in this section 

are also provided in eAppendix B and are valid under the biased sampling model described 

in eAppendix A.

Identifiability conditions

The following are sufficient conditions for identifying the average treatment effect in the 

target population, E[Yz −Yz′|S = 0], using covariate, treatment, and outcome data from every 

trial in the collection S and baseline covariate data from the sample of the target population.

B1. Consistency of potential outcomes: If Zi = z, then Y i
z = Y i, for every individual 

i in the target population or the populations underlying the trials in S. As noted 

before, implicit in this notation is the absence of any effect of trial engagement 

on the outcome.

B2. Conditional exchangeability over treatment assignment Z: E[Yz|X = x, S = s, Z = 

z] = E[Yz|X = x, S = s] for every trial s ∈ S, each treatment z ∈ Z, and every x 
with f(x, S = s) > 0.

B3. Positivity of the treatment assignment probability in the trials: For every 

treatment z ∈ Z, Pr[Z = z|X = x, S = s] > 0 for every trial s ∈ S and every 

x with f(x, S = s) > 0.

B4. Conditional exchangeability in measure between the trial and the target 
population: For every pair of treatments z and z′ in Z, E[Yz − Yz′|X = x, S 
= 0] = E[Yz − Yz′|X = x, S = s] for every trial s ∈ S and every x with f(x, S = 0) 

> 0.

B5. Positivity of the probability of participation in the trials: Pr[S = s|X = x] > 0 for 

every s ∈ S and every x with f(x, S = 0) > 0.
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Observed data implications

Suppose now that conditions B1 through B5 hold, so that inferences are transportable from 

each trial s ∈ S to the target population; if effects are transportable only for a subset of 

the trials in the collection S it is easy to modify the results given here to restrict them to 

the subset of S that satisfies conditions B1 through B5. We will argue that conditions B1 
through B5, have important implications for law underlying the observed data. To see this, 

note that when conditions B4 and B5 hold, then for the pair of treatments z, z′, and for all X 
values in the common support with S = 0,

E Y z − Y z′ ∣ X, S = 1 = … = E Y z − Y z′ ∣ X, S = m = E Y z − Y z′ ∣ X, S = 0 .

That is, the conditional causal mean difference of each of the m trials in the collection S is 

equal to the conditional causal mean difference in the target population. This means that the 

conditional average causal effect is independent of study participation in S, within strata of 

baseline covariates.

Using the above result and assumptions B1 through B3, for the pair of treatments z, z′ and 

for all X values in the common support with S = 0, we obtain

E[Y ∣ X, S = 1, Z = z] − E Y ∣ X, S = 1, Z = z′ = … =
E[Y ∣ X, S = m, Z = z] − E Y ∣ X, S = m, Z = z′ ≡ τ z, z′; X , (3)

where we use the notation τ(z, z′; X) for the common conditional mean difference.

The above chain of equalities is an observed data implication of conditions B1 through 

B5 because it only involves observed variables. Thus, using the data to evaluate the chain 

of equalities can be viewed as a falsification test for whether the chain of assumptions 

B1 through B5 fails to hold for the entire collection S. Nevertheless, such assessment 

cannot prove that the the assumptions hold for the collection or for any subset of trials. 

Substantive knowledge should be used to determine whether estimates of the conditional 

mean differences in the above equation are “close enough” across trials. Expert assessment 

may be aided by statistical testing, because the chain of equalities can be viewed as a null 

hypothesis to be tested using parametric or non-parametric methods [30–33].

Identification

Suppose that substantive knowledge suggests that assumptions B1 through B5 hold, so that 

all trials in the collection S are transportable to the target population, and that examination 

of the observed data implications of assumptions B1 through B5 does not raise any concern. 

Then, the average treatment effect E[Yz − Yz′|S = 0] equals the following functional of the 

observed data distribution:

ϕ z, z′ ≡ E τ z, z′; X ∣ S = 0 . (4)

Under the positivity conditions, we can obtain an expression for ϕ(z, z′) that uses weighting,
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ϕ z, z′ = 1
Pr[S = 0]E ω z, z′; X, S, Y Y Pr[S = 0 ∣ X]

Pr[I(S ∈ S) = 1 ∣ X] , (5)

where

ω z, z′; X, S = I(Z = z)
Pr[Z = z ∣ X, S, I(S ∈ S) = 1] − I Z = z′

Pr Z = z′ ∣ X, S, I(S ∈ S) = 1 I(S ∈ S) .

