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Abstract

In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent

package, and is adapted in stages during the study based on past outcome data. This design

formalizes standard practice in public health intervention studies. An effective intervention

package is sought, while minimizing intervention package cost. In LAGO study data, the

interventions in later stages depend upon the outcomes in the previous stages, violating standard

statistical theory. We develop an estimator for the intervention effects, and prove consistency

and asymptotic normality using a novel coupling argument, ensuring the validity of the test

for the hypothesis of no overall intervention effect. We develop a confidence set for the

optimal intervention package and confidence bands for the success probabilities under alternative

package compositions. We illustrate our methods in the BetterBirth Study, which aimed to

improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a

multicomponent intervention package.
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1. Introduction.

Adaptive designs have been developed and have been available for use in clinical trials for

decades. The U.S. Food and Drug Administration defines an adaptive design as “...a clinical

study design that allows for prospectively planned modifications based on accumulating

study data without undermining the study’s integrity and validity” (FDA (2016)).
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The existing literature on adaptive designs has thus far considered several types of

prospectively planned design modifications, including blinded sample size reassessment,

group sequential testing, interim analysis for benefit or futility, successive rerandomization,

changing subgroup proportions or eligibility criteria of the trial (Rosenblum and van der

Laan (2011)) and dropping treatment arms. Prominent among the techniques developed

to preserve the validity of statistical inference when design adaption has occurred is the

conditional error function (Proschan and Hunsberger (1995), Müller and Schäfer (2001,

2004)), and combination functions have been used to aggregate p-values from multiple

stages (Bauer and Kohne (1994), Brannath, Posch and Bauer (2002)). See Bauer et al.

(2016), Kairalla et al. (2012) for recent comprehensive reviews of adaptive designs in

clinical trials. In addition to valid testing, methods have been developed for estimation in an

adaptive group sequential design (e.g., Gao, Liu and Mehta (2013)).

The present work is motivated by large-scale public health intervention studies of complex

multicomponent intervention packages. In the newly proposed “Learn-As-you-GO” (LAGO)

design, the intervention, which can, for example, be a treatment, a device, a new way to

organize care, or, more likely, a combination thereof, is composed of several components.

While subject matter experts have some knowledge with regard to the preferred intervention

package, in LAGO, optimal development of the intervention package is an inherent part of

the study goals. A LAGO study is conducted in stages. After each stage, the data collected

so far are analyzed, the intervention package is reassessed, and a revised intervention

package is rolled out in the next stage. Unlike previous adaptive designs, in the LAGO

design, the composition of the intervention package in later stages depends on the outcomes

from previous stages. The lack of suitable framework, estimation and associated theory

motivating the research in this paper, with focus on new estimators and asymptotic theory

utilizing a novel coupling argument.

Response-adaptive designs (Hu and Rosenberger (2003), Rosenberger, Flournoy and

Durham (1997)) focus on binary or discrete treatments and, according to accumulated

data, change treatment allocation probabilities, not (as in LAGO) treatment options.

Thus, response-adaptive designs do not concern a multivariate intervention package, the

composition of which changes with trial stage in LAGO studies.

The Sequential Multiple Assignment Randomized Trial (SMART) design (Murphy (2005),

Murphy et al. (2007)) randomizes study participants at more than one time point to

prespecified randomization options with probabilities that depend on participant’s past

characteristics and outcomes. The aim of a SMART trial is to estimate the optimal sequence

of treatments for each patient given the patient’s covariate and response histories up to the

present. It is a nonadaptive design method which optimizes a personalized and dynamic

intervention, in part by restricting randomization options at each step. In contrast, LAGO

identifies a complex static, possibly “cluster-personalized,” intervention package where,

unlike in SMART, the options are unknown at the start of the trial and are estimated anew

as a result of trial data up to the current stage. In addition, LAGO studies will add new

centers, with new participants, entering at each stage, while in SMART the same individuals

are repeatedly rerandomized.
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The multiphase optimization strategy (MOST, Collins, Murphy and Strecher (2007), Collins,

Nahum-Shani and Almirall (2014)) consists of three phases: preparation, optimization and

evaluation. The optimal intervention package is developed during the optimization phase,

followed by its formal statistical evaluation in a randomized controlled trial. The aim of

MOST is similar to LAGO: to develop an optimal intervention package and estimate its

impact. However, in MOST, the outcomes of the past are used at most in one stage, to

determine the optimal package in the optimization phase. The resulting package is then

independently studied through a controlled trial in the evaluation phase, using no prior data.

At face value, phase I dose-finding studies have perhaps the greatest similarity to the

LAGO design paradigm. In dose-finding studies, the goal is to find the maximum tolerated

dose, that is, the highest dose of a drug such that adverse effects of the drug are below

a predetermined threshold. Dose values are assigned to patients in a sequential manner,

and in each step a decision is made to stop and declare that the maximum tolerated dose

has been found, or to continue, and if so, with which dose. The more traditionally used

methods include the “3 + 3” and “accelerated titration” designs (Simon et al. (1997),

Wong, Capasso and Eckhardt (2016)). Another popular method is the continual reassessment

method (O’Quigley, Pepe and Fisher (1990), O’Quigley and Shen (1996)), which assigns

each patient the current estimated maximum tolerated dose. Methods were also developed

for the optimal dose of two drugs simultaneously (Thall et al. (2003), Wang and Ivanova

(2005)). Rosenberger and Haines (2002) provide a review of the continual reassessment

method and additional statistical methods for dose finding studies. Dose-finding studies

are generally too small for the application of asymptotic statistical methods, and typically

Bayesian approaches have been used. In contrast, in public health intervention studies, the

magnitude of the per-stage sample size is typically much larger than the sample size in dose-

finding studies, while the maximum number of stages will be limited. Additionally, unlike

dose-finding studies, where methods are considered for a single or at most dual treatments,

the complex public health interventions motivating the development of the LAGO design

feature multiple components, some of which are continuous, while others are binary.

An ad hoc example of a precursor to a formal LAGO study is the “BetterBirth Study”

(Hirschhorn et al. (2015), Semrau et al. (2017)) of Ariadne Labs, a joint center of the

Brigham and Women’s Hospital and the Harvard T.H. Chan School of Public Health, led

by Atul Gawande (Gawande (2014)). The BetterBirth Study assessed the use of the World

Health Organization’s (WHO) Safe ChildBirth checklist, a 31-item checklist of best labor

and delivery practices believed to be feasible in resource-limited settings, to reduce maternal

and neonatal mortality. The intervention was adapted and tested in a three phase process

in Uttar Pradesh, India, where neonatal mortality is 32 per 1000 live births and maternal

mortality is 258 per 100,000 births (Semrau et al. (2017)). During the first two phases, the

intervention was adapted, and a final version was tested in a cluster randomized trial, that

included 157,689 mothers and newborns.

The first goal of a LAGO study is to identify the optimal intervention package such that

the cost of the intervention is minimized and the probability of a desired binary outcome

is above a given threshold. For example, in the BetterBirth Study, the outcome could be

the use of the WHO Safe ChildBirth checklist, with the aim being, for example, that the
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checklist is used during at least 90% of the births. In the illustrative example included in this

paper, we investigate a process outcome, oxytocin administration after delivery, with the aim

being that 85% of mothers will receive oxytocin after delivery. Oxytocin is recommended

by the WHO, as a proven intervention for preventing postpartum hemorrhage. We determine

whether the use of a multiple component intervention package that includes on-site coaching

visits and an intervention launch of a particular duration, increases the administration of

oxytocin, compared to standard of care.

The second goal of a LAGO study is to assess the overall impact of the intervention strategy,

as well as that of its individual components. We present methodology to achieve both goals.

In a LAGO study, the data are not an independent sample. Beginning with the second

stage, the recommended intervention package is itself a random variable that depends on

previous outcomes. In the final analysis, a LAGO study uses the data from all stages. When

considering the asymptotic behavior of the estimators, we assume that the sample size in

each stage increases at a similar rate. In addition, we assume that the intervention in each

stage converges in probability to a constant as the number of observations in the previous

stages goes to infinity. This would happen, for example, and under the usual regularity

conditions, if the intervention in each stage is based on a maximum likelihood estimator

obtained from the data collected in previous stages.

LAGO studies can be further characterized by a key design feature which determines the

strength of the causal inferences that can be made. In an uncontrolled LAGO study, there are

neither baseline data available to permit a quasi-experimented before–after comparison nor

randomized or nonrandomized planned variation in the implementation of the intervention

package. Thus, unplanned variation, which is widespread in large-scale public health

interventions, serves as the basis for estimating causal contrasts. Under unplanned variation,

causal inference methods will be needed to adjust for possible confounding bias (Hernán

and Robins (2020), Spiegelman and Zhou (2018)). In a controlled LAGO study, baseline

outcome data are collected before the intervention is implemented, or in additional centers

in which no intervention was implemented. These additional centers may be randomized or

not, to be included in the study as controls. When baseline data serves as the control, the

quasi-experimental before–after design provides the data for causal contrasts. The before–

after design relies on the untestable assumption that there are no time trends in the data, so

changes in mean outcomes can be solely attributed to intervention effects (Cox (1958)). If,

instead or in addition to baseline data, there are concurrent control centers, stronger causal

inference is permitted by design, with the strongest design in this context being being a

randomized controlled LAGO trial.

