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The RHD gene, located on the short arm of Chromosome 1, encodes RhD, a highly 

immunogenic blood group protein.1 A D-negative phenotype is caused by a complete loss of 

the RhD protein on the red blood cell (RBC),2 whereas individuals with a DEL phenotype 

express minuscule amounts of the RhD protein.2–4 Individuals lacking the D antigen can 

produce anti-D when exposed to D-positive RBCs through transfusion (causing hemolytic 

transfusion reaction), pregnancy (causing hemolytic disease of the fetus and newborn), or 

transplantation (causing graft rejection).5

Several molecular mechanisms can lead to a D-negative phenotype. The Human 

RhesusBase6 lists 90 D-negative alleles with a variety of genetic causes, including 31 

deletions, 19 nonsense variants, 15 splice site variants, 15 RHD-CE-D hybrids,7 five 

missense variants, three insertions, and two duplications. Of these, the RHD gene deletion 

is the most frequent D-negative allele worldwide.8 Frameshift variations are deletions or 

insertions of, for example, 1, 2, or 4 nucleotides, which alter the ribosome reading frame, 

resulting in premature termination of translation.9,10 Ordinarily, frameshift variants induce 

the degradation of the mRNA transcript by nonsense-mediated decay and thus obliterate the 

expression of protein.11

Previous studies explained the conversion of a D-positive phenotype to a D-negative 

phenotype12 through genetic rearrangement at Chromosome 113–18 and subsequent clonal 

expansion.12,14,19–23 However, the conversion of a D-negative to a D-positive phenotype 

involving clonal expansion has never been reported.

Many patients and donors harboring distinct frameshift variants in the RHD gene have 

been described.6 Most such alleles encode a D-negative phenotype, as expected, but some 

unexpectedly express traces of the RhD protein and their carriers present with weak 

D or DEL phenotypes. Mechanisms such as transcriptional frameshifting, translational 

frameshifting, and alternate translation start site may explain these enigmatic observations. 
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We review the known RHD alleles with frameshift variants and discuss molecular 

mechanisms that can explain those with D-positive phenotypes.

1 | METHODS

We searched the Human RhesusBase6 and GenBank24 and catalogued all known frameshift 

variants. Accompanying the online search, we checked the reference lists on the Web page 

of each RHD variant in the Human RhesusBase Web site for potentially pertinent original 

reports or additional variants.

2 | RESULTS

Among the 51 published frameshift variants in the RHD gene, the phenotype for 44 alleles 

has been reported (Table 1),25–34 of which 36 alleles present a D-negative phenotype, 

as expected. The remaining eight alleles express, however, some RhD protein; six were 

reported as DEL and two as weak D phenotype.6,35

3 | DISCUSSION

The total number of frameshift variants in the RHD gene currently stands at 51 (Table 1). 

The canonical mechanism for the D-negative phenotype of RHD frameshift variants is a 

premature stop codon.2,36 However, several noncanonical mechanisms permit expression 

of a cell-surface protein from genes with distinct frameshift variants. We summarized 

the accumulated evidence and outlined the underlying principle for hitherto inexplicable 

D-positive phenotypes30,35,37–39 that were observed associated with some RHD frameshift 

variants, including premature stop codons or elongated proteins.

In-frame deletion,40–43 insertion,44 or duplication45,46 of 3N nucleotides (three nucleotides 

or a multiple thereof), without affecting the RHD open reading frame, causes either a weak 

D,41,45,46 partial D,40,42,44 or D-negative phenotype.43,47 Insertion, deletion, or duplication 

of 3N ± 1 nucleotides (any number of nucleotides that is not a multiple of 3) in the coding 

sequence of a gene alters the reading frame: These frameshift variants are expected to cause 

the lack of full-length proteins.27 However, molecular mechanisms, known to overcome 

the effects of a frameshift variation, can lead to the synthesis of full-length, truncated, or 

elongated, yet functional, proteins. These mechanisms include “transcriptional frameshifting 

or slippage,”48,49 “translational or ribosomal frameshifting,”29,50 “alternate translation start 

site,”51 and “ribosomal termination-reinitiation.”52,53 “Addition of amino acids” due to 

frameshift variants at the carboxy-terminal end is a mechanism that leads to elongated 

proteins, which may or may not be functional. We examined the 51 known frameshift 

variants (Table 1) and detailed the most plausible reasons why most of the frameshift 

variants cause a D-negative phenotype while some cause a DEL or weak D phenotype.

Transcriptional frameshifting occurs when the RNA polymerase encounters a template 

with homopolymeric sequences and adds or deletes one or more nucleotides to the run 

of repeat bases.54 Variants in the repeat region, such as RHD*93_94insT,37 may produce 

full-length protein, explaining the reported DEL phenotype.37 Reading-frame restoration 

by this mechanism was first shown in vivo for the human apolipoprotein B gene.55 The 
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RHD*93_94insT may also express DEL by other mechanisms (Table 1), which are not 

mutually exclusive and described in the next two paragraphs.