Relaxing positivity condition B5 when pooling the trials

Intuition suggests that by combining information across multiple trials it should be possible 

to relax positivity condition B5, which, as stated above, requires sufficient overlap between 

the target population and each one of the trials in the collection S.

As an example, consider two randomized trials, comparing the same anti-hypertensive 

treatments, one enrolling patients with mild and the other with severe hypertension, and a 

target population, S = 0, that includes individuals with both mild and severe hypertension. It 

should be possible to obtain inferences about the target population provided one is willing to 

assume that (1) conditional average treatment effects from each trial are equal to conditional 

average treatment effects in the corresponding subset of the target population; and (2) 

every covariate pattern that can occur among individuals in the target population with mild 

hypertension has positive probability of occurring in the trial of mild hypertension and 

every covariate pattern that can occur among individuals in the target population with severe 

hypertension has positive probability of occurring in the trial of severe hypertension.

Using Xs to denote the support of the distribution of X given S = s, the second condition 

above can be generalized as follows: the union of the intersections of the support sets of 

the distribution of X in each trial in S and the target population equals the support set 

of the distribution of X in the target population. Using Xs to denote the support of the 

distribution of X given S = s, this more general overlap condition can be written concisely 

as ∪
s ∈ S

Xs ∩ X0 = X0. Though identification is intuitively obvious in simple cases like the 

two trial hypertension example, handling identification in general cases when condition B5 
is violated but the overlap condition ∪

s ∈ S
Xs ∩ X0 = X0 holds, requires modifications to 

condition B4 and the introduction of additional notation to keep track of the subsets of S
where each covariate pattern X = x can occur. For that reason, we we do not pursue it here.

Estimation & Inference

Estimation for transporting individual trials

We now use the identification results on the previous section to propose estimators of 

average treatment effects; when transporting results from a single randomized trial, these 

estimators relate to the potential outcome mean estimators of [19].

Estimation by modeling the conditional average treatment effect: The first 

option is to use an estimator based on (1),
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ψte z, z′, s* = ∑
i = 1

n
I Si = 0

−1
∑
i = 1

n
I Si = 0 b z, z′, s*; Xi , (6)

where b z, z′, s*; X  is an estimator of E[Y|X, S = s*, Z = z] − E[Y|X, S = s*, Z = z′]. A 

simple way to estimate b z, z′, s*; X  is to use an outcome model-based estimator ℎ z, s*; X
of E[Y|X, S = s*, Z = z], for each z ∈ Z, and then estimate b z, z′, s*; X  by taking the 

difference ℎ z, s*; X − ℎ z′, s*; X . Alternatively, because under assumptions A1 through A3, 

E[Y|X, S = s*, Z = z] − E[Y|X, S = s*, Z = z′] = E[Yz − Yz′|X, S = s*], we can use 

a g-estimator of the conditional average treatment effect in trial s* [34–37]. Regardless of 

the approach, ψte z, z′, s*  converges in probability to ψ(z, z′, s*) when b z, z′, s*; X  is a 

consistent estimator of the conditional average treatment effect in trial s*.

Estimation by modeling the probability of trial participation and treatment: A 

second option is to use a weighting estimator based on (2),

ψw z, z′, s* = ∑
i = 1

n
I Si = 0

−1
∑
i = 1

n I Zi = z
ℓ z, s*; Xi

− I Zi = z′
ℓ z′, s*; Xi

I Si = s*

p Xi
1 − p Xi

Y i,
(7)

where p(X) is an estimator of Pr[S = 0|X, I(S ∈ {0, s*}) = 1]; ℓ z, s*; X  and ℓ z′, s*; X  are 

estimators for Pr[Z = z|X, S = s*] and Pr[Z = z′|X, S = s*], respectively.