We propose estimators for a LAGO study allowing for several stages, multiple centers

or sites, multiple component complex interventions and center-specific baseline covariates

that affect the outcome rate, or random center-specific deviations from the recommended

intervention, or both. We show that even in this setup, the optimal intervention can be

learned from the combined data from all stages. Even when the optimal intervention in the

last stage does not achieve the prespecified study goal, the optimal intervention is estimated.

We prove consistency and asymptotic normality of the new estimators utilizing a novel
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coupling argument. We further establish the validity of tests for an overall intervention

effect. In addition, we develop a confidence set for the optimal intervention package and

confidence bands for the target outcome probability under various observed or hypothesized

intervention packages.

The rest of the paper is as follows. In Section 2, we describe the LAGO design and our key

assumptions (Section 2.1), propose a relevant estimator and study its asymptotic properties

(Section 2.2), which we then use for construction of hypothesis tests (Section 2.3) and

confidence intervals (Section 2.4). In Section 3, we report the results of a simulation study

and in Section 4 we present an illustrative analysis of the BetterBirth Study. In Section 5,

we discuss our results and future research. Proofs of our two main theorems are given in

the Appendix. Additional proofs and simulation study results are given in the Supplementary

Material (Nevo, Lok and Spiegelman (2021)).

2. LAGO design—theoretical development.

2.1. Description of the learn-as-you-go design.

The methods we develop in this paper cover an arbitrary number of stages, K. At each stage

k, a version of the intervention package is implemented in each of Jk centers. Let njk denote

the sample size (e.g., the number of births) in the j th center at stage k. We assume that

each center is included in one stage only. In a randomized controlled trial, centers may be

randomized to either intervention or control. Alternatively, data might be collected pre and

post the implementation of the intervention package and then a center contributes data to

both the intervention and the control.

Asymptotic theory is developed for the setting where the number of patients per center goes

to infinity at the same rate in all stages, leading to reliable approximations when the number

patients in each center is relatively large. Let nk = ∑j = 1
Jk njk be the number of participants

in stage k and n = ∑k = 1
K nk be the total number of participants. Our asymptotic inference

assumes that the ratio between the number of patients in each center and the total sample

size n converges to a constant, and we write αjk = limn ∞njk/n; then, ∑k = 1
K ∑j = 1

Jk αjk = 1.

Define also nk = n1, …, nK . For ease of presentation, we first develop methodology for a

LAGO study consisting of K = 2 stages. Section 3 of the Supplementary Material covers

studies with K > 2.

The multivariate intervention package consists of p components. Let X be the support

of the intervention, that is, all possible intervention values. For example, if all p
intervention components are continuous and each is constrained to be within a given interval

ℒr, Ur , r = 1, …, p, then X = ℒ1, U1 × ℒ2, U2 × ⋯ × ℒp, Up . Throughout this paper, as

would ordinarily be the case in practice, we assume that X is bounded.

For stage 1, an initial x(1) (or xj
1  for each center j) is chosen by the investigators, based on

their best judgment. We distinguish between the recommended intervention and the actual
intervention. In large scale public health settings, the actual intervention, denoted by Aj,
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may differ from the recommended intervention, due to local constraints or preferences. We

denote zj for center-specific characteristics reflecting baseline heterogeneity between centers

with respect to the outcome of interest and we consider the zj fixed, that is, they are not

part of the intervention package. For each center, zj could be, for example, the district of the

health center or its monthly birth volume.

We assume that the probability of success for a single unit i (e.g., participant

or birth) in a center j with characteristics zj under intervention A = aj,

paj β; z = pr Y ij = 1|Aj = aj, Xj = xj, zj; β , does not depend on the recommended

intervention xj, except through the actual intervention aj, and follows a logistic regression

model

logit paj β; zj = β0 + β1
Taj + β2

Tzj, (2.1)

where βT = β0, β1
T , β2

T  is a vector of unknown parameters, such that β1 describes the

effects of the p intervention package components. For centers in the control arm or for pre-

intervention data, if available, a = x = 0. We assume that in each stage, conditionally on all

aj and zj, outcomes are independent within and between centers. Learning the intervention,

however, causes dependence between stages, which we consider below.

A main goal of the LAGO design is to identify the optimal intervention package. Let p be

a prespecified outcome probability goal and C(x) be a known cost function. For example, in

the BetterBirth Study, one may want to find the minimal number of on-site coaching visits

to ensure that oxytocin is administrated to the mother right after delivery in at least 85%

of births p = 0.85 . If β were known, an optimal intervention for a center with covariates zj

could be the solution to the center-specific optimization problem

min
xj

C xj subject to pxj β; zj ≥ p & xj ∈ X .
(2.2)

Computational issues regarding solving (2.2) will be discussed in Section 2.5. We assume

that for the true parameter values, there is a unique solution to (2.2). For example, if the

intervention has two components with unit costs c1 and c2 and a linear cost function, we

assume that β11/c1 ≠ β12/c2. Other optimization criteria can be considered. For example, the

optimal intervention could require that the intervention results in an outcome probability p
when calculating a weighed average over a group of centers j = 1, …, J , with sample sizes

nj. That is,

min
x1, …, xJ

∑
j = 1

J
C xj subject to 1

N ∑
j = 1

J
njpxj β; zj ≥ p & xj ∈ X ∀j

where N = ∑j = 1
J nj. In this paper, we focus on (2.2).

NEVO et al. Page 6

Ann Stat. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We continue our description of the data and model. Let z k = z1
k , …, zJk

k  be the observed

center characteristics in each of the Jk stage k centers. We start with stage 1. Let xj
1  be

the recommended (multivariate) intervention package for center j in stage 1, which in the

absence of z, may be the same for all centers. We assume that the stage 1 recommended

interventions xj
1 , j = 1, .., J1, are determined before the trial starts. The actual intervention

in center j of stage 1 is, however, aj
1 = ℎj

1 xj
1 , where ℎj

1  is a deterministic center-

specific continuous function from X to X that determines how center j implements the

actual intervention based on the recommendation xj
1 . We do not require that the ℎj

1  are

known, but only that the aj
1  are observed. Let Y ij

1  be the binary outcome of interest for

patient i in center j of stage 1, each following model (2.1), and let the outcome vector in

center j of stage 1 be Y j
1 = Y 1j

1 , …, Y nj1j
1 . Let a 1 = a1

1 , …, aJ1
1  and Y 1 = Y 1

1 , …, Y J1
1

be the stage 1 actual interventions and outcomes, respectively.

Following the stage 1 data collection, a stage 1 analysis is conducted to determine

the recommended interventions for the new centers in stage 2, denoted by xj
opt, 2, n1 ,

j = 1,..., J2. If there are control centers, their recommended intervention and their

actual intervention are zero. The value xj
opt, 2, n1  is chosen through a function, g, that

takes as input the stage 1 data, the goal of the intervention, and the center-specific

covariates and returns a recommended intervention, which is usually the estimated optimal

intervention xj
opt, 2, n1 = g a 1 , Y 1 , z 1 , zj

2 . Then xj
opt, 2, n1  can be obtained by solving

the optimization problem given in (2.2) for each center, with β replaced by an estimator β 1

based on the stage 1 data alone. The superscript, n1, in xj
opt, 2, n1  reminds us that xj

opt, 2, n1

is a random variable that is a function of the data from the n1 participants in stage 1.

The actual intervention implemented in center j of stage 2 is Aj
2, n1 = ℎj

2 xj
opt, 2, n1 ,

where ℎj
2  are the analogues of ℎj

1 , but now for the stage 2 centers. Let

x
opt, 2, n1 = x1

opt, 2, n1 , …, xJ2
opt, 2, n1  be the recommended interventions at the J2 stage

2 centers. Once x
opt, 2, n1  are determined, stage 2 outcomes are collected under the

actual interventions A 2, n1 = A1
2, n1 , …, AJ2

2, n1 , which may be the same as x
opt, 2, n1 . Let

Y j
2, n1 = Y 1j

2, n1 , …, Y nj2j
2, n1  be the stage 2 outcomes in center j, each following model (2.1)

and Y 2, n1 = Y 1
2, n1 , …, Y J2

2, n1  be all the stage 2 outcomes. Our two main assumptions are

the following.
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ASSUMPTION 2.1. Conditionally on x
opt, 2, n1 , A 2, n1 , Y 2, n1  are independent of the stage 1

data a 1 , Y 1 .

ASSUMPTION 2.2. For each j = 1,..., J2, the stage 2 recommended intervention xj
opt, 2, n1

converges in probability to a center-specific limit xj
2 .

Assumption 2.1 assumes that learning takes place only through the determination of

the recommended intervention. It ensures that the dependence between the stage 1

data and stage 2 outcomes is solely due to the dependence of the xj
opt, 2, n1  on the

stage 1 data. It specifically means that, given x
opt, 2, n1 , the actual intervention in a

stage 2 center is conditionally independent of Y 1 . Under Assumption 2.1, and the

aforementioned assumption that conditionally on the actual interventions, the outcomes

do not depend on the recommended interventions, we can conclude that in stage 2,

pr Y 2, n1 |A 2, n1 , x
opt, 2, n1 , z 2 , Y 1 = pr Y 2, n1 |A 2, n1 , z 2 , so the logistic regression

model (2.1) holds for the stage 2 data. Assumption 2.2 implies that in the presence of

more and more stage 1 data under aj
1 , j = 1,... J2, each of the estimated optimal intervention

packages xopt, 2, n1 , j = 1,... J2, converges in probability to a fixed value xj
2 . For example,

Assumption 2.2 will hold if x
opt, 2, n1  are continuous functions of the stage 1 maximum

likelihood estimator, β1, as is the case if xj
opt, 2, n1  solves (2.2) and β11/c1 ≠ β12/c2. Under

Assumption 2.2 and continuity of the hj ‘s, the continuous mapping theorem implies that

Aj
2, n1 = ℎj

2 xj
opt, 2, n1  converges in probability to aj

2 = ℎj
2 xj

2 . We additionally assume

that there is no separation or quasi-separation of the data. This assumption ensures that

the estimator is unique and alleviates identifiability concerns (Albert and Anderson (1984),

Wedderburn (1976)).