Translational frameshifting occurs in the presence of a heptanucleotide site X-XXY-YYZ, 

which allows slippage of ribosome-bound tRNAs.29 The XXX can be any homopolymeric 

sequence; YYY can be either AAA or TTT; and Z can be A, T, or C. The presence of such 

a “slippery” heptanucleotide at position c.87 to c.93 in RHD Exon 1 (T-TTT-TTT) may 

allow translational frameshifting. Variants around this region, such as RHD*93_94insT,37 

may translate some RHD mRNAs to produce a full-length protein, as previously observed.56

Alternate translation start site requires a modified initiation mechanism, such as the 

leaky scanning mechanism.57 Ribosomal termination-reinitiation can also produce proteins 

truncated at their amino-terminal end. Previous studies have shown mRNAs containing 

premature termination codons due to nonsense, frameshift, and splice site variants near 

the translation start site can resist nonsense-mediated decay.58–60 These mRNAs produce 

truncated proteins when the ribosome resumes scanning and reinitiate translation at 

downstream methionine codons. We have postulated RhD protein expression from alternate 

translation start sites (ATG) in RHD Exon 2 for the RHD Exon 1 deletion (RHDex1del 

type 1 allele).28 The D-positive phenotypes of RHD*29delGGCGCTGCCTGCCC,35 

RHD*93_94insT,37 and RHD*147delA30 alleles may be explained by the same mechanism. 

However, an alternate translation start site requires additional initiation sequences in its 

vicinity.61–64 Some RHD Exon 1 variant alleles express a D-positive phenotype and others 

do not, which may depend on the presence or absence of a working copy of a translational 

initiation sequence nearby.

Addition of amino acids at the carboxy-terminal end is known to permit a D-positive 

phenotye.38,39 Frameshift variants in Exons 9 and 10 may result in such elongated proteins. 

The carboxy-terminal amino acids encoded by part of RHD Exons 9 and 10 are involved 

in the interaction of the RhD protein with the RBC cytoskeleton.28 Genetic variants in this 

region often lead to a weakened D expression in the RBC membrane,6 as observed for the 

frameshift variants RHD*1248_1249insG39 and RHD*1252_1253insT38 (Table 1).

A complete loss of RHD Exon 10 can lead either to a DEL phenotype (RHDex10del 

type 128,65) or to a D-negative phenotype (RHD*1228–1_1248delTTTCCTCATTTGGCT 
GTTGGA5 and RHDex10del type 228). Molecular variants affecting the carboxy-terminal 

cytoplasmic amino acid positions 391 to 41766 warrant systematic screening. Sensitive 

serologic methods may discover DEL or weak D phenotypes.

Neither of the four noncanonical mechanisms suggested for RHD frameshift alleles with 

D-positive phenotypes (Table 1) applies to RHD*510insG,67 and RHD*822delG,32 and 

RHD*941_942delGG.68 Other possible mechanisms include “alternate mRNA isoforms” 

and “stop codon readthrough.” Either mechanism may apply to any of the listed 51 RHD 
frameshift alleles, although no functional data have supported these two mechanisms in 

RHD so far. To prove or disprove these, a detailed molecular and serologic workup of 

samples will be required.
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Alternate mRNA isoforms are a likely explanation in at least one known RHD allele: the 

deletion of a whole RHD exon such as RHD Exon 8 (RHDex8del type 1)69 has been shown 

to permit expression of an RhD protein in RBC membranes. Although functional data are 

lacking, alternate RHD mRNA isoforms64,65 skipping an exon70,71 that contains a frameshift 

variant could in principle lead to the expression of a truncated RhD protein, particularly if 

the reading frame is not altered.

Stop codon readthrough, where the ribosome miscodes at a premature termination codon, 

can produce full-length proteins.62,72,73 Factors such as identity of the stop codon and 

surrounding sequence contexts,72,74–78 proximal RNA structures,79,80 RNA modifications,81 

and presence of RNA binding proteins82 influence the likelihood of a readthrough.

RBCs with rescued RhD expression could be expanded through clonal hematopoiesis,13,83,84 

giving rise to either a weak D or a DEL phenotype. The presence of predisposing 

genetic85–88 and environmental factors89,90 and stochastic processes may influence the 

probability of clonal emergence, explaining why some RHD frameshift alleles express RhD 

protein while others do not.91

Various mechanisms exist that can lead to the expression of miniscule amounts of protein. 

We listed potential mechanisms for 8 of the 51 known frameshift variants in the RHD 
gene that lead to the expression of the RhD protein (Table 1). Due to the variability across 

samples as well as across reagents or methods for adsorption-elution testing,30,43 the rest 

of the 36 RHD frameshift alleles, currently listed with a D-negative phenotype (Table 1), 

might still express a DEL phenotype. Therefore, researchers should investigate those and 

newly identified frameshift variants by serology, even if predicted to encode truncated RhD 

proteins.

In summary, we propose that most frameshift variants identified in RHD Exon 130,35,37 

will likely lead to a weak D or DEL phenotype. Most frameshift variants in RHD Exons 2 

to 7 will lead to a D-negative phenotype; these variants require serologic workup because 

exceptions are known. Frameshift variants identified in RHD Exons 8 to 1069,92 will lead 

to a weak D or DEL phenotype. These predictions are based on the observations collated in 

Table 1 and our derived possible mechanisms for rescued RhD protein expression.

Since 2004,93 observations of frameshift variants encoding D-positive samples, otherwise 

predicted to be D-negative, had remained unexplained. The wealth of data accumulated for 

the RHD gene allowed us to outline principles that can explain these enigmatic observations. 

This review summarized published data accumulated in 15 years’ worth of literature that 

shared no systematic study design. Red cell genotyping and the RHD gene as a study subject 

still allowed the collation of representative examples for a host of mechanisms described 

by molecular biology researchers in disparate model systems before. We propose RHD 
frameshift variants, readily found in our donor and patient cohorts, and their RBC samples, 

readily accessible by a simple blood draw, are worth a systematic study.
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