Estimation for pooling the trials

Estimation by modeling the conditional average treatment effect: The first 

option is to use an estimator based on (4),

ϕte z, z′ = ∑
i = 1

n
I Si = 0

−1
∑
i = 1

n
I Si = 0 t z, z′; Xi , (8)

where t z, z′; X  is an estimator of the common (across trials) conditional mean difference 

τ(z, z′; X). A general way to obtain t z, z′; X  is to estimate the parameters of a regression 

model for the following conditional mean function

E I(Z = z)
Pr[Z = z ∣ X, S, I(S ∈ S) = 1] − I Z = z′

Pr Z = z′ ∣ X, S, I(S ∈ S) = 1 Y ∣ X, I(S ∈ S) = 1 ,

where the probabilities in the denominators of the fractions inside the parenthesis are known 

(or can be estimated) [34–37]. This approach does not require the treatment assignment 

mechanism to be the same across trials. The estimator ϕte z, z′  converges in probability to 

ϕ(z, z′) when t z, z′; X  is a consistent estimator of the (common across trials) conditional 

average treatment effect in the collection of trials S.
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Estimation by modeling the probability of trial participation and treatment: A 

second option is to use a weighting estimator based on (5),

ϕw z, z′ = ∑
i = 1

n
I Si = 0

−1
∑
i = 1

n I Zi = z
e z; Xi, Si

− I Zi = z′
e z′; Xi, Si

I Si ∈ S

p Xi
1 − p Xi

Y i,
(9)

where p(X) is an estimator of Pr[S = 0|X], and e(z; X, S)  and e z′; X, S  are estimators for 

Pr[Z = z ∣ X, S, I(S ∈ S) = 1] and Pr Z = z′ ∣ X, S, I(S ∈ S) = 1 , respectively. This weighted 

estimator converges in probability to ϕ(z, z′) when p(X) is a consistent estimator of Pr[S 
= 0|X] and e(z; X, S) is a consistent estimator of Pr[Z = z ∣ X, S, I(S ∈ S) = 1]. Correct 

specification of a model for Pr[Z = z ∣ X, S, I(S ∈ S) = 1] is straightforward even if trials 

have different treatment assignment mechanisms (but may prove more challenging in pooled 

analyses of observational studies).

Inference

To construct Wald-style confidence intervals for ψte z, z′, s* , ψw z, z′, s* , ϕte z, z′ , or 

ϕw z, z′ , when using parametric models, we can obtain “sandwich” estimators of the 

sampling variance for each estimator we have described [38]. Alternatively, we can use the 

non-parametric bootstrap [39]. Straightforward inference approaches are possible because 

under our sampling model the observations are assumed to be independent. We leave 

extensions of the sampling model to allow for dependence among the individuals sampled 

into each trial for future work.

Implementation of the estimators

In eAppendix D we provide a link to R code implementing the estimators described 

above using the geex package [40]. Our implementation uses parametric working models: 

we use estimating equations for binary or multinomial logistic regression models to 

estimate conditional probabilities; and estimating equations for linear regression models to 

estimate conditional expectations. All estimating equations can be easily replaced by those 

appropriate for other generalized linear models [41], as needed. Because we estimate the 

working model parameters jointly with the target parameters of all estimators, the sampling 

variances appropriately account for uncertainty [38, 42]. The code can be modified to 

address non-adherence (and incomplete follow-up) as needed.

Violations of conditional exchangeability in measure

Conditional exchangeability in measure (for individual studies or for the collection S, as 

applicable) will often not hold exactly in applications, when some modifiers of the treatment 

effect are not included in X. For example, in the case of transporting inferences from a 

single trial s* ∈ S, comparing treatments z and z′ in Z, it is possible that for some x with 

f(x, S = 0) > 0, we will have
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E Y z − Y z′ ∣ X = x, S = s* ≠ E Y z − Y z′ ∣ X = x, S = 0 ,

and none of the methods described earlier in this paper will be able to provide valid 

inferences. Furthermore, substantive experts may disagree on the plausibility of conditional 

exchangeability in measure in any given application. When conditional exchangeability in 

measure is implausible or controversial, it is prudent to perform sensitivity analyses to 

examine how the study conclusions would change under violations of the condition with 

different magnitudes [43].

When transporting from individual studies in the meta-analysis:

For individual studies in the collection S, we can perform sensitivity analysis by modifying 

the methods described in reference [44].