In fact, the results we prove in this paper regarding the estimators obtained at the end of the

study hold not only for g a 1 , Y 1 , z 1 , zj
2 = xj

opt, 2, n1 , but under any choice of function g

for the recommended intervention, as long as Assumption 2.2 holds.

2.2. β  and its asymptotic properties.

We estimate β after the K stages are concluded. As in previous sections, for ease of

development, we consider here K = 2. Section 3 of the Supplementary Material covers the

case of K > 2.

We propose to estimate β by solving the estimating equations
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0 = U β

= 1
n ∑

j = 1

J1
∑
i = 1

nj1
1

aj
1

zj
1

Y ij
1 − paj

1 β; zj
1

+ ∑
j = 1

J2
∑
i = 1

nj2
1

Aj
2, n1

zj
2

Y ij
2, n1 − pAj

2, n1 β; zj
2 .

(2.3)

In Section 2 of the Supplementary Material, we show that the estimator β that solves (2.3)

is also a maximum partial likelihood estimator, although that is not needed for the proofs

below. The estimating equations (2.3) also arise if the interventions A were determined a

priori, so β can be estimated using standard software.

Asymptotic theory for β is complicated, however, by the fact that Y 1  and A 2, n1 , Y 2, n1

are not independent. Thus, the score function U (β) is not a sum of independent random

variables.

Let ℬ be the parameter space for β. A conditional expectations argument (equation (A.6) in

the Appendix) shows that the score function has mean zero when evaluated at the true value,

denoted by β⋆. Furthermore, we show in the Appendix (equation (A.7)) that the two terms in

(2.3), although dependent, are uncorrelated. These two properties are useful for proving that

β is consistent.

THEOREM 2.1 (Consistency). Assume ℬ is compact. Under Assumptions 2.1 and 2.2, β P β⋆.

The proof is given in Section A.1 of the Appendix.

Asymptotic normality also poses a challenge due to the dependence between the two

summands in U(β). It can be shown that ∂U(β)/∂β converges in probability to −I (β), for

all β ∈ ℬ, with I (β) given in equation (A.13) of the Appendix. The following theorem

establishes asymptotic normality of β.

THEOREM 2.2 (Asymptotic normality). Under Assumptions 2.1 and 2.2,

n1/2 β − β⋆ D N 0, I−1 β⋆ . (2.4)

The full proof of Theorem 2.2 is given in Section A.2 of the Appendix. Here, we outline

the main parts of the proof, which rests upon a novel coupling argument. First, by the mean

value theorem and further arguments, it can be shown that the asymptotic distribution of

n1/2 β − β⋆  is the same as the asymptotic distribution of

NEVO et al. Page 9

Ann Stat. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I β⋆ −1n−1/2 ∑
j = 1

J1
∑
i = 1

nj1
1

aj
1

zj
1

Y ij
1 − paj

1 β⋆; zj
1

+ ∑
j = 1

J2
∑
i = 1

nj2
1

Aj
2, n1

zj
2

Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 .

(2.5)

We next show that the asymptotic distribution of the part of (2.5) that does not involve I
(β⋆) is multivariate normal. The following coupling argument deals with the fact that the

two summands in (2.5) are not independent. For each j = 1,..., J2, let Y ij
2 , i =1, …,nj2

be independent Bernoulli random variables, independent of all stage 1 data, with success

probability paj
2 β⋆, zj

2 , where, as defined before, Aj
2, n1 . We construct variables Y ij

2, n1

which, given the stage 1 data and the Aj
2, n1 , have the same distribution as the original

Y ij
2, n1 , but coupled (see, e.g., Lindvall (2002)) with the Y ij

2  in the following way. Let Wij be

independent uniform (0, 1) random variables, independent of all other variables introduced

so far. For the case paj
2 β⋆, zj

2 > pAj
2, n1 β⋆; zj

2 , let

Y ij
2, n1 =

0 if Y ij
2 = 0

0 if Y ij
2 = 1 and W ij <

paj
2 β⋆; zj

2 − pAj
2, n1 β⋆; zj

2

paj
2 β⋆; zj

2

1 if Y ij
2 = 1 and W ij ≥

paj
2 β⋆; zj

2 − pAj
2, n1 β⋆; zj

2

paj
2 β⋆; zj

2 .

(2.6)

A similar expression is given in equation (A.14) in the Appendix for the case p (2)

paj
2 β⋆; zj

2 ≤ pAj
2, n1 β⋆; zj

2 . The key property of the coupling argument is that given

Aj
2, n1  and the stage 1 data, the distribution of the coupled Y ij

2, n1  is identical to the

distribution of the original Y ij
2, n1 . Therefore, when we replace Y ij

2, n1  with Y ij
2, n1  in (2.5),

the distribution of (2.5) is unaffected. The coupled outcomes are used in Section A.2 to show

that the part of (2.5) that does not involve I (β⋆) has the same asymptotic distribution as
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1
n ∑

j = 1

J1
∑
i = 1

nj1
1

aj
1

zj
1

Y ij
1 − paj

1 β⋆; zj
2

+ ∑
j = 1

J2
∑
i = 1

nj2
1

aj
2

zj
2

Y ij
2 − paj

2 β⋆; zj
2 .

(2.7)

The outcomes Y 1  and Y 2 = Y 1
2 , …, Y J2

2
 are independent, because the Y ij

2  are the

outcomes under the constant intervention aj
2 . Therefore, by standard logistic regression

theory, the expression in (2.7) converges in distribution to a normal random variable with

mean zero and variance I (β⋆). Combining the asymptotic normality of (2.7) with (2.5)

implies that Theorem 2.2 holds.

The asymptotic variance can be consistently estimated from the data by replacing aj
2 , β⋆,

αj1 and αj2 with Aj
2, n1 , β, nj1/n and nj2/n, respectively, in I (β⋆). The asymptotic variance

and its approximation are the same as if the interventions were fixed in advance and Y 1  and

Y 2, n1  were independent.

2.3. Hypothesis testing.

A major goal of a LAGO study is to test the null hypothesis of no overall intervention effect.

One way to test this is to carry out a test for the subvector of β characterizing the effect of

the intervention. That is, to test H0 : β1 = 0 in model (2.1) using the asymptotic normality

result of Section 2.2. Because of this asymptotic normality result, the Wald or likelihood

ratio tests for H0:β1 = β1
0 are asymptotically valid for any constant β1

0.

Alternatively, in a controlled LAGO design, let Q be a group indicator that equals one for

the intervention group and zero for the control, and let p0 and p1 be the success probabilities

under Q = 0 and Q = 1, respectively. Then, an alternative test for an overall intervention

effect, H0 : β1 = 0, can be carried out by testing H0 : p0 = p1. The latter test is valid despite

the adaption of the intervention package, under the assumption that the arm allocation ratio

(i.e., the assignment to control versus intervention arms) does not depend on the prior data,

but only the intervention package composition depends on data from previous stages. By

Assumption 2.1, the dependence between the stage 2 and stage 1 data is solely due to the

stage 1 data determining the stage 2 recommended intervention, which, in turn, affects the

actual stage 2 intervention, and thus the stage 2 outcomes. However, under the null, there

is no effect of the actual intervention on the stage 2 outcomes. Therefore, under the null,

regardless of the way the intervention was adapted, the stage 1 and stage 2 outcomes are

independent. Thus, a standard test for equal probabilities in the control and the intervention
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arms is valid. While not needed due to our asymptotic results, the same arguments could

have been used for the standard tests of H0 : β1 = 0.

In a controlled LAGO design, an alternative, possibly more powerful, test for the overall

effect of the intervention in the presence of center characteristics is to consider H0 : γ =

0 in the model logit pQ β, γ; z = β0 + β2
Tz + γQ. As before, in light of the between-stages

independence under the null, β1 = 0 in model (2.1) implies γ = 0.

2.4. Confidence sets and confidence bands.

After the conclusion of the study, the optimal intervention is estimated as the solution to

(2.2) with β replaced by β. To obtain an asymptotic 95% confidence set for the optimal

intervention xopt, we first obtain a confidence interval for px β⋆; z , for a given z = z and for

each x ∈ X. To do this, we calculate a 95% confidence interval for logit px β⋆; z , that is, for

1 xT zT β⋆,

CIx = 1 xT zT β ± 1.96σ β; x, z ,

where σ2 β; x, z = 1 xT zT n−1I −1 β 1 xT zT T  is the estimated variance of 1 xT zT β,

and n−1I −1 β  is the estimated variance of β. The 95% confidence interval for px β⋆; z
is CIpx = expit CIx . Then we obtain the confidence set for the optimal intervention as

CS xopt = x:CIpx ∍ p . That is, CS xopt  includes intervention packages for which p is

inside the confidence interval for the success probability under those interventions.