Sensitivity analysis model: A convenient way to parameterize the sensitivity analysis is 

to assume the following sensitivity analysis model, conditional on baseline covariates:

E Y z − Y z′ ∣ X, S = 0 = E Y z − Y z′ ∣ X, S = s* + u s*; X .

Here, u(s*; X) is a user-specified, possibly study-specific and covariate-dependent, bias 
function that expresses the degree of residual effect modification by trial participation, 

within levels of the measured covariates in X (see [44] for a similar approach to sensitivity 

analysis when transporting inferences from a single trial and for suggestions for how to 

choose bias correction functions in applications).

For the choice of u(s*; X) function for which the sensitivity analysis model holds, by taking 

expectations, we obtain

E Y z − Y z′ ∣ S = 0 = E E Y z − Y z′ ∣ X, S = s* + u s*; X ∣ S = 0
= E E Y z − Y z′ ∣ X, S = s* ∣ S = 0 + E u s*; X ∣ S = 0 .

(10)

Suppose that conditions A1, A2, A3, and A5 hold, but condition A4 (conditional 

exchangeability in measure) may not hold. In such cases, using the result in equation (10), 

we obtain

E Y z − Y z′ ∣ S = 0 = ψ z, z′, s* + E u s*; X ∣ S = 0 . (11)

Estimation and inference for sensitivity analysis: The result in equation (11) 

suggest that sensitivity analysis estimators can be obtained by adding the term

∑
i = 1

n
I Si = 0

−1
∑

i = 1

n
I Si = 0 u s*; Xi
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to the estimators of ψ(z, z′, s*) in the previous section. This “sensitivity analysis term” 

converges in probability to E[u(s*; X)|S = 0], under mild conditions. The function u(s*; 

X) is not identifiable from the data and thus sensitivity analysis should be performed over 

a range of different functions. Confidence intervals can again be obtained using either 

“sandwich” estimates of the variance or bootstrap methods. For example, the code we 

provide can be easily modified to obtain “sandwich” estimates of the variance simply by 

adding the sensitivity analysis term to the summands of the estimating equations.

Sensitivity analysis for transporting from multiple trials:

Sensitivity analysis for transporting inferences from multiple trials would follow the same 

principles as outlined for the case of individual studies. In the absence of conditional 

exchangeability in measure from one or more of the trials in the collection S trials (i.e., if 

assumption B4 does not hold), the observed data implications, and the chain of equalities in 

(3) in particular, would not be expected to hold. Furthermore, the choice of bias correction 

functions for each study u(s; X) for each trial s ∈ S would be more complicated because 

the functions would need to satisfy the following constraint (if all trials in the collection are 

transportable):

E[Y ∣ X, S = 1, Z = z] − E Y ∣ X, S = 1, Z = z′ + u(1; X)
= E[Y ∣ X, S = 2, Z = z] − E Y ∣ X, S = 2, Z = z′ + u(2; X)
= …
= E[Y ∣ X, S = m, Z = z] − E Y ∣ X, S = m, Z = z′ + u(m; X) .

We leave the development of methods for harnessing expert knowledge to choose 

appropriate u(s; X) functions for sensitivity analysis as future work.

Homogeneity of transported effects

When investigators are willing to assume (and do not have contrary evidence) that 

exchangeability in measure holds for two or more trials in the collection S, the observed 

data implications about conditional average treatment effects, have additional implications 

for the transported effects. Suppose that identifiability conditions B1 through B5 hold, then 

it has to be that

E E[Y ∣ X, S = 1, Z = z] − E Y ∣ X, S = 1, Z = z′ ∣ S = 0
= E E[Y ∣ X, S = 2, Z = z] − E Y ∣ X, S = 2, Z = z′ ∣ S = 0
= …
= E E[Y ∣ X, S = m, Z = z] − E Y ∣ X, S = m, Z = z′ ∣ S = 0 ,

where, as defined earlier, m is the total number of trials in S. This implication of conditions 

B1 through B5 can be interpreted as a condition of homogeneity of transported inferences 

among the trials in S.

It is instructive to compare the homogeneity of transported inferences implication against 

the usual meta-analytic assumption of homogeneity of the study-specific average treatment 

effects in the same collection of trials,
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E E[Y ∣ X, S = 1, Z = z] − E Y ∣ X, S = 1, Z = z′ ∣ S = 1
= E E[Y ∣ X, S = 2, Z = z] − E Y ∣ X, S = 2, Z = z′ ∣ S = 2
= …
= E E[Y ∣ X, S = m, Z = z] − E Y ∣ X, S = m, Z = z′ ∣ S = m .

This chain of equalities represents the null hypothesis adopted for most “tests for 

heterogeneity” used in applied meta-analyses [3]. The critical difference is this: the 

homogeneity of transported inferences implication of conditions B1 through B5 is a 

comparison of functionals that involve marginalization over (i.e., standardization to) the 

same baseline covariate distribution, that of the target population S = 0. In contrast, the 

usually homogeneity assumption in meta-analyses is a comparison of functionals that 

involve marginalization over a different baseline covariate distribution, that of each trial 

S = s. The latter may not be equal, even if assumptions B1 through B5 hold, when the 

distribution of X varies across trials.

Application of the methods to data from the HALT-C trial

Using data from a multicenter trial to emulate a meta-analysis

The HALT-C trial enrolled 1050 patients with chronic hepatitis C and advanced fibrosis who 

had not responded to previous therapy and randomized them to treatment with peginterferon 

alfa-2a (z = 1) versus no treatment (z = 0). Patients were recrutied in 10 research centers and 

followed up every 3 months after randomization. We used data on the secondary outcome 

of platelet count at 9 months of follow-up; we report all outcome measurements as platelets 

×103/ml. For simplicity, we restricted our analysis to 974 patients with complete baseline 

covariate and outcome data.

We used the HALT-C trial data to emulate a meta-analysis: First, we treated the data from 

the center that contributed the most patients as a sample from the target population (S = 

0; 202 patients). Second, we treated the data from the remaining 9 centers (S = 1, …, 9; 

772 patients) as if derived from a collection of separate randomized trials (S). Third, we 

transported inferences from S to S = 0 using the methods described in this paper. Fourth, 

we transported inferences from each trial s in the collection S to S = 0 using the methods 

described in [19].

The benefit of our approach for evaluating the methods is that by re-purposing data from 

a multi-center trial we have access to information on the randomly assigned treatment and 

outcome from S = 0, allowing us to compare analyses using data exclusively from S = 0 to 

the results of transportability analyses. These comparisons are informative because, provided 

the conditions needed for transporting inferences from the collection S (or from each center 

s ∈ S) to S = 0 hold, we expect that estimates from transportability analyses should agree 

with the estimates from the analyses that exploit randomization in S = 0 (up to sampling 

variability).

Our HALT-C analysis was not considered human subjects research because it used de-

identified secondary data.
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Methods implemented and comparisons

We applied the estimators ϕte(1, 0) and ϕw(1, 0) to transport inferences from the collection of 

trials to S = 0. We also transported inferences separately from each trial to S = 0 using the 

estimators ψte (1, 0, s) and ψw(1, 0, s) for each s ∈ S = 1, …, 9 .

We specified parametric working models, as needed for each estimator (binary or 

multinomial logistic regression models for discrete outcomes, and linear regression models 

for continuous quantities).All working models used the following baseline covariates as 

main effects: baseline platelet count, age, sex, previous use of pegylated interferon, race, 

white blood cell count, history of injected recreational drugs, ever receiving a transfusion, 

body mass index, creatinine levels, and smoking status (to avoid numerical issues in the 

smallest centers, when transporting inferences from center 1 alone, we did not consider 

sex, previous use of pegylated interferon, and creatinine; when transporting inferences from 

center 9 alone, we did not consider sex, previous use of pegylated interferon, race, and 

creatinine).

Data analysis results

The results from the meta-analysis emulation are summarized in Table 1 and graphed in 

the forest plot [45] of Figure 1. When transporting inferences from the collection S to S = 

0, the treatment effect and weighting estimator results were −43.7 and −42.4, respectively 

(the confidence interval was slightly narrower for the treatment effect estimator). These 

transportability results agree with the randomization-based analysis from S = 0 (using 

treatment and outcome data only from the target center) that produced an estimate of −45.7. 