We now show that the confidence set CS(xopt) contains xopt with the specified

probability of 0.95. Recall that under the assumption that p can be achieved,

pxopt β⋆; z = expit 1 xoptTzT β⋆ = p. Therefore,

pr CS xopt ∍ xopt = Pr CIpxopt ∍ p = Pr CIpxopt ∍ pxopt β⋆; z 0.95.

Implementing this procedure is simple and its calculation is fast. Because calculating

CS(xopt) does not depend upon estimating xopt, it does not involve the optimization

algorithm.

At the end of the study, researchers might be interested in a variety of potential intervention

packages in X that were not necessarily identified as of interest a priori. We propose a

method to develop confidence bands for the outcome probabilities px β; z  for a range of

x ∈ X of interest, simultaneously. These confidence bands allow researchers to study the

entire intervention space when comparing potential choices of the intervention package. We

propose a procedure that is based on the asymptotic normality of β and on Scheffé’s method
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(Scheffé (1959)). First, for all x ∈ X, construct CBx to obtain 95% confidence bands for

1 xT zT β⋆:x ∈ X ,

CBx = 1 xT zT β ± χ0.95, p + q + 1
2 σ β; x, z ,

with σ β; x, z  defined as before and χ0.95, p + q + 1
2  the 95% quantile of a χp + q + 1

2

distribution. As before, we transform CBx into confidence bands for px β; z  by setting

CBpx = expit CBx . These confidence bands guarantee asymptotic simultaneous 95%

coverage for all possible intervention package compositions; the proof is given in Section 4

of the Supplementary Material.

2.5. Computation of the optimal intervention.

The algorithm used to solve (2.2) after stage k, using β k
, depends on the form of C(x).

Under a linear cost function with unit costs cr for the rth intervention component, the

solution is achieved by 1. setting all components to their minimal value ℒr, 2. ordering

the components by their estimated cost efficiency β1r/cr, and 3. increasing the most

cost-efficient component until either p is achieved or until this component reaches its

maximal value, then moving to the next most cost-efficient component among the remaining

components, and so on. For nonlinear cost functions, standard nonlinear optimization

algorithms can be used.

3. Simulations.

We conducted simulation studies to investigate the finite sample properties of our methods.

We simulated 2000 data sets per simulation scenario. We considered three main scenarios:

1. In Scenario 1, we considered a two-stage controlled LAGO design with equal

number of centers per stage J, with half the centers in the intervention arm and

half in the control arm. The total sample size available at the end of the study

is J (n1j + n2j). We considered the values J = 6, 10, 20, n1j = 50, 100, 200 and

n2j = 100, 200, 500, 1000. The intervention had two components, x = (x1, x2),

with unit costs c1 = 1 and c2 = 8. The minimum and maximum values of X1

and X2 were ℒ1, U1 = 0, 2  and ℒ2, U2 = 0, 5 . We considered the following

values for exp β1
⋆ = exp β11

⋆ , exp β12
⋆ : (1, 1) (the null), (1, 1.2), (1, 1.5), (1.2,

1.5) and (1.2, 2). A single center covariate z was normally distributed with mean

0 and variance 1 and its coefficient was taken to be β2
⋆ = log 0.75 . For simplicity,

we did not include an intercept in model (2.1), although each center had its own

baseline success probability due to z. For z = 0, the probability of success in

the control arm was 0.5. The stage 2 recommended intervention was based on

solving the optimization problem (2.2) using the stage 1 estimates of β. Section

5.1 of the Supplementary Material provides the details on what was done when

no solution existed for which p was reached.
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2. Scenario 2 is similar to Scenario 1 with respect to true parameter values, cost

functions and the center covariate. However, in Scenario 2, the per-center sample

size is lower in stage 1 than in stage 2, and the number of centers is also lower in

stage 1 than in stage 2. Thus, Scenario 2 reflects the potential desire in practice

to learn the optimal intervention faster. This scenario is divided to Scenario 2a

with J1 = 6 and J2 = 12 centers in stages 1 and 2, respectively, and Scenario 2b

(J1 = 10 and J2 = 20). The per-center sample sizes are n1j = 50 and n2j = 200.

3. Scenario 3 is carefully modeled after the illustrative example, the BetterBirth

Study, described in Section 4. While the BetterBirth Study did not use a

LAGO design, in this simulation study we investigated how LAGO would

have performed had LAGO been used. All nonadaptive design parameters were

determined by this study, including the stage 1 center-specific interventions,

number of centers, per-center sample size, intervention arm allocation in each of

the three stages of the trial and the distribution of the center-specific covariate z,

monthly birth volume, by taking them to be exactly as in the BetterBirth data.

The true parameter values in Scenario 3 were the final estimators from the data

(last column in Table 4). In each simulation iteration, stage 1 outcome data was

first simulated, and then analyzed to determine stage 2 intervention. Then, stage

2 outcome data was simulated, and data from both stages were analyzed to derive

stage 3 interventions. Stage 3 outcomes were simulated, and the entire data were

analyzed to obtained the final estimators. In all stages, variation in the uptake

of the intervention (specifically in the number of coaching visits) was simulated

according to the actual variation in the data, at that specific stage.

Selected results for Scenarios 1 and 2 are presented in Tables 1 and 2. Table 1 presents

results on the performance of β , and shows that for J > 6, the finite sample bias was minimal,

the mean estimated standard error was very close to the empirical standard deviation, and

the empirical coverage rate of the confidence intervals for the effects of the individual

package components was very close to 95%. With 2000 replicates per simulation scenario,

the empirical coverage of 95% confidence intervals should lie between 94% and 96% (in

95% of the scenarios). This was indeed the case (Table 1). Moreover, in Section 5.2 of the

Supplementary Material, we found that the type I error rate of the tests discussed in Section

2.3 was close to the nominal value of 0.05. However, in several scenarios explored, the finite

sample bias was beyond that which could have been expected due to random simulation

sampling error for 2000 replicates per simulation scenario, that is, in absolute value beyond

1.96 SD β / 2000, where SD β  is the empirical standard deviation of β . This occurred more

frequently for β1 than for β2 and for lower sample sizes and per-stage number of centers.

When we further increased the sample size, this bias disappeared.

Table 2 presents bias and root mean square errors for the second-stage recommended

intervention and the final estimated optimal intervention, calculated for a typical center with

z = 0; additional results for Scenario 1 with J = 6, 10 are presented in Section 5.2 of the

Supplementary Material. The finite sample bias and the root mean squared errors of the

final xopt were generally small and decreased as the number of centers per stage and the

sample size increased. The bias of the second-stage recommended intervention was often
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much more substantial. Table 3 presents information about success probabilities under the

second-stage recommended intervention and the final estimated optimal intervention. The

empirical 2.5% and 97.5% quantiles of the true success rate show that the desired 90%

was generally achieved with the final estimated optimal intervention, but less so with the

second-stage recommended intervention. The nominal coverage rate of the confidence set

for xopt was approximately 95%, with the set typically including between 3 to 15% of X, as

a measure of precision in the scenarios studied. We also compared the cost of the estimated

optimal intervention to the cost of the true optimal intervention and found it to be almost the

same for the scenarios presented in Table 2; see Section 5.2 of the Supplementary Material.

Table 2 also shows that the empirical coverage rate of the confidence bands for px β⋆; z = 0
was very close to 95%.

The results from Scenario 3 are summarized in Section 5.2 of the Supplementary Material.

The results generally agreed with the results of Scenarios 1 and 2. Minimal bias was

observed for the final estimated intervention component effects and estimated optimal

intervention. However, the estimated optimal intervention in the earlier stages were

generally biased, especially when stage 1 sample size was small. It should be noted that

the intermediate recommended interventions or intervention effect estimates are not the

goal of LAGO. Rather, the final estimated optimal intervention and final intervention effect

estimates are the main output of a LAGO study.

4. Illustrative example.

The BetterBirth Study consisted of three stages. The first two stages were pilot stages

used to develop the intervention package. Stage 3 was a randomized controlled trial. The

development of the recommended intervention package was conducted qualitatively, as

described in Hirschhorn et al. (2015), and the intervention package was adjusted after

each pilot stage. The results of stage 3, the randomized controlled trial, were presented

and discussed in Semrau et al. (2017). The number of centers with data on oxytocin

administration in the first, second and third stages was 2, 4 and 30, respectively. In the

first two stages, data in each center were collected before and after the intervention was

implemented. In stage 3, there were 15 centers in the control arm and 15 centers in the

intervention arm. In 5 intervention arm centers, outcome data were also collected before the

intervention was implemented.

Here, we focus on the binary outcome of oxytocin administration immediately after delivery,

as recommended by the WHO (WHO (2012)) to prevent postpartum hemorrhage, a major

cause of maternal mortality. The intervention package components were the duration of the

on-site intervention launch (in days), the number of coaching visits after the intervention

was launched, leadership engagement (nonstandardized initial engagement, standardized

initial engagement and standardized initial engagement with follow-up visits) and data

feedback (none; ongoing, paper-based; ongoing, app-based). The four components were

adapted in a way that resulted in near multicollinearity. Therefore, for illustration purposes,

we considered the first two components only, launch duration and number of coaching visits.