It is interesting to note that the confidence interval for the crude mean difference in S = 0 

was substantially wider than the confidence intervals for the two transportability estimates 

from S to S = 0; this reflects the fact that the collection S contains many more individuals 

with covariate, treatment, and outcome data (772 individuals) compared to the S = 0 sample 

(202 individuals). In this particular dataset, the additional information is evidently enough to 

overcome any imprecision induced by differences in the covariate distribution between the 

trials in S and S = 0).

In transportability analyses from each center s ∈ S to S = 0, point estimates from the 

treatment effect and weighting estimator were generally similar (and the former had 

narrower associated confidence intervals). For some centers, transportability analyses 

produced estimates that were reasonably close to the overall meta-analysis estimate, but 

the pattern was variable. For example, for S = 1, the transportability estimates (−50.9 for 

the treatment effect estimator; −48.9 for the weighting estimator) were closer to the overall 

transportability result (−43.7 for the treatment effect estimator; −42.4 for the weighting 

estimator) and the randomization-based analysis using S = 0 data (−45.7), compared to the 

analysis using only data from S = 1 (−29.3). Given the small sample size in some of the 

centers, analyses transporting inferences one trial at a time may be affected by sampling 

variability, over-fitting the data from individual centers, or model misspecification (because 

we relied on relatively simple parametric models).
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Discussion

In our experience, users of evidence syntheses are not interested in the aggregate of the 

populations underlying the completed randomized trials, which is often ill-defined because 

of convenience sampling. Instead, for decision-making, the users typically have a new target 

population in mind. Traditional approaches to meta-analysis, however, yield pooled effect 

estimates that are not generally interpretable as the causal effect in that target population of 

interest.

Here, we described the conditions under which estimates from individual studies and pooled 

estimates can be causally interpreted as treatment effects in a target population which is 

chosen on substantive grounds and may be different from any of the of the populations 

sampled in the randomized trials. For example, our methods can be used when policy-

makers want to examine the implications of a collection of trials for treatment effectiveness 

in a well-defined target population from which baseline covariate information is routinely 

collected (e.g., electronic health record data gathered by a healthcare system). The methods 

can also be used in planning a new trial when two or more related trials are already 

available: once the new trial’s target population is specified, covariate data from it can 

be collected, and our methods can be used to obtain a treatment effect estimate in the 

target population to determine the feasibility of the new trial (e.g., through sample size 

calculations). In the rare case where one of the randomized trials in S is representative of the 

target population, the methods can be modified to treat the trial data as a sample from the 

target population.

The methods we propose relate to the general theory of causal identification when 

transporting inferences from multiple trials to a new setting [46, 47]. We address 

transportability from multiple trials by considering the underlying sampling model and 

provide both conditional treatment effect modeling and weighting approaches that can be 

used to reduce dependence on the specification of models for the conditional average 

treatment effect (or the conditional outcome mean) in the trials [48].

Other work on the causal interpretation of meta-analyses has focused on identifiability 

conditions and their use to examine the presence of heterogeneity across studies [49]; 

the causal interpretation of meta-analyses using published aggregate (summary) data [50]; 

or the use of aggregate data to estimate causal quantities in a “meta-population” that 

contains the individual superpopulations from each study included in a meta-analysis [51]. 

The estimators we propose are different from those used to illustrate a recently proposed 

framework for causally interpretable meta-analysis [49]; estimation in that work relied on 

conventional multivariable regression models for conditional average treatment effects.

A recent unpublished technical report [16] addresses the same limitations of conventional 

meta-analysis methods as our work. Our approach is complementary to that proposed in 

the report: our identifiability conditions are stronger, but sufficient for point identification 

of causal effects in the target population (and, as noted earlier, sensitivity analysis can 

be done); the assumptions in the report appear weaker, but only allow partial (interval) 

identification. Our estimators allow statistical inference using standard methods (e.g., M-
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estimation or the bootstrap) and require access to individual-level data. In contrast, we 

expect that inference about the bounds in the report will often prove challenging because 

the target quantities are non-smooth and study-level data are limited (most meta-analyses 

include only a few studies, often with small sample sizes).