The launch duration was 3 days in stage 1 and 2 days in stages 2 and 3. Compared to

stage 1, the intensity of coaching visits was increased in stage 2, and further increased
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in stage 3. For illustrative purposes, we truncated the data at 40 coaching visits or less.

The baseline center characteristic we included was the approximate monthly birth volume,

given that large facilities might be likely to follow WHO recommendations about oxytocin

administration more closely, regardless of the intervention package implemented. Other

available center characteristics, for example, number of staff nurses, were highly correlated

with the monthly birth volume.

Table 4 provides the estimated effects of the intervention package components after each of

the stages, using all available data at that point. The sample size in stage 1 was relatively

small, explaining the wide confidence intervals for the odds ratios. The final results imply

that both package components had an effect. Tests for the overall effect of the package

yielded a highly significant p-value, regardless of the test we used.

After consulting with the study investigators, we assigned unit costs of $800 per launch day

and $170 per coaching visit. In practice, implementation costs may also depend on center

size and, if so, C(x) could be replaced with Cz(x).

The estimation of the optimal intervention package with linear cost C(x) = c1×1 + c2×2

was conducted as in the simulation study. Assuming that at least 1 launch day and 1

coaching visit are needed, and that a launch duration of more than 5 days or having more

than 40 coaching visits is impractical, we estimated the optimal intervention for a center

with average birth volume (z = 175) to be a launch duration of 2.78 days and 1 coaching

visit. We also carried out optimization over all possible combinations of discrete values

within X, which are 1,..., 40 for coaching visits and 1, 1.5, 2, 2.5,..., 5 for duration of

intervention launch and obtained the optimal intervention as launch duration of three days

with one coaching visit, xopt. The total cost of the estimated optimal intervention package,

xopt = 3, 1 , was $2570.

We calculated a 95% confidence set for the optimal intervention CS(xopt) over the grid

of X, taking all possible numbers of coaching visits, 1,..., 40, and 1, 1.5, 2, 2.5,..., 5 for

intervention launch duration. Out of 360 potential intervention packages, 38 (10.5%) were

included in the 95% confidence set. The set included the following combinations: 1.5 days

launch duration and 40 coaching visits; 2 days launch durations and 27 or more coaching

visits; 2.5 days launch duration and less than 20 coaching visits; and 3 days launch duration

and less than 5 coaching visits. The first, second and third quartiles of the cost distribution

within CS(xopt) were Q1 = $2462, Q2 = $4035 and Q3 = $6797. We also calculated 95%

simultaneous confidence bands for the probability of success under all 360 intervention

compositions; plots are shown in Section 6 of the Supplementary Material. For the estimated

optimal intervention xopt = 1, 3 , the obtained confidence interval (within the bands) for the

probability of oxytocin administration was (0.79, 0.93). The mean difference between the

top and bottom of the confidence band over all 360 intervention compositions was 0.07.

5. Discussion.

We developed the LAGO design for multiple component intervention studies with a binary

outcome, where the intervention package composition is systematically adapted as part of
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the design. The goals of studies using the LAGO design are to find the optimal intervention

package, to test its effect on the outcome of interest and to estimate its effect as well as the

effects of the individual components.

The methodology in this paper was developed for scenarios with a stagewise analysis that

does not include formal interim hypothesis testing. However, the LAGO design allows for

futility stops, since stopping the trial for futility between stages preserves the type I error.

The type I error can only decrease from the nominal level when futility stops are included,

because when stopping for futility, the null hypothesis is not rejected (Snapinn et al. (2006)).

For clear presentation of the design, methods and theory, we focused on a general yet

practical design. Our work opens the way for further research. For example, it would

be interesting to develop methods for studies with further dependence because centers

contribute data to more than one stage. The results in this paper could also be extended to

continuous, count, or survival outcome data. Adapting the LAGO framework to paired data

would also be useful. Additionally, many design problems arise, in terms of identifying the

optimal K, Jk and njk for given settings. It should be noted that the performance of estimators

obtained from a LAGO trial depends on the choice of the function g, which determines

how the later stage interventions depend on the data from previous stages. Therefore, an

important topic for future research is the choice of g.

Our asymptotic results use the assumption that the sample sizes in the different stages

increase at a similar rate, in the sense that the ratio between the sample size in each of

the stages and the overall sample size converges to a constant, which can be small. Even

when the stage 1 sample size was relatively small, we showed in simulation Scenario 3

that the asymptotic properties were still good approximations of the finite sample behavior

of the final estimators. On the other hand, even when the stage 1 sample size is large,

further data collection in a second stage is often desirable to avoid excessive extrapolation

of the outcome model to intervention packages that have not been implemented in stage 1,

minimizing the potential for bias due to model misspecification. In practice, researchers will

usually prefer to observe the performance of the optimal intervention before reaching final

conclusions.

In this paper, we assumed that center effects can be fully captured by observed covariates

and that the intervention effects are fixed across centers. In the BetterBirth Study, for

example, we assumed that the monthly birth volume captured center effects. This is a

limitation of the presented work because, in practice, center effects often cannot be captured

solely by observed covariates. Therefore, future work will consider generalizing LAGO to

allow for clustered data.

Van der Laan (2008) provides rigorous proofs for specific adaptive designs which do not

include LAGO, while providing “templates and conditions” for more general settings. As in

LAGO, van der Laan (2008) considers settings where the intervention of patient i depends

on the information available of previous patients, and where the limiting design is a fixed

design. However, van der Laan (2008) is not directly applicable to LAGO as developed

in this paper. In the LAGO design, the number of stages, that is, the number of times the
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intervention could be adapted, is finite and fixed, while van der Laan (2008) would require

that the number of stages tends to infinity. However, following the same arguments as in van

der Laan (2008) page 11, the LAGO estimating equations form a martingale and it might

be possible to apply a triangular martingale central limit theorem instead of the martingale

central limit theorem referenced in van der Laan (2008), to develop theory for LAGO

both for settings with a large number of patients per stage and for settings with smaller

numbers of patients per stage; it might also be useful for extending LAGO to continuous and

time-to-event outcomes.

In this paper, we considered the model parameter values fixed, and not dependent on

the sample size n. As a result, the limiting design, that is, the probability limit of

the intervention package composition, is constant in all stages. An interesting direction

for future research involves studying the asymptotic regime when the parameter values

themselves change with n, and specifically sequences of distributions where the intervention

component effects (β) go to zero at rate n−1/2 (known as local alternatives see, e.g., Chapter

14 in van der Vaart (1998)). In this setting of local alternatives, even in the limit for large

n, the later stage interventions will not converge to a constant but may have a limiting

distribution. The resulting asymptotic theory might lead to better approximations for finite

sample situations where there is less certainty about the later stage interventions.

Many large effectiveness and implementation trials fail because current design methodology

does not permit adaptation of the intervention in the face of implementation failure as

in, for example, the BetterBirth (Semrau et al. (2017)) and the TasP (Iwuji et al. (2017))

studies. The LAGO design rigorously formalizes practices in public health research that are

presently conducted in an ad hoc manner, with unknown consequences for the validity of

the subsequent standard analysis (Escoffery et al. (2018)). We expect widespread use of the

LAGO design as a result, with potential gain for many randomized clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: PROOFS OF THEOREMS 2.1 AND 2.2

As previously explained, we prove the results in the paper for a general recommended

interventions Xj
2, n1 = g A 1 , Y 1 , z 1 , zj

2 . Usually Xj
2, n1  will be the estimated optimal
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intervention (previously denoted as xj
opt, 2, n1 ). The proof works, however, for any function

of the data such that Xj
2, n1  converges in probability to a center-specific limit xj

2 , for all

j = 1, …, J2. Let X 2, n1 = Xj
2, n1 , …, XJ1

2, n1  be all the stage 2 recommended interventions.

A.1. Proof of Theorem 2.1: Consistency of β.

The following lemma will be useful for the proof of Theorem 2.1.

LEMMA A.1. Let f x; β :X Rq be a differentiable function of x with continuous and

bounded first partial derivatives for all x ∈ X β ∈ ℬ , uniformly bounded over X × ℬ, where

X and ℬ are compact sets in Rp. Let Xn be a sequence of random vectors with support in Rd.

If Xn
P X, then supβ f Xn; β − f X; β P 0.

PROOF. First, observe that

sup
β

f Xn; β − f X; β = sup
β

∑
r = 1

q
fr Xn; β − fr X; β 2

= sup
β

∑
r = 1

q
fr Xn; β − fr X; β 2 .

(A.1)

We will show that supβ f Xn; β − f X; β 2 P 0, and hence supβ f Xn; β − f X; β P 0.

We have

sup
β

∑
r = 1

q
fr Xn; β − fr X; β 2 ≤ ∑

r = 1

q
sup

β
fr Xn; β − fr X; β 2 . (A.2)

For each r = 1,...,q, because of the mean value theorem for fr, there exists Xr β  between Xn

and X such that

fr Xn; β − fr X; β = ∂
∂x fr Xr β , β

T
Xn − X . (A.3)

Combining (A.1), (A.2) and (A.3), we have

sup
β

f Xn; β − f X; β
2

≤ ∑
r = 1

q
sup
β

∂
∂x fr Xr β ; β

T
Xn − X

2

≤ ∑
r = 1

q
sup
β

∂
∂x fr Xr β ; β

2
Xn − X 2

= Xn − X 2 ∑
r = 1

q
sup
β

∂
∂x fr Xr β ; β

2
,
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where the second line follows by the Cauchy–Schwarz inequality. Lemma A.1 follows,

because Xn − X 2 P 0 and because the components of ∂
∂x fr x; β  are bounded uniformly in

x and β since X and β take values in a compact space. ◻

We are now ready to prove Theorem 2.1 (consistency of β).

PROOF. To prove consistency of β, we invoke Theorem 5.9 of van der Vaart (1998). Let

u β = ∑
j = 1

J1
αj1

1
aj

1

zj
1

paj
1 β⋆; zj

1 − paj
1 β; zj

1

+ ∑
j = 1

J2
αj2

1
aj

2

zj
2

paj
2 β⋆; zj

2 − paj
2 β; zj

2 .

(A.4)

We show that the two conditions needed for Theorem 5.9 of van der Vaart (1998) hold. First,

we prove uniform convergence over ℬ of U(β) to u(β):

sup
β ∈ ℬ

U β − u β P 0. (A.5)

Recall equation (2.3) and rewrite U(β) as

U β = U β⋆ + ∑
j = 1

J1 nj1
n

1

aj
1

zj
1

paj
1 β⋆; zj

1 − paj
1 β; zj

1

+ ∑
j = 1

J2 nj2
n

1

Aj
2, n1

zj
2

pAj
2, n1 β⋆; zj

2 − pAj
2, n1 β; zj

2 .

Therefore,

U β − u β = U β⋆ + G1 + G2 + G3 + G4 + G5,

where

G1 = ∑
j = 1

J1 nj1
n − αj1

1

aj
1

zj
1

paj
1 β⋆; zj

1 − paj
1 β; zj

1 ,
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G2 = ∑
j = 1

J2
αj2

1

Aj
2, n1

zj
2

pAj
2, n1 β⋆; zj

2 −

1

aj
2

zj
2

paj
2 β⋆; zj

2 ,

G3 = ∑
j = 1

J2
αj2

1

aj
2

zj
2

paj
2 β; zj

2 −

1

Aj
2, n1

zj
2

pAj
2, n1 β; zj

2 ,

G4 = ∑
j = 1

J2 nj2
n − αj2

1

Aj
2, n1

zj
2

pAj
2, n1 β⋆; zj

2 ,

G5 = ∑
j = 1

J2
αj2 −

nj2
n

1

Aj
2, n1

zj
2

pAj
2, n1 β; zj

2 .

By the triangular inequality for the supremum norm, we can analyze each of the terms

U(β⋆), G1,..., G5, separately.

Regarding U(β⋆), we show that its expectation is zero and the variance of each of the 1 +

p+q components of U(β⋆) converges to zero, and thus, by applying Chebychev’s inequality,

U β⋆ P 0.

By the law of iterated expectations, we have

E U β⋆ = 1
n ∑

j = 1

J1
∑
i = 1

nj1
1

aj
1

zj
1

E Y ij
1 − paj

1 β⋆; zj
1

+ ∑
j = 1

J2
∑
i = 1

nj2
E

1

Aj
2, n1

zj
2

E Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 Aj

2, n1

= 0.

(A.6)

We now turn to the variance. The random vector U(β⋆) is a sum of two vectors, one for each

stage. We first show that these two vectors are uncorrelated. Let
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Qj, j′ =

1

aj
1

zj
1

1

Aj′
2, n1

zj′
1

T

.

For any i, i′, j and j′, we have

E

1
aj

1

zj
1

Y ij
1 − paj

1 β⋆; zj
1

1

Aj′
2, n1

zj′
1

T

Y i′j′
2, n1 − pAj′

2, n1 β⋆; zj′
2

= E Qj, j′E Y ij
1 − paj

1 β⋆; zj
1 Y i′j′

2, n1 − pAj′
2, n1 β⋆; zj′

2 Xj′
2, n1

= E Qj, j′E Y ij
1 − paj

1 β⋆; zj
1 Xj′

2, n1 E Y i′j′
2, n1 − pAj′

2, n1 β⋆; zj′
2 Xj′

2, n1

= E Qj, j′E Y ij
1 − paj

1 β⋆; zj
1 Xj′

2, n1

× E Y i′j′
2, n1 − pAj′

2, n1 β⋆; zj′
2 Xj′

2, n1 , Aj′
2, n1

= E Qj, j′E Y ij
1 − paj

1 β⋆; zj
1 Xj′

2, n1 ⋅ 0 = 0,

(A.7)

where the second equality is justified since the two factors are conditionally independent

given Xj
2, n1  by Assumption 2.1. Then, by the linearity of the covariance, we get that the

two vectors in U(β⋆) are uncorrelated.

Denote DiagVar(V ) for the diagonal of the covariance matrix of a random vector V. Define

τ 2(a, z, β) as

τ2 a, z, β = pa β; z 1 − pa β; z , (A.8)

and observe that for each j = 1,..., J2, by the law of total variance, we have
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DiagVar 1
n

1

Aj
2, n1

zj
2

∑
i = 1

nj2
Y ij

2, n1 − pAj
2, n1 β⋆; zj

2

= nj2
n E DiagVar 1

nj2

1

Aj
2, n1

zj
2

∑
i = 1

nj2
Y ij

2, n1 − pAj
2, n1 β⋆; zj

2 Aj
2, n1

+ DiagVar 1
nE

1

Aj
2, n1

zj
2

∑
i = 1

nj2
Y ij

2, n1 − pAj
2, n1 β⋆; zj

2 Aj
2, n1

= nj2
n E

1

Aj
2, n1

zj
2

∘

1

Aj
2, n1

zj
2

τ2 Aj
2, n1 , zj

2 , β⋆ + DiagVar 1
n0

αj2

1
aj

2

zj
2

∘

1
aj

2

zj
2

τ2 aj
2 , zj

2 , β⋆ ,

(A.9)

with ◦ being the elementwise Schur product, u ∘ v i = uivi, for any two vectors u and v, and

where the last line is justified by Lebesgue’s dominated convergence theorem, because the

Aj
2, n1 ‘s take values in a compact space, the zj

2 ‘s are finite, and Aj
2, n1 P aj

2 . It is easy to

see that similar reasoning can be applied to the variance of the first term, leading to

DiagVar 1
n ∑

j = 1

J1
1

aj
1

zj
1

∑
i = 1

nj1
Y ij

1 − paj
1 β⋆; zj

1

∑
j = 1

J1
αj1

1
aj

1

zj
1

∘

1
aj

1

zj
1

τ2 aj
1 , zj

1 , β⋆ .

(A.10)

Combining (A.7)–(A.10), we obtain
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DiagVAR nU β⋆ ∑
j = 1

J1
αj1

1

aj
1

zj
1

∘

1

aj
1

zj
1

τ2 aj
1 , zj

1 , β⋆

+ ∑
j = 1

J2
αj2

1

aj
2

zj
2

∘

1

aj
2

zj
2

τ2 aj
2 , zj

2 , β⋆ ,

which is finite, and we conclude that DiagVar[U(β⋆)] is o(1). Therefore, by applying

Chebyshev’s inequality to each component of U(β⋆), we obtain U β⋆ P 0. Since U(β⋆) is

not a function of β, its supremum over β is its value at β⋆, which we just showed converges

in probability to zero.

Regarding G2, like U(β⋆), it does not involve β. Recall that Aj
2, n1 P aj

2 . Therefore, since

f1 a; β, z = a pa β; z  and f2 a; β, z = cpa β; z , for any constant c, are continuous in a for all

β ∈ ℬ, G2
P 0 by the continuous mapping theorem.

To show that the supremum over β of G3 converges to zero, we can use Lemma A.1 for each

j, since the function f a, β; α, z = α 1 aT zT T pa β; z  is continuous with bounded derivatives

with respect to a for all β ∈ ℬ, and because ℬ is compact and because Aj
2, n1 P aj

2 .

Thus, supβ f Aj
2, n1 , β; α, z − f aj

2 , β; α, z  converges in probability to zero for all j, and

we assumed that J2 is finite.

The convergence of nj2/n to αj2, and the boundedness of f1(a;β) and f2(a;β), uniformly in

β ∈ ℬ, implies that the supremums of G1, G4 and G5 each converges in probability to zero.

Equation (A.5) follows.

The second condition in Theorem 5.9 of van der Vaart (1998) is

inf
β: β − β⋆ > 0

u β > 0 = u β⋆ .
(A.11)

First, (A.4) implies u β⋆ = 0. Furthermore, u(β) is continuous, and its Jacobian matrix

is negative definite, assuming no separation or quasi-separation of the data (Albert and

Anderson (1984), Wedderburn (1976)). Therefore, it has a unique zero (which is β⋆), and

condition (A.11) is fulfilled. Because of van der Vaart (1998), (A.5) and (A.11) imply that β
is consistent. ◻

A.2. Proof of Theorem 2.2: Asymptotic normality of β.

PROOF. We start with a mean value theorem for each of the components of U(β):
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0 = Ur β = Ur β⋆ + β − β⋆ T ∂
∂β Ur βr (A.12)

for r = 1,...,p + q + 1, where each βr is a point on the line between β and β⋆. The square

matrix of dimension p + q + 1 ∂
∂β U β  equals

∂
∂β U β = − 1

n ∑
j = 1

J1
nj1

1

aj
1

zj
1

1

aj
1

zj
1

T

1 − paj
1 β; zj

1 paj
1 β; zj

1

+ ∑
j = 1

J2
nj2

1

Aj
2, n1

zj
2

1

Aj
2, n1

zj
2

T

1 − pAj
2, n1 β; zj

2 pAj
2, n1 β; zj

1 .