Our approach delineates the (non-parametric) identifiability conditions from any additional 

modeling assumptions that may be needed for estimation, especially when the vector of 

baseline covariates is high dimensional [52]. In this paper, we focused on simple conditional 

treatment effect and weighting estimators that can be easily implemented in standard 

statistical packages. A downside of these estimators is that, to produce valid results, the 

working models each estimator relies on need to be correctly specified. Also, it is possible to 

obtain doubly robust [53] estimators of the causal quantities of interest.

In summary, we have taken steps towards causally interpretable meta-analysis by 

considering the identification and estimation of average treatment effects when transporting 

inferences from a collection of randomized trials to a well-defined target population. To 

deploy the methods for applied evidence synthesis, extensions will be needed to address 

failure-time outcomes, systematically missing data, and measurement error in covariates or 

outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Forest plot summarizing analyses using the multi-center HALT-C trial data to emulate a 

meta-analysis.

Point estimates (markers) and 95% confidence intervals (extending lines) from analyses 

using the multi-center HALT-C trial data to emulate a meta-analysis. White squares, □ = 

unadjusted analyses that use data only from each center s ∈ S = 1, …, 9 ; black squares, 

■ = transportability analyses using conditional outcome mean modeling and estimator (6) 

to transport inferences from each center S = s, s ∈ {1, …, 9} to S = 0; gray squares, 

 = transportability analyses using inverse odds weighting and estimator (7) to transport 

inferences from each center S = s, s ∈ {1, …, 9} to S = 0; diamonds denote analyses 

transporting inferences from the collection of centers S = 1, …, 9  to S = 0: black diamond, 
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◆ = treatment effect estimator (8), ϕte(1, 0); gray diamond,  = weighting estimator (9), 

ϕw(1, 0). The solid vertical line indicates the point estimate and the dashed vertical lines 

indicate the limits of the confidence interval from the randomization-based analysis using 

only data from S = 0.
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Table 1:

Results from analyses using the multi-center HALT-C trial data to emulate a meta-analysis.

S Sample size Unadjusted Treatment effect modeling Weighting

1 48 −29.3 (−70.0, 11.5) −50.9 (−75.8, −25.9) −48.9 (−76.8, −20.9)

2 98 −42.3 (−68.1, −16.4) −29.9 (−42.8, −17.0) −23.3 (−46.5, −0.2)

3 133 −43.3 (−66.1, −20.4) −31.2 (−44.2, −18.2) −27.4 (−50.0, −4.7)

4 69 −24.0 (−50.6, 2.6) −35.3 (−52.5, −18.1) −26.9 (−49.0, −4.8)

5 77 −71.8 (−97.7, −45.9) −63.5 (−77.6, −49.5) −49.5 (−76.9, −22.1)

6 110 −38.0 (−62.2, −13.8) −33.4 (−54.3, −12.6) −32.3 (−56.8, −7.8)

7 94 −43.2 (−72.9, −13.5) −60.6 (−83.5, −37.7) −54.7 (−97.6, −11.9)

8 100 −49.7 (−72.9, −26.6) −54.0 (−71.1, −37.0) −57.0 (−77.7, −36.3)

9 43 −24.6 (−57.0, 7.7) −48.8 (−68.7, −28.8) −33.9 (−61.7, −6.2)

0 202 −45.7 (−63.6, −27.9) −43.7 (−52.2, −35.2) −42.4 (−52.6, −32.3)

Point estimates and 95% confidence intervals (in parentheses) from analyses using the multi-center HALT-C trial data to emulate a meta-analysis. 
Unadjusted results are obtained using the crude mean difference in each trial for all rows. Treatment effect modeling results are obtained using the 
estimator of equation (6) in rows 1 through 9 and estimator (8) in the bottom row; weighting results are obtained using the estimator of equation 
(7) in rows 1 through 9 and estimator (9) in the bottom row. In rows 1 through 9, for each trial unadjusted results use only treatment and outcome 
data from each trial s ∈ S; transportability analyses use covariate, treatment, and outcome data from each trial s ∈ S and baseline covariate data 

from S = 0. In the bottom row, the unadjusted analysis uses only treatment and outcome data from the center S = 0; transportability analyses use 
covariate, treatment, and outcome data from all trials in the collection S and baseline covariate data from S = 0.
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