Since under no separation or quasi-separation of the data (Albert and Anderson (1984),

Wedderburn (1976)), the logistic regression likelihood is strictly log-concave in β, ∂
∂β U β

is invertible. Furthermore, because of Aj
2, n1 P aj

2  and because the baseline covariates zj
1

and zj
2  are finite, we have that for all β ∈ ℬ,

− ∂
∂β U β P ∑

j = 1

J1
αj1

1
aj

1

zj
1

1
aj

1

zj
1

T

1 − paj
1 β; zj

1 paj
1 β; zj

1

+ ∑
j = 1

J2
αj2

1
3 pt aj

2

zj
2

1
aj

2

zj
2

T

1 − paj
2 β; zj

2 paj
2 β; zj

2

: = I β ,

(A.13)

by Lebesgue’s dominated convergence theorem. Since βr is between β and β⋆ for all r,

βr is consistent for each. Since I (β) is continuous in β and uniformly bounded in β ∈ ℬ,

equations (A.12) and (A.13) imply that the asymptotic distribution of n β − β⋆  is the same

as the asymptotic distribution of (2.5).

Regarding the part of (2.5) that does not involve I (β⋆), we will show that its asymptotic

distribution is multivariate normal. We present a coupling argument (Lindvall (2002)) to

deal with the fact the two summands are not independent. For each j = 1,..., J2, let Y ij
2

be i.i.d. Bernoulli random variables with success probability paj
2 β⋆; zj

2 . We construct

variables Y ij
2, n1  which, given the stage 1 data and Aj

2, n1 , have the same distribution as the
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original Y ij
2, n1 , but coupled (see, e.g., Lindvall (2002)) with the Y ij

2  in the following way.

Let Wij be a uniform (0, 1) random variable independent of all other variables introduced

so-far. For the case paj
2 β⋆; zj

2 > pAj
2, n1 β⋆; zj

2 , Y ij
2, n1  is defined by (2.6). For the case

paj
2 β⋆; zj

2 ≤ pAj
2, n1 β⋆; zj

2 ,

Y ij
2, n1 =

1 if Y ij
2 = 1

1 if Y ij
2 = 0 and W ij <

pAj
2, n1 β⋆, zj

2 − paj
2 β⋆, zj

2

1 − paj
2 β⋆, zj

2

0 if Y ij
2 = 0 and W ij ≥

pAj
2, n1 β⋆, zj

2 − paj
2 β⋆, zj

2

1 − paj
2 β⋆, zj

2 .

(A.14)

The key ingredient of the coupling argument is that given Aj
2, n1  and all stage 1 data, the

distribution of the Y ij
2, n1  is identical to the distribution of the Y ij

2, n1 . Therefore, when

replacing Y ij
2, n1  with Y ij

2, n1  in (2.5), the distribution of (2.5) is unaffected: the term of (2.5)

that does not involve I (β⋆) has the same distribution as

1
n ∑

j = 1

J1
∑

i = 1

nj1
1

aj
1

zj
1

Yij
1 − paj

1 β⋆; zj
1

+ 1
n ∑

j = 1

J2
∑

i = 1

nj2
1

Aj
2, n1

zj
2

Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 .

This equals

1
n ∑

j = 1

J1
∑

i = 1

nj1
1

aj
1

zj
1

Yij
1 − paj

1 β⋆; zj
2

+ 1
n ∑

j = 1

J2
∑

i = 1

nj2
1

aj
2

zj
2

Yij
2 − paj

2 β⋆; zj
2 + Dn,

where
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Dn = 1
n ∑

j = 1

J2
∑

i = 1

nj2
1

Aj
2, n1

zj
2

Y ij
2, n1 − pAj

2, n1 β⋆; zj
2

−

1

aj
2

zj
2

Yij
2 − paj

2 β⋆; zj
2 .

We will show that Dn
P 0, using the fact that the Y ij

2  and Y ij
2, n1  are coupled.

Conditionally on Aj
2, n1  for the respective terms the expectation of the first term of Dn is

zero, and conditioning on aj
2  for the respective terms implies the expectation of the second

term is also zero. Therefore, E(Dn) = 0. We will show that the expectation of the square

of each entry in the vector Dn converges to 0, so that Chebyshev’s inequality implies that

Dn
P 0. We concentrate on the component of the vector that is led by Aj

2, n1 , as the proof

for the other terms is similar, yet simpler.

The expectation of the square of each of the mth components of

1
n ∑

j = 1

j2
∑

i = 1

nj2
Aj

2, n1 Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 − aj

2 Yij
2 paj

2 β⋆; zj
2

equals to

1
nE ∑

j = 1

J2
∑
i = 1

nj2
Ajm

2, n1 Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 − ajm

2 Y ij
2 − paj

2 β⋆; zj
2

2

= 1
n ∑

j = 1

J2
∑
i = 1

nj2
E Ajm

2, n1 Y ij
2, n1 − pAj

2, n1 β⋆; zj
2

−ajm
2 Y ij

2 − paj
2 β⋆; zj

2 2

(A.15)
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= ∑
j = 1

J2 nj2
n E Ajm

2, n1 Y ij
2, n1 − ajm

2 Y ij
2

− Ajm
2, n1 pAj

2, n1 β⋆; zj
2 − ajm

2 paj
2 β⋆; zj

2 2

= ∑
j = 1

J2 nj2
n E ajm

2 Y ij
2, n1 − Y ij

2 − pAj
2, n1 β⋆, zj

2 − paj
2 β⋆; zj

2

+ Ajm
2, n1 − ajm

2 Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 2

= ∑
j = 1

J2 nj2
n E ajm

2 Y ij
2, n1 − Y ij

2 − pAj
2, n1 β⋆; zj

2 − paj
2 β⋆; zj

2 2

+ E Ajm
2, n1 − ajm

2 Y ij
2, n1 − pAj

2, n1 β⋆; zj
2 2

+ 2E ajm
2 Y ij

2, ni − Y ij
2 − pAj

2, n1 β⋆; zj
2 − paj

2 β⋆; zj
2

⋅ Ajm
2, n1 − ajm

2 Y ij
2, n1 − pAj

2, n1 β⋆; zj
2

(A.16)

= ∑
j = 1

J2 nj2
n E ajm

2 Y ij
2, n1 − Y ij

2 − pAj
2, n1 β⋆; zj

2 − paj
2 β⋆; zj

2 2

+ o 1

= ∑
j = 1

J2 nj2
n ajm

2 2E E Y ij
2, n1 − Y ij

2

− pAj
2, n1 β⋆; zj

2 − paj
2 β⋆; zj

2 2
Aj

2, n1

+ o 1

= ∑
j = 1

J2 nj2
n ajm

2 2E Var Y ij
2, n1 − Y ij

2

− pAj
2, n1 β⋆; zj

2 − paj
2 β⋆; zj

2 Aj
2, n1

+ o 1

(A.17)

= ∑
j = 1

J2 nj2
n ajm

2 2E pAj
2, n1 β⋆; zj

2 − paj′
2 β⋆; zj′

2

× 1 − pAj′
2, n1 β⋆; zj′

2 − paj′
2 β⋆; zj′

2

+ o 1
0.

(A.18)

In (A.15), all terms with j′ ≠ j and i′ ≠ i vanish by conditioning on Aj
2, n1 , Aj′

2, n1 , for

all j, j′ = 1,..., J2 (aj
2  are constants). Because Aj

2, n1 P aj
2  and Aj

2, n1  has bounded

support, the expectations (A.16) and (A.17) are o(1) by Lebesgue’s dominated convergence

theorem. In both expressions, (A.16) and (A.17), all the components are bounded and
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Ajm
2, n1 − ajm

2 P 0. Therefore, both (A.16) and (A.17) are o(1). In (A.18), we utilize the

coupling: conditionally on Aj
2, n1  and aj

2 , Y ij
2, n1 − Y ij

2  is a plus or minus a Bernoulli

random variable with corresponding probability pAj
2, n1 β⋆; zj

2 − paj
2 β⋆; zj

2 . By

Aj
2, n1 P aj

2 , pAj
2, n1 β⋆; zj

2 P paj
2 β⋆; zj

2 , so that Lebesgue’s dominated convergence

theorem implies that the expectation converges to zero. Because ajm
2 2

 is bounded and nj2/n

is bounded by 1, then Dn
P 0.

We conclude that the asymptotic distribution of the term of (2.5) that does not involve I (β⋆)
has the same asymptotic distribution as (2.7). The asymptotic normal distribution of (2.7)

follows from standard theory about logistic regression because the aj
1  and aj′

2  are fixed for

all j, j′, so the outcomes are independent. Standard theory also implies that the asymptotic

variance of (2.7) is equal to I (β⋆). Combining with (2.5), we conclude that

n β − β⋆ D N 0, I−1 β⋆ .

The variance can be consistently estimated from the data by replacing aj
2 , β⋆, αj1 and αj2

with Aj
2, n1 , β, nj1/n and nj2/n, respectively, in I (β⋆). This asymptotic variance is the same

as the asymptotic variance that one would obtain if the interventions were fixed in advance

(and thus Y j
1  and Y j′

2, n1  were independent (for all j, j′)). ◻
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TABLE 1

Simulation study: results for individual package component effects. Unit costs were c1 = 1 and c2 = 8

eβ⋆
n 1j n 2j J

β11 β12

%RelBias
SE

EMP.SD × 100
CP95 %RelBias

SE
EMP.SD × 100

CP95

Scenario 1 (J1 = J2 = J)

(1.2, 1.5) 50 100 6 −2.3 96.5 95.1 −1.9 84.1 94.0

10 −2.7 98.8 94.9 −1.2 92.2 95.2

20 −1.4 101.3 95.2 −0.3 102.7 95.6

200 6 −1.8 95.0 94.9 −2.6 81.0 95.4

10 −4.4 92.7 94.2 −1.0 91.9 95.2

20 −2.1 102.2 95.5 −0.2 99.7 95.2

100 100 6 −1.7 92.9 94.7 −1.5 86.2 95.5

10 2.8 101.9 95.7 −1.4 100.9 95.4

20 2.1 101.1 95.5 −0.5 101.6 95.0

200 6 −3.2 91.4 94.6 −0.8 83.6 95.5

10 −1.6 99.5 95.4 −0.6 94.9 95.3

20 −0.4 98.4 95.0 −0.3 97.5 94.5

(1.2, 2) 50 100 6 −16.0 91.6 95.4 0.7 86.0 96.0

10 −7.4 101.4 95.8 0.2 102.2 96.0

20 −3.6 99.6 95.2 −0.1 101.4 94.8

200 6 −11.8 89.9 95.1 0.7 89.7 95.1

10 −9.2 94.9 95.5 0.1 97.6 96.0

20 −2.7 100.0 95.0 −0.2 101.4 96.2

100 100 6 −7.6 94.5 95.8 −0.1 94.1 95.2

10 −2.1 98.2 94.8 −0.0 102.7 95.2

20 −3.7 100.3 95.2 0.2 102.7 95.5

200 6 −7.1 84.6 95.2 0.3 95.8 95.9

10 −4.6 96.4 94.7 0.0 99.6 95.5

20 −3.5 98.0 94.6 0.1 104.8 95.9

Scenario 2a (J1 = 6, J2 = 12)

(1.2, 1.5) 50 200 −3.8 96.4 95.5 −0.5 91.0 94.8

(1.2, 2) 50 200 −7.4 95.6 95.9 0.7 94.7 95.5

Scenario 2b (J1 = 10, J2 = 20)

(1.2, 1.5) 50 200 −3.1 96.9 94.6 −0.7 95.5 95.5

(1.2, 2) 50 200 −6.2 93.4 94.7 0.2 100.1 95.2

%RelBias, percent relative bias 100 β − β⋆ /β⋆; SE, mean estimated standard error; EMP.SD, empirical standard deviation; CP95, empirical

coverage rate of 95% confidence intervals.
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TABLE 2

Simulation study: results for estimated optimal intervention package in stages 1 and 2. Unit costs were c1 = 1

and c2 = 8

n 1j n 2j

Stage 1 Stage 2

eβ⋆ x opt Bias1 (×100) Bias2 (×100) RMSE (×100) Bias1 (×100) Bias2 (×100) RMSE (×100)

Scenario 1 (J1 = J2 = 20)

(1, 2) (0, 3.2) 50 100 52.8 −10.0 110.6 34.5 −4.7 85.0

500 52.6 −11.5 110.5 16.5 −2.1 58.5

100 100 35.0 −5.8 89.0 24.0 −2.5 71.0

500 38.9 −7.5 93.0 10.6 −0.9 47.0

(1.2, 1.5) (2, 4.5) 50 100 −30.0 −9.9 94.5 −9.5 2.7 51.6

500 −30.7 −9.8 94.8 −2.7 2.1 27.8

100 100 −14.9 −3.1 68.6 −3.6 1.2 35.9

500 −16.6 −2.5 70.9 −0.7 1.7 18.1

(1.2, 2) (2, 2.6) 50 100 −50.2 −0.5 106.3 −33.1 4.5 84.0

500 −51.4 0.5 107.1 −14.9 3.3 56.6

100 100 −35.8 1.7 88.2 −23.2 3.3 70.3

500 −35.0 1.7 87.5 −8.8 2.3 43.6

Scenario 2a (J1 = 6, J2 = 12)

(1, 2) (0, 3.2) 50 200 76.0 −43.0 168.6 42.7 −8.1 96.6

(1.2, 1.5) (2, 4.5) 50 200 −65.4 −92.2 210.8 −18.6 1.2 71.3

(1.2, 2) (2, 2.6) 50 200 −81.0 −29.3 163.9 −44.4 3.0 98.4

Scenario 2b (J1 = 10, J2 = 20)

(1, 2) (0, 3.2) 50 200 66.4 −20.1 134.4 32.1 −4.8 82.2

(1.2, 1.5) (2, 4.5) 50 200 −49.3 −33.1 141.3 −10.4 4.6 52.4

(1.2, 2) (2, 2.6) 50 200 −68.6 −8.3 133.4 −32.6 4.2 83.3

Bias1, bias of x1
opt

; Bias2, bias of x2
opt

; RMSE, root of mean squared errors mean xopt − xopt 2 1/2
, mean taken over simulation

iterations.
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TABLE 3

Simulation study: results for estimated optimal intervention package in stages 1 and 2 and coverage of 95%

confidence bands for success probabilities. Unit costs were c1 = 1 and c2 = 8

eβ⋆
x opt n 1j n 2j PrOpt1 (Q2.5, Q97.5) PrOpt2 (Q2.5, Q97.5) SetCP95 SetPerc% BandsCP95

Scenario 1 (J1 = J2 = 20)

(1, 2) (0, 3.2) 50 100 (83.6, 93.8) (87.2, 91.8) 94.0 7.6 97.0

500 (83.5, 93.7) (88.2, 91.1) 95.0 4.0 97.2

100 100 (85.2, 93.1) (87.8, 91.6) 94.8 6.3 96.5

500 (85.6, 92.8) (88.8, 91.0) 95.3 3.7 97.4

(1.2, 1.5) (2, 4.5) 50 100 (81.1, 91.6) (87.3, 91.6) 94.8 13.3 96.0

500 (81.9, 91.6) (88.8, 91.3) 95.1 7.6 95.9

100 100 (84.7, 91.6) (87.9, 91.6) 94.8 12.3 95.4

500 (84.0, 91.6) (89.0, 91.1) 95.3 7.1 95.4

(1.2, 2) (2, 2.6) 50 100 (83.3, 93.2) (87.2, 91.7) 94.6 14.3 95.5

500 (83.7, 93.3) (88.5, 91.2) 94.4 8.1 95.3

100 100 (85.6, 92.4) (87.7, 91.5) 95.6 12.4 96.0

500 (85.3, 92.5) (88.7, 91.1) 95.1 7.5 95.8

Scenario 2a (J1 = 6 J2 = 12)

(1, 2) (0, 3.2) 50 200 (50.0, 97.0) (85.6, 92.2) 94.7 9.8 97.5

(1.2, 1.5) (2, 4.5) 50 200 (56.8, 91.6) (85.8, 91.6) 95.1 17.3 95.7

(1.2, 2) (2, 2.6) 50 200 (56.7, 97.3) (85.5, 92.0) 95.8 17.1 97.2

Scenario 2b (J1 = 10 J2 = 20)

(1, 2) (0, 3.2) 50 200 (78.7, 95.5) (87.1, 91.6) 94.7 6.6 96.8

(1.2, 1.5) (2, 4.5) 50 200 (70.0, 91.6) (87.5, 91.6) 95.6 11.8 95.4

(1.2, 2) (2, 2.6) 50 200 (75.6, 95.2) (87.2, 91.4) 95.2 12.4 96.3

PrOpt1, success probability of the second-stage recommended intervention, calculated using true coefficient values; PrOpt2, success probability of
the final estimated optimal intervention, calculated using true coefficient values; Q2.5 and Q97.5, 2.5% and 97.5% quantiles; SetCP95, empirical
coverage percentage of confidence set for optimal intervention; SetPerc%, mean percent of X covered by the confidence set; BandsCP95,

empirical coverage rate of 95% confidence bands for px β; z = 0 :x ∈ X .
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TABLE 4

Package component effect estimates and confidence intervals, calculated after each stage

Stage 1
n1 = 73

OR (CI-OR)

Stages 1–2
(n1 + n2 = 1780)

OR (CI-OR)

Stages 1–3
(n1 + n2 = n3 = 6124)

OR (CI-OR)

Intercept 1.07 (0.00, 280.80) 0.10 (0.07, 0.15) 0.10 (0.09, 0.11)

Coaching Visits (per 3 visits) 7.95 (1.77, 73.95) 1.11 (0.96, 1.28) 1.08 (1.04, 1.12)

Launch Duration (days) 1.41 (0.76, 2.64) 2.65 (1.95, 3.77) 2.79 (2.41, 3.23)

Birth Volume (monthly, per 100) 0.37 (0.00, 32.33) 2.11 (1.93, 2.33) 1.94 (1.84, 2.06)

xopt, 2, n1 = 1, 5 xopt, 3, n1, n2 = 3, 1 xopt = 3, 1

OR, estimated odds ratio exp β ; CI-OR, 95% Confidence interval for the odds ratio. In the estimated optimal interventions, the first component is

the launch duration (in days) and the second component is the number of coaching visits.